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Nonl inear  control  systems mode led  by dif ferential-algebraic equations are 
studied. A tracking prob lem associated with the system is solved and its 

applications to force and posi t ion control  in robotics are presented. 
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Abslraet--We consider the design of a feedback control law 
for control systems described by a class of nonlinear 
differential-algebraic equations so that certain desired 
outputs track given reference inputs. The nonlinear 
differential-algebraic control system being considered is not 
in state variable form. Assumptions are introduced and a 
procedure is developed such that an equivalent state 
realization of the control system described by nonlinear 
differential-algebraic equations is expressed in a familiar 
normal form. A nonlinear feedback control law is then 
proposed which ensures, under appropriate assumptions, that 
the tracking error in the closed loop differential-algebraic 
system approaches zero exponentially. Applications to 
simultaneous contact force and position tracking in 
constrained robot systems with rigid joints, constrained robot 
systems with joint flexibility, and constrained robot systems 
with significant actuator dynamics are discussed. 

1. INTRODUCTION 

WE CONSIDER a class of control systems which is 
described by nonlinear differential and algebraic 
equations of the form 

= f ( x )  + g(x)v + h(x)u, (1) 

y = 0 = k(x) ,  (2) 

z = l(x) + m(x)v,  (3) 

where x ~ M, with M an open subset of R", 
V E R m, u ~ R p, y ~ R m, Z ~ R p a n d  m < n. 

Let g(x) = [gt(x) . . . .  , g,,(x)], h(x) = [h~(x) . . . .  , 
hp(x)], and k(x)  = [kl(x) . . . .  , km(x)] T, where 
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f (x ) ,  gi(x), i=  1 . . . . .  m, hi(x), i = 1 . . . . .  p are 
smooth vector fields on M, and k(x), l(x) and 
m(x)  are smooth mappings on M. We subse- 
quently refer to v as the constraint input 
variables, to u as the control input variables, to y 
as the constraint output variables, and to z as 
the control output variables. The constraint 
input variables o cannot be directly changed and 
must be viewed as extra variables which appear 
in the dynamic equations due to the presence of 
the constraint defined by equation (2). The 
control input variables u are used to influence 
the solutions of equations (1)-(3). The variables 
y denote the outputs of the system which are 
constrained, and the variables z denote the 
outputs to be controlled. The control system 
described by nonlinear differential-algebraic 
equations (1)-(3) is also referred to as a 
constrained system. Control systems of the form 
(1)-(3) represent an important special class 
among systems referred to as singular systems or 
implicit differential equations as described in 
Brenan et al. (1989), Reich (1990) and 
Rheinboldt (1984). 

The class of nonlinear differential-algebraic 
equations considered in this paper represents a 
number of physical systems which include 
mechanical systems with classical holonomic and 
nonholonomic constraints. Robotic systems with 
kinematic constraints, which arise in force and 
position control tasks are often represented by 
the class of nonlinear differential-algebraic 
equations studied here (Krishnan, 1992; 
McClamroch, 1986) .  Differential-algebraic 
equations are also known to arise as dynamic 
models in power systems (Kaprielian et al. 1991; 
Venkatasubramanian et al., 1990), electrical 
circuits, interconnected large scale systems, and 
in quantum mechanics. In general, differential- 
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algebraic equations are the basic model of a 
number of physical systems while state-space 
models are a simplification. 

Simulation of differential-algebraic equations 
is difficult since they have similar characteristics 
to stiff differential equations. Most of the 
research on nonlinear differential-algebraic 
equations has focused primarily on issues related 
to numerical integration of such a system of 
equations (Brenan et al., 1989). Differential- 
algebraic models of systems are nonstandard in 
the sense that they are not state-space models. 
Well-posedness of the models has to be studied 
carefully. Analysis of differential-algebraic 
equations using differential geometric methods is 
presented in Reich (1990) and Rheinboldt 
(1984). Based on the theory of differential 
equations on manifolds, existence and unique- 
ness results are proved in Rheinboldt (1984) for 
a class of mixed systems of differential and 
algebraic equations. The goemetrical interpreta- 
tion of the relation between differential- 
algebraic equations and vector fields on man- 
ifolds is further developed in Reich (1990). The 
literature on feedback control and stability of 
differential-algebraic equations or implicit 
differential equations is sparse. Control issues 
are, in general, more complicated and so is 
stability theory. Control systems described by 
nonlinear differential-algebraic equations of the 
form (1)-(3) are introduced in McClamroch 
(1990). Existence and uniqueness of solutions, 
and the feedback stabilization problem for 
systems described by equations (1)-(3) are 
considered. The concept of an equivalent state 
realization for the class of nonlinear differential- 
algebraic equations (1)-(3) is developed. Analy- 
sis and control design for a class of linear 
differential-algebraic equations, having the 
same structure as equations (1)-(3), is developed 
in detail in Krishnan (1992) and Krishnan and 
McClamroch (1992). A tracking problem as- 
sociated with the class of nonlinear differential- 
algebraic equations (1)-(3), under the assump- 
tion that the reference inputs are sufficiently 
slowly varying, is considered in Krishnan and 
McClamroch (1991). 

We emphasize that equations (1)-(3) are not a 
state realization for the constrained system. 
Consequently, the existence of well-defined 
solutions of equations (1)-(3) requires justifica- 
tion. In order to guarantee the well-posedness of 
a control system described by nonlinear 
differential-algebraic equations (1)-(3), addi- 
tional assumptions are necessary. Our fun- 
damental assumptions for the class of nonlinear 
constrained systems defined by equations (1)-(3) 
are now introduced. Assume there are finite 

positive integers r~ . . . . .  rm such that 
(1) if rg->2 then LgL~k~(x)=O,  V k =  

0 . . . . .  r g - 2 ,  i , j  = 1 . . . . .  m, Vx ~ M', 
(2) r a n k A ( x ) = m ,  Vx ~ M, where A ( x )  

R m×" whose element on the i-th row and j-th 
column is a,j = LgLr/- Jki(x); 

(3) if r~->2 then Lh, L~k~(x)=O, V k =  
0 . . . . .  r i - 2 ,  i = 1  . . . . .  m, 

j = l  . . . . .  p, V x e M .  

The notation Lfki (x)  indicates the directional 
derivative of ki(x) along the vector field f(x);  i.e. 

Lrki(x) - °ki(x) f (x ) ,  L~k,(x) = LAL~ -'ki(x)). 
Ox 

Assumptions (1)-(3) are essentially that the 
constraint (strong) relative degree vector of 
(f, g, k) is (r~ . . . . .  rm) and is not greater than the 
control (strong) relative degree vector of 
(f, h, k), componentwise (Isidori, 1989). If rg = r, 
i = 1 . . . . .  m, these assumptions are equivalent 
to the assumption that the index, as defined for 
nonlinear singular (or implicit) equations as in 
Brenan et al. (1989), is r + 1, for all x e M. The 
following theorem from McClamroch (1990) 
states that the nonlinear differential-algebraic 
equations (1)-(3) are well posed. 

Theorem 1.1. Define 

N* ={x E M IL~ki(x ) =0,  k = 0  . . . . .  r, - 1, 

i = 1 . . . . .  m}. (4) 

Then N* is an n -  (r~ + ' "  + rm) dimensional 
smooth submanifold of M. Assume that the 
initial condition x(0) e N* and the input function 
u: [0 ,  oe)----~R p is a given integrable function. 
Then there exists a unique solution (x(t),  v( t))  
(at least locally defined) of the initial value 
problem corresponding to equations (1)-(3) and 
the solution satisfies x ( t ) e  N* for each t for 
which the solution is defined. 

Thus, under the stated assumptions, it is 
possible to explicitly specify the state-space for 
the differential-algebraic equations considered. 
In fact the state-space is the manifold N*. Our 
particular interest is to study feedback systems 
which are defined using equations (1)-(3) and a 
feedback map defined by u : N * x R  e--~R p 

where 

u = - / (x)  + ~r(x)w:  (5)  

here w ~ R p is the closed loop input. The closed 
loop constrained system is defined by the 
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nonlinear differential-algebraic equations 

2 = {f(x) + h(x)y(x)} + g(x)v + h(x)o(x)w,  (6) 

0 = k(x), (7) 

z = l(x) + m(x)v. (8) 

Assumptions (1)-(3) are satisfied for all closed 
loop equations of the form (6)-(8). If we assume 
that the closed lo0p input w:[0, oo)---->RP is a 
given integrable function and the initial condi- 
tion data x(0) e N*, then there exists a unique 
solution (at least locally defined) of the initial 
value problem corresponding to equations 
(6)-(8) which satisfies x( t )E  N* for each t for 
which the solution is defined. 

In this paper, we consider the problem of 
designing a feedback control law of the form (5) 
so that the control outputs z(t) track desired 
reference inputs in control systems described by 
a class of nonlinear differential-algebraic equa- 
tions (1)-(3) for which Assumptions (1)-(3) 
hold. Additional assumptions are introduced so 
that an equivalent state realization of the control 
system described by nonlinear differential- 
algebraic equations (1)-(3) is expressed in a 
familiar normal form as in Isidori (1989). A 
nonlinear feedback control law is then proposed 
which ensures, under appropriate assumptions 
which are made clear later, that the tracking 
error in the closed loop system approaches zero 
exponentially. In particular, applications to 
simultaneous contact force and position tracking 
in constrained robot systems are discussed. 

2. FEEDBACK CONTROL DESIGN 

Consider a control system described by 
nonlinear differential-algebraic equations de- 
fined by equations (1)-(3) satisfying Assump- 
tions (1)-(3). Suppose r( t )~ R p is a vector of 
reference inputs to the differential-algebraic 
system. In this section, we describe a procedure 
for designing a nonlinear feedback control law so 
that the control outputs z(t) track the given 
reference inputs r(t) and the tracking error in 
the closed loop system approaches zero 
exponentially. 

Let f*(x), h*(x), l*(x) and n*(x) be defined as 

f*(x)  = f (x )  + g(x)a(x),  (9) 

h*(x) = h(x) + g(x)fl(x), (10) 

l*(x) = l(x) + m(x)a(x) ,  (11) 

n*(x) = m(x)~(x) ,  (12) 

where a(x) and/3(x) are defined as 

i / , 
LLpkm(x)  J 

= 

f Lh,L~'- 'k,(x) 
-A-'(x) / i 

• " L h L • i l k l ( x ) ] .  

LhpL?-akm(x) J 
(14) 

Without loss of generality, the control outputs 
z(t) can be ordered so that n*(x) is of the form 

n*(x)= [ Os×p ], (15) 
LB2(x) 

where B2(x) E R (p-s)xp and 0-<s <-p. Let 

h*(x) = [ h * ( x )  . . . . .  h * ( x ) ] ,  

and 

l*(x) = [t*(x) . . . . .  t*(x)F. 

We assume further that there exist positive 
integers /z~,/z2 . . . . .  /zs such that the following 
assumptions hold: 

(4) if/zi -> 2 then Lhj.L~.l*(x) = O, 
V k = 0  . . . . .  t z i -2 ,  j =  1 . . . . .  p, 

i = 1  . . . . .  s, V x e M ;  

(5) r ankB (x )=p ,  Vx ~ M, where B(x)  
R p×p is defined by 

B(x)  = [BI(x)] (16) 
I_B2(x) J 

and the element in the i-th row and j-th column 
of Bl(x) ~ R s×p is defined by 

[Bl(x)]ij = LhFL~,-~I*(x), i = 1 , . . . ,  s, 

j = l  . . . .  ,p. 

It is now possible to state the following theorem. 

Theorem 2.1. Consider the control system 
described by nonlinear differential-algebraic 
equations (1)-(3) satisfying Assumptions (4) 
and (5) and Assumptions (1)-(3) of Section 1. 
Let the notation dki(x) denote the row vector 

ok,(x)] 
dki(X)= l ~xl Ox, J" 

Then the row vectors 

dkl(x), dLfk~(x) . . . . .  dL~'-lk~(x), 

akin(x), d t f k m ( x )  . . . .  , dZr/ '- lkm(x),  

dl*,(x), d L r t * ( x  ) . . . . .  d I 4 , - ' t ~ ( x  ), 

dl*(x ), dLf.t*(x ) . . . . .  dL~a- l l*(x ), 

are linearly independent for each x e M. 
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Proof .  Assumptions (1)-(3)  imply that the first 
(r~ + r2 + ' "  + rm) row vectors dk~(x )  through 
d L ~ - ~ ( x )  are linearly independent for each 
x E M (Isidori, 1989). Assumptions (4) and (5) 
imply that the last (/Zl + / x 2 + ' "  + g s )  row 
vectors d l * ( x )  through u -~ * dL~z l~(x)  are linearly 
independent for each x E M (Isidori, 1989). 
However,  we need to show that the (r~ + • • • + 
rm + tx~ + " " • + tz~) row vectors dk~(x )  through 
dL~: -~ l* (x )  taken together are linearly inde- 
pendent for each x e M. This is shown by 
proceeding along the lines of the proof in Isidori 
(1989, Lemma 5.1.2) with appropriate 
modifications. 

Assume without loss of generality that r I ~ r~, 
2 -< i -< m, and /z  ~ ->/z~, 2 -< i -< s. Let Q denote a 
matrix with rows formed by row vectors dk~(x )  
through dL~: ~l*(x) as defined above and let 
the matrix P be defined as 

P = [h*(x) . . . .  , h * ( x )  . . . . .  ad~" ' 

× h * ( x )  . . . .  , a d ~ d - ' h * ( x ) ,  

g t ( x ) ,  . . . , g,~(x),  . . . , ad~'- '  

× gl(x), • • • , ad~/-lgm(X)], 

where the notation adfg denotes the Lie bracket 
[f, g] and a d ~  = [f, ad~-~g]. Observe that under 
the stated assumptions 

L~.k i (x )  = L~ki(x) ,  0 ~ k <- r~ - 1, 

i = l , . . . , m ,  

L~ . k~ (x )=O,  k > r ~ - l ,  i = l , . . . , m ,  

Lhj.L~.ki(x ) = O, k >- O, i = 1  . . . . .  m ,  

j = l , . . .  ,p.  

(17) 

(18) 

Using equations (17)-(19) and from 
(1989, Lemma 4.1.3) it follows that 

( d t T k i ( x  ), a d ; . h  * ( x  ) ) = O, 

q = 0  . . . . .  r ~ - l ,  j = l  . . . .  ,m ,  

r = 0  . . . . .  t21 - 1, j = l , . . . , p .  

Moreover  for i = 1, . . . ,  m, j = 1 . . . .  , m we have 

(dLTki (x  ), adrfgj(x )) 

= { ~ '  q + r < - - r i - 2 '  

-1)rt-l-qtgjtT-lki(x), q + r = rg - 1. 

and for i = 1 . . . . .  s, j = 1 . . . .  , p  we have 

(dLT. l*(x) ,  ad~ .h* (x ) )  

={0 ,  q + r < - - t x ~ - 2 ,  

( - 1 )  ~' ' -qLh j .L~- l l i* (x ) ,  q + r = IXs - 1. 

(19) 

Isidori 

of the form [o 
A 2 J  

w h e r e  A l and A2 are matrices having a block 
triangular structure. The diagonal blocks of A~ 
consist of rows of the matrix A ( x )  defined by 
Assumption (2) of Section 1. The diagonal 
blocks of A2 consist of rows of the matrix B~(x)  
defined by Assumption (5). Thus the row vectors 
defined above are linearly independent for each 
x ~ M .  [] 

We now consider new variables defined by 

= ~ , ( x ) / =  qb(X), (20) 
/ 

where 

= k , ( x ) ,  = . . . . .  = 

. l~rl+l = k2 (x ) ,  -~r l+2 = L f k 2 ( x  ) 

. . . . .  -~rl+...+rm = tr fm--lkm(x) ,  

$~ = Z*(x), £2 = L f . l * ( x )  . . . . .  E m = L~: ~t*(x), 

(21) 

and . . . . .  £,,+ ..+,, = L~:-'l*~(x), 

~: = @z(x), (22) 

where the vector ~ e R " - ~ ' + + r ' )  (u,+...+~) and 
ko2(. ) is a smooth mapping. Theorem 2.1 
guarantees that there exists a nonlinear coordin- 
ate change defined by equations (20)-(22) which 
is a local diffeomorphism in a neighborhood of 
every x E M. Clearly, Theorem 2.1 is only 
necessary for equations (20)-(22) to be a global 
diffeomorphism on M. Sufficient conditions 
which guarantee the global validity of such a 
diffeomorphism on M can be given as in Byrnes 
and Isidori (1991). However,  the conditions 
would be very restrictive. Here we assume that 
equations (20)-(22) define a diffeomorphism on 
M. The differential-algebra equations (1)-(3) in 
the transformed coordinates are given by 

-~1 ~- 3~2 

-~r~ - 1 --"= 3~r~ 

L, = G'kl(X) + 
j = l  

p 

+ E (C.,L?-'k,(x))uj 
j = l  

Thus, the matrix Q P  after reordering of rows is 
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Xrl+...+rm_l+ 1 ~ Xrl+...+rm_l+ 2 

(23) 

Xrl+...+rm_ 1 ~ Xrl+...+r m 

,t, ~ rrn_ 1 
x,,+...+,,. = L ~ k m ( x )  + (LgsL r k m ( x ) ) v  j 

i=1 
P 

+ ~ (LhsLr/"-mk~(x))uj  
1=1 

k - o ~ ( x )  
- -  ( f ( x )  + g ( x ) v  + h ( x ) u )  

Ox 

_ oq'~(x______) (y(x) + g(x)o + h(xlu)  
Ox 

Yi = 0 = "~ri-l+l, i = 1 , . . . ,  m ,  ro = 0 

z = l ( x )  + m ( x ) v ,  

where 

x=q~- I  :~ . (24) 
\ ~ /  

Clearly, eliminating the constraints in the 
transformed variables amounts to setting the 
variables $ identically equal to zero. Setting 

= 0 in equation (23) we obtain 

v = a ( x )  + f l ( x ) u ,  (25) 

where a ( x )  and /3(x) are defined by equations 
(13) and (14). Moreover the nonlinear 
differential-algebraic equations are equivalent to 
the n - ( q  + rE + " " "rm) dimensional nonlinear 
state realization given by  

X g l _  1 = X # l  

/ 
/ 

i 

x~, = L~2I*(x) + ~ ( L h p t ~ i - l l ~ ( x ) ) u /  
]=1 

X/.tl+'"+u. s i+1 ~ X / . ~ I + . . . + / / ,  s 1+2 

(26) 

X g l + . . . + g s _  1 = Xbtl+. . .+bt3 

x~,+...+ m = L~gl*(x)  + ~ (LhpL~, ' -a l*(x))us  
1=1 

= oWo~x)f ,(x ) + ou.,~(x)h*(x)u 
Ox 

r o x.} 
Z = l * ( x )  + LB2 "x' ju ' t  ) 

where 

(°1 X = ( I ) - 1  3~ . (27) 

\ ~ /  

The equivalent state realizations for the 
nonlinear differential-algebraic equations are in 
a familiar normal form as described in Isidori 
(1989). Suppose the control outputs z ( t )  are 
required to track the reference inputs r(t); i.e. 
we want 

z ( t ) - - -~r( t )  as t--->~. 

Then a nonlinear feedback control law can be 
chosen as 

u(x,g)--fB'(x)l-'f-[a'(x)]+a}, (28) 
tB2(x) J t [a2(x)J 

where 

R ( t )  = (r~(t) . . . . .  r~ ' -~ ( t )  . . . .  , r , ( t ) ,  . . . , r~s-~(t) ,  

ro+l)(t) . . . .  , rp(/)) T, 
btl 

a i = r~"(t) - ~ K i . s (L~: ' I* (x )  - ~- l ( t ) ) ,  
j=l 

i = l ,  . . . , s, 

t~ = r;(t), i = s + l  . . . . .  p, 

ai(x) = : , a2(x) = , 

L L~I*.(x) I L l* (x )  _] 

and ~( t )  denotes the j-th time derivative of y(t). 
Using such a control law the tracking errors in 
the closed loop differential-algebraic system 
defined by 

ei( t)  = z~(t) - r~(t), i = 1 . . . . .  p ,  (29) 

satisfy the following equations: 

e~'(t) + Ki ,  m e ~ - l ( t )  ÷ ' "  -4- Ki ,  l e i ( t  ) = O, 

i = 1 , . . .  ,s,  

e i ( t ) = O ,  i = s + l  . . . .  ,p.  

If the gains K i j  are chosen 
polynomials 

S ~ + K i ,~ i s  tz~-I + " • " + Ki ,  1 = O, 

are Hurwitz then the tracking 

such that 

(30) 

(31) 

the 

closed loop differential-algebraic system for the 
control outputs zi( t ) ,  i =1 . . . .  , s  approaches 
zero exponentially; i.e. 

e i ( t ) = z i ( t ) - r i ( t ) - - > O  as t----~, i = 1  . . . . .  s. 

(33) 

The tracking error for the control outputs zi( t) ,  
i = s + 1 . . . . .  p is identically equal to zero at all 

i = l , . . . , s ,  

(32) 

error for the 
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times; i.e. 

ei(t)=O, Vt>-O, i = s + l  . . . . .  p. (34) 

Additionally, in order to guarantee the bound- 
edness of all the internal states and the control 
inputs in the closed loop system the following 
assumption is necessary. 

Assumption 2.2. The subsystem 

- OW2(x)f*(x) + 0qJ2(x) h*(x)u(x, R), 
Ox ax 

where 

(35) 

x = qb-1 (36) 

is bounded input bounded state stable with £, R 
as inputs. 

If Assumption 2.2 is satisfied then the control 
inputs and all the internal states of the closed 
loop differential-algebraic system are bounded. 
This does not depend on the choice of the 
mapping ~2(x) in equation (20). Sufficient 
conditions which guarantee Assumption 2.2 can 
be given as in Sastry and Isidori (1989). They are 
as follows: 

(i) the subsystem defined by equation (35) 
with £(t), R(t) set identically equal to zero is 
globally exponentially stable; and 

(ii) the vector field defined by the right-hand 
side of equation (35) is globally Lipschitz. 

In this section, a procedure has been 
presented for the design of a nonlinear feedback 
control law in order to achieve tracking of 
reference inputs in control systems described by 
nonlinear differential-algebraic equations of the 
form (1)-(3). The feedback control law ensures 
that the tracking error in the closed loop 
differential-algebraic system approaches zero 
exponentially. The methodology presented here 
is used in the Section 3 to design feedback 
control laws for simultaneous force and position 
tracking in constrained robot systems. 

3. SIMULTANEOUS FORCE AND POSITION 
TRACKING IN CONSTRAINED ROBOT SYSTEMS 

Robotic systems often operate in a con- 
strained environment and interact with these 
environmental constraints to perform certain 
tasks. Examples of such challenging tasks include 
parts insertion and assembly, crank turning, 
polishing, grinding, deburring, contour following, 
writing, etc. These tasks may involve a single 
robot or multiple robots working together. Thus, 
constrained robot systems and more generally 
constrained mechanical systems represent a class 

of dynamical systems of both practical and 
theoretical importance. Constraint forces, which 
maintain satisfaction of the constraints, are 
important aspects of these systems. Successful 
accomplishment of constrained tasks requires 
simultaneous force and position control. Con- 
strained robotic systems are often described by 
differential-algebraic equations of the form 
(1)-(33). In this section, we consider the 
problem of designing feedback control laws that 
achieve simultaneous force and position tracking 
in constrained robot systems. The control laws 
are designed based on the theory presented in 
Section 2. 

3.1. Constrained robot systems with rigid joints 
We consider mathematical representations 

which model a class of constrained robot 
systems. Examples of such systems include: a 
robot with end effector in contact with a rigid 
surface where the contact force of the end 
effector on the surface and the position of the 
end effector on the surface needs to be 
controlled simultaneously; two robots handling a 
common object where the motion of the object 
and the squeeze force or the interaction force 
exerted on the object by the robots needs to be 
controlled simultaneously; closed chain manip- 
ulators; walking robots; grasping; and coordin- 
ated motion of an object using multifingered 
robot hands, etc. The constraints are modeled as 
holonomic constraints. Contact forces or con- 
straint forces, which are produced by the 
interaction of the robot system with the 
constraint surface, are important aspects of these 
systems and successful accomplishment of 
constrained tasks requires contact force control 
in addition to position control on the surface. 
The joints of the robotic manipulator are 
assumed to be actuated by direct drive actuators 
and it is also assumed that the robot joints are 
driven by rigid mechanisms, i.e. there is no joint 
flexibility. The model of the constrained robot 
system, under such an assumption, is represented 
as Krishnan (1992), McClamroch (1986) and 
McClamroch and Wang (1988) 

M(q)i:] + H(q, dl) = JT(q)A + u, (37) 

y = 0 = 4)(q), (38) 

Zl = h i ( q ) ,  (39) 

Z2 = A, (40) 

where q ~ R" denotes the vector of generalized 
displacements, M(q) is the inertia matrix which 
is symmetric and positive definite, H(q,( l)  
denotes the vector of nonlinearities which 
include the Coriolis, centripetal and gravity 
forces, u ~ R" represents the vector of generalized 
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forces applied at each joint, A E R m is a vector of 
multipliers corresponding to the constraint 
vector function 4~(') :Rn -~ R m, and 

0~b(q) 
J(q) - (41) 

0q 

is the Jacobian matrix of ~b(q) which is assumed 
to have full row rank. The control outputs 
represented by the vector zl E R n-m are chosen 
such that together with the constraints ~b(q) = 0, 
they specify completely the position vector q. 
The control outputs represented by the vector 
z2 ~ R m are chosen to be the constraint forces A. 
For this model, the constraint manifold N* 
defined by equation (4) is given by 

N* = {(q, 4) : ~b(q) = 0, J(q)q = 0}. (42) 

Simultaneous force and position control for 
constrained robot systems modeled by equations 
(37)-(40) has been an active area of recent 
research (see Cai and Goldenberg, 1989; Chert 
and Shayman, 1992; Cole, 1989; Jankowski and 
Elmaraghy, 1992; Krishnan, 1992; Krishnan and 
McClamroch, 1990; Liu, 1991; McClamroch and 
Wang, 1988; Mills, 1992; Mills and Goldenberg, 
1989; Ramadorai et al., 1992; Wen and Delgado, 
1992; Yoshikawa, 1987; Yun, 1988 and the 
references therein). A number of approaches 
have been proposed for designing control laws 
which achieve local regulation of contact force 
and position vectors, and tracking of contact 
force and position trajectories. In this section, we 
design a feedback control law for tracking 
desired force and position trajectories based on 
the development in Section 2. The design is, in 
principle, similar to the control law in 
McClamroch and Wang (1988) when the 
constraint outputs y defined by equation (38) 
take the form 

y = 0 = ql - ~ ( q 2 ) ,  

and the control outputs zl defined by equation 
(39) take the form 

Zl = hi(q) = q 2 ,  

where ql E R m and q2 e Rn-m. 
Suppose ra(t) and r2(t) are vectors of desired 

position and force trajectories. Our goal is to 
design a feedback control law so that the 
position outputs z~(t) and the force outputs Za(t) 
for the constrained robot system track the 
desired position and force trajectories r~(t) and 
r2(t), respectively. We use the development in 
Section 2 to design a feedback control law so 
that the closed loop system has the desired force 
and position tracking properties. Equations 
(37)-(40) can be rewritten in a first-order form 

a s  

where 

(~ ) : f (q ,  dl) + g(q, dl)A + h(q, (l) u, 

y = 0 = k(q, (1), 

z = l(q, 4) + m(q, q)A, 

4 
f (q '  q) = [ -M-a (q )H(q ,  (l)]' 

0 
g(q' q) = [M-l (q) jT(q)  ]' 

0 
h(q, (l) = [M- l (q ) ] ,  

l ( q , q ) = [  h~(q) ] 
L 0 / '  

k(q, q) = ~b(q), 

[0] 
m(q, (l) = Im" 

(43) 

(44) 

(45) 

~ = th(q), (50) 

-~z = J(q)t~, (51) 

~ = h~(q), (52) 

0hi(q) q = p(q)q. (53) 
Oq 

The differential-algebraic equations (43)-(45) 
satisfy Assumptions (1)-(3) of Section 1 with a 
constraint relative degree vector (rl, r2 . . . .  , r,,) 
= (2, 2 . . . . .  2) and control relative degree vector 
(2, 2 . . . . .  2). From equations (9)-(12), f*(q,  (1), 
h*(q, gl), l*(q, q), and n*(q,(l) for the con- 
strained robot model represented by equations 
(37)-(40) are given by 

4 
f*(q '  dl) = [ - M - l ( q ) H ( q ,  (l) 1 

[ o 1 1 T 1 T 1 + M -  (q)J (q)(J(q)M- (q)J (q))- , (46) 

× [J(q)M-l(q)H(q,  q ) - / ( q ) 0 ]  J 

[ 0 1 h*(q, cl) = M-~(q){ I -  JT(q)(J(q) M-I  , 
x (q)JT(q))-~J(q)M-~(q)}_] 

(47) 

I hi(q) ] l*(q, el) = (J(q)M-l(q)jT(q))-~[J(q) , 

× M-~(q)H(q,  cl) -J (q)01  
(48) 

[ 0 ] 
n*(q, dl)= _ ( j (q )M_l (q ) f f (q ) )_ l j (q )M_l (q )  . 

(49) 

Assumptions (4) and (5) of Section 2 are 
satisfied in this case with ( ~ ,  ~2 . . . . .  tX,-m) = 
(2, 2 . . . . .  2). NOW the coordinate change defined 
by equations (20)-(22) in this case is given by 
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Following equations (23)-(27), an equivalent 
state realization is obtained for the differential- 
algebraic equations (37)-(40) which is given by 

Xl = "~2, (54) 

22 = P ( q ) i l  - P ( q ) M - ~ ( q ) { H ( q ,  il ) - jT(q) 
× ( J ( q ) M - l ( q ) j T ( q ) )  -1 

× [ J ( q ) M - X ( q ) H ( q ,  il) - j(q)il]} 

+ P ( q ) M - l ( q ) { I  - j T ( q ) ( J ( q ) M - ~ ( q ) j T ( q ) ) - I  

X J ( q ) M - ~ ( q ) } u ,  (55) 

Zl = "1~1, (56) 

z2 = ( J ( q ) M - ~ ( q ) j T ( q ) ) - l [ j ( q ) M - l ( q ) H ( q ,  il) 

- ) ( q ) i l  - J ( q ) M - l ( q ) u ] ,  (57) 

where from equations (50)-(53) we have 

q = q~(Yl), il = Q(q)Y2. (58) 

The nonlinear feedback control law defined by 
equation (28) is now given by 

u( t )  = M ( q ) Q ( q ) ( F ~  - Al(h~(q) - rl) 

- A2(P(q)il - ~'1)) -~ H ( q ,  il) 

+ M ( q ) O . ( q ) P ( q ) i l  - jT (q)r2  

+ jT(q)(~(A - re), (59) 

where G E R  "×m is a positive semidefinite 
matrix and A1 and A2 are positive definite 
matrices. The tracking errors in the closed loop 
constrained system satisfy the equations 

~l(t) + Azdl(t) + A~efft) = 0, (60) 

( J ( q ) M - ' ( q ) J Y ( q ) ) ( I m  + (~)e2(t) = 0, (61) 

where the position tracking error is defined as 

e f f t )  = h f f q )  - rl(t), (62) 

and the force tracking error is defined as 

ez(t) = A(t) - r2(t). (63) 

Since A1 and A2 are chosen as positive definite 
matrices, the tracking error e f f t )  for the position 
outputs approach zero exponentially and the 
force tracking error ez( t)  is identically zero at all 
times. In addition, all the internal states of the 
constrained robot system and the control inputs 
remain bounded since Assumption 2.2 of Section 
2 is satisfied trivially. The control law requires 
feedback of position and velocity variables. The 
control law (59) matches the control law (__28) 
when G is a zero matrix. However, when G is 
not a zero matrix, force feedback can also be 
included even though it is not essential for 
achieving the tracking objective. 

3.2. C o n s t r a i n e d  robo t  s y s t e m s  wi th  f l ex ib le  jo in t s  
The model of a constrained robot system with 

holonomic constraints, described by equations 

(38)-(40), is derived under the assumption that 
the joints of the robot system are actuated by 
direct drive mechanisms which are rigid. Often 
joints of a mechanical system exhibit some 
elasticity due to the drive mechanism, e.g. 
harmonic drives, gears, etc. This leads to low 
frequency resonance in the response of the 
system. In this section, we consider mathematical 
representations which model a class of con- 
strained robot systems which include the effects 
of joint flexibility. The model, obtained by 
modifying equations (37)-(40) to include effects 
of joint flexibility as in Spong (1987), is 
represented as 

M ( q l ) q ~  + H ( q l ,  ill) = j T ( q l ) A  + K 2 ( q 2  - q~), 

(64) 

M2q2 + K2(q2 - ql) = U, (65) 

y = 0 = ~b(ql), (66) 

Z, = hl(ql), (67) 

z2 = A, (68) 

where q~ E R n denotes the vector of generalized 
displacements of the links of the robot, q2 e R n 
denotes the vector of generalized displacements 
of the actuator shafts, M2 is a constant positive 
definite matrix which represents the actuator 
inertia and k2 is a constant positive definite 
matrix representing the stiffness coefficients of 
the joints of the robot. All the other variables 
have the same description as in equations 
(37)-(42) with q replaced by ql. Approaches to 
simultaneous contact force and position control 
in constrained robot systems with joint flexibility 
have been proposed in Abroad (1991), 
Jankowski and Elmaraghy (1992), Krishnan and 
McClamroch (1990) and Mills (1992). In this 
section, we use the development in Section 2 for 
designing a feedback control law in order to 
achieve tracking of contact force and position in 
constrained robot systems with joint flexibility. 

Suppose ri f t )  and r2(t) are vectors of desired 
position and force trajectories. Equations (64)- 
(68) can be rewritten in a first-order form as (ql) 

ql 

il2 

q2 

= f ( q , ,  (:11, q2, il2) + g ( q , ,  i l l ,  q2, il2)A 

+ h ( q l ,  i l l ,  q2, il2)u, 

y = 0 = k ( q , ,  01, q2, il2), 

z = l (q l ,  ill, q2, il2) q- m ( q , ,  ill ,  q2, il2) A, 
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where 

f (q l ,  gh, qz, 42) [ °1 
= M-~(ql )[ -H(ql ,  Oh) + K2(q2-  qO] 

4~ 
-MEIK2(q2 - ql) [ 0 ] 

g(ql, 41, q2, q2) = M-l(qOjT(ql)  
0 ' 
0 

h(ql, 41, q2, q2) = , 

M~ 1 

k(ql,  41, q2, 42) = ~(ql) ,  

l(ql, ql, qz, 4z) = [ hl(: l )  ], 

m'q, Oa q2 

These differential-algebraic equations 
Assumptions (1)-(3) of Section 1 

l J 

satisfy 
with a 

constraint relative degree vector (rl, rE,. . . ,  6,)  
= (2, 2 , . . . ,  2) and control relative degree vector 
(4, 4 . . . .  ,4). Define 

°t(ql, 41, q2) = (J(ql)M-X(ql)JT(ql)) -I 

× [J(ql)M-l(ql)H(q~, 41) 

- )(ql)41 - J(ql)M-l(ql )  

× K2(q2 - ql)]- 

From equations (9)-(12), f*,  h*, l*, and n* are 
given by 

f*(q l ,  41, q2, 42) 

= f (q l ,  4~, q2, 42) + g(ql, 41, q2, 42) 

x ~(qa, 4 .  q:, 4~), 

n*(ql, (11, q2, 42) = O, 

h*(ql, 41, q2, 42) = h(ql, 41, q2, q2), 

l* (q l ,  41, q2, 42) = [ hi(q1) ] 
La(ql, 41, q2, qz)J" 

Assumptions (4) and (5) of Section 2 are 
satisfied in this case with ( /Xl , . . . , /~ , -m, /z , - , ,+ l ,  
. . . .  /~,) = (4 . . . .  ,4,  2, . . . ,  2). Now the coordi- 
nate change defined by equations (20)-(22) in 
this case is given by 

21 = ~b(q,), 

x2 = J(ql )ql ,  

371 = hi(q1), 

0hl(ql) . 
x2 - -  qx = P(q1)41, 

Oql 

x3 = L~.h,(q~) = f~(q,, q,) + B,(q,)q2, 

x4 = L~.h,(qa) = ~ ( q , ,  ql, q2) + B,(ql)q2, 

x5 = a(ql,  qa, q2) = f3(ql, ql) + B2(q,)q2, 

X6 "= Ly.a(ql, 41, q2) = f4(ql, q,,  q2) + B2(q,)42, 

where f~,Bl,f2, B2,f3,f4 are defined in the 
Appendix. Following equations (23)-(27), an 
equivalent state realization is obtained for the 
differential-algebraic equations which is given 

by Xl = 22, 

3~2 = 3~3, 

-~3 = 3~4~ 

.r4 = Aa(q,, 41, q2, 02) + B,(q l )Mf 'u ,  

"~5 =-~'6, 

26 = A2(ql, 41, q2, 42) + B2(q~)M2 lu, 

Zl = X1 ,  

Z2 = -~5, 
where 

ql = qJ(£1), 41 = Q(ql)£2, 

= [ B l ( q l ) ] - l ~ _ ( f l ( q l , 0 1 ) ~  (x_--3]l ' 
qz LBz(qz)J ( \f3(ql, 01) ] -~- kXs/) 

[B l (q , ) l - l f _ ( f 2 (q1 ,41 ,  q2)] (x4)}, 
02 = LB2(q2)J ( f4(ql, (11, q2)l + \x6/J  

and A1 and A2 are defined in the Appendix. The 
nonlinear feedback control law defined by 
equation (28) is now given by 

• [ B 1 ( q l ) ] - 1 {  _ (ml(ql ,  41, q 2 ,  42)] 
u(t) = ~2[B2(ql)] \A2(ql, 41, q2, 42) ] 

(01 ( r )~  (69) 
+ \v2(t) ] J' 

where 

vl(t) = r~4)(/) - Al(hl(ql) - rl(/)) 

- A2(P(ql)41 - r~°(t)) 

- A3(fi(ql, 41) + Bl(ql)q2 - r]2)(t)) 

- A4(A(ql, 41, q2) + Bl(ql)42 - r]3)(t)), (70) 

v2(t) = r(22)(/) - As(f3(ql, 41) + B2(q~)q2 - r2(/)) 

- A6(f4(ql, 41, q2) + n2(ql)q2 - r(2°(t)), (71) 

and r]i)(t) and r(zi)(t) denote the i-th derivative 
of r,(t) and rz(t) with respect to time. The 
tracking errors in the closed loop constrained 
system satisfy the equations 

e(14)(t) + A4e~3)(/) + A3e~2)(t) 

+ A2e~l)(t) + Me~(t) = 0, (72) 

e(22)(t) + A6e(21)(t) + Ase2(t) = 0, (73) 
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where the position tracking error is defined as 

el(t)  = h i (q , )  - rl(t), 

and the force tracking error is defined as 

e2(t) = A(t) - r2(t). 

If A1 through A 6 a r e  chosen such that the 
equations (72) and (73) are Hurwitz, then the 
tracking error e~(t) for the position outputs and 
the force tracking error e2(t) approach zero 
exponentially. In addition, all the internal states 
of the constrained robot system and the control 
inputs remain bounded since Assumption 2.2 of 
Section 2 is satisfied trivially. The control law 
requires feedback of position and velocity 
variables of the links of the robot, and the 
position and velocity variables of the actuator 
shafts. Force feedback is not necessary. How- 
ever, if measurement of the contact force A(t) is 
available it may be included in the feedback loop 
by replacing the term f~(q~,gI~)+B2(ql)q2 in 
equation (71) by A(t). 

3.3. Constrained robot  systems with significant 
actuator dynamics  

The model of a constrained robot system, 
described by equations (37)-(40), needs to be 
modified if the actuator dynamics in the system 
are significant. In this section, we consider 
mathematical representations which model a 
class of constrained robot systems which include 
the effects of significant actuator dynamics. We 
consider the case where the joints of the robot 
are driven by armature controlled direct-current 
motors. The joints of the robot are assumed to 
have no flexibility. The model, obtained by 
modifying equations (37)-(40) to include the 
significant actuator dynamics, is represented as 

M(q)i]  + H(q ,  0) = jT(q) A + UK,,,la, (74) 

Lla + Rla + KmN(I = u, (75) 

y = 0 = 4'(q), (76) 

z, = h , (q) ,  (77) 

z2 = A, (78) 

where q e R" denotes the vector of generalized 
displacements of the links of the robot, la e R" 
denotes the vector of currents in the armature 
circuit of the motors, L, R and N are constant 
diagonal nonsingular matrices which represent 
the armature inductances, armature resistances 
and the gear ratios, respectively. The matrix Km 
is a nonsingular diagonal matrix which rep- 
resents the back e.m.f, constants of the motors 
(which are the same as the torque constants 
when SI units are used), and u E R n denotes the 
vector of control inputs which are the armature 

voltages of the motors. All the other variables 
have the same description as in equations 
(37)-(40). 

Suppose r~(t) and r2(t) are vectors of desired 
position and force trajectories. Equations (74)- 
(78) can be rewritten in a first-order form as 

( i ) = f ( q ,  dl, l , , ) + g ( q , q ,  la )A+h(q , (1 ,  l~) u, 

y = 0 = k(q,  q, la), 

z = l(q, (l, la) + m(q ,  (1, la)A, 

f ( q ,  (t, 1~) = M - l ( q ) [ - H ( q ,  dl) + NK,.,1.] , 

- L  '[RIa + K.,NO] 

k(q,  q, 1~) = 4~(q), 

[ ° l g(q, dl, la) = M , (q ) jT (q )  , 

0 

i°J h(q, dl, la)= 0 , 
L 1 

L 0 J' lm '  

These differential-algebraic equations satisfy 
assumptions (1)-(3) of Section 1 with a 
constraint relative degree vector (rl, r2 . . . . .  rm)  

= (2, 2, . . . ,  2) and control relative degree vector 
(3, 3 . . . . .  3). Define 

a(q,  (1, la) = ( J ( q ) M - l ( q ) j X ( q ) )  ' 

× [ J ( q ) M - l ( q ) H ( q ,  (t) 

- ) (q)(I  - J ( q ) M - l ( q ) N K m l a ]  . 

From equations (9)-(12),  f* ,  h*, l*, and n* are 
given by 

f * (q ,  (t, la) = f ( q ,  (l, la) + g(q, (l, la)a(q, (l, I~), 

n*(q,  (I, la) = O, h*(q,  (t, la) = h(q,  (4, la), 

[ h,(q) ] 
l*(q, (1, I~) = La(q,  (1, la) " 

Assumptions (4) and (5) of Section 2 are satis- 
fied in this case with ( /x~ , . . . ,  /Xn-m,/Xn-m+l, 
. . . .  /X~) = (3 . . . . .  3, 1 . . . . .  1). Now the coordi- 
nate change defined by equations (20)-(22) in 
this case is given by 

x, = 6(q) ,  

£2 = J(q)(l,  

£. = hi (q) ,  

where 
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£2 - Ohl(q) (l = P(q)(l, 
Oq 

"~3 = L}.hl(q) = fs(q, q) + B3(q)la, 

£4 = or(q, (71,/a) = f6(q, q) + n4(q)la, 

where ~, B3, f6, B,  are defined in the Appendix. 
Following equations (23)-(27), an equivalent 
state realization is obtained for the differential- 
algebraic equations which is given by 

)~1 ~ £2~ 

x2 = A3(q, (1, la) + B3(q) L-1u, 

x4 = a4(q, (1, I~) + B4(q)L-Iu, 

Zl ~-~1~ 

Z2 = £4, 

where 

q = ~b(£~), t~ = Q(q)£2, 

[B3(q)l-1[ _ (fs(q, il)] + (x-3] }, 
Ia -= LB4(q)J  L \f6(q, (1)/I \X4/  J 

and A 3 and A 4 a re  defined in the Appendix. The 
nonlinear feedback control law defined by 
equation (28) is now given by 

u ( / )=  L[B3(q) ] - l~ - (A3(q ' ( l ' I " )~  (V l ( t )~  
I_B4(q)J ( \A4(q,  q, la)] + \ v z ( t ) ] J '  

(79) 
where 

vl(t) = r~3)(/) - Al(hl(q) - rl(/)) 

- A2(e(q)q - r~l)(t)) 

- A3(J~(q, q) + B3(q)I~ - r~2)(/)) (80) 

V2(/) = r(1)(/) -- m4(f6(q , q )  

+ n 4 ( q ) l  a - r2(/)) (81)  

and r~i)(t) and r~°(t) denote the i-th derivative of 
rl(t) and r2(t) with respect to time. The tracking 
errors in the closed loop constrained system 
satisfy the equations 

e~3)(/) + A3e~2)(/) + Aze~°(t) + Ale1(/) = 0, (82) 

e~'~(t) + aaez(t) = 0, (83) 

where the positive tracking error is defined as 

el(t) = hi(q) - rl(t), 

and the force tracking error is defined as 

ez(t) = A(t) - r2(t). 

If A1 through A4 a r e  chosen such that the 
equations (82) and (83) are Hurwitz, then the 
tracking error eL(t) for the position outputs and 
the force tracking error ez(t) approach zero 
exponentially. In addition, all the internal states 

of the constrained robot system and the control 
inputs remain bounded since Assumption 2.2 of 
Section 2 is satisfied trivially. The control law 
requires feedback of position and velocity 
variables of the links of the robot, and the 
armature currents of the motors. Force feedback 
is not necessary. However, if measurement of 
the contact force A(t) is available it may be 
included in the feedback loop by replacing the 
term f6(q, Cl) + Ba(q)Ia in equation (81) by A(/). 

The development in this subsection is also 
applicable to constrained robot systems driven 
by a wide class of electrohydraulic servos 
described in McClamroch (1985) which is given 
by 

M(q)# + H(q, q) = jT(q)A + G(q)fa, 

khlfa + Gpfa + GT(q) t ]  = U, 

y = 0 = ok(q), 

Zl = hi(q), 

Z2 = A, 

where u represents the normalized currents to 
the servo torque motors, fa represents the vector 
of actuator forces. This model includes the 
effects of fluid compressibility through the 
constant actuator stiffness Kh and the effects of 
fluid leakage around the actuator pistons 
through the constant leakage sensitivity matrix 
Gp. The matrix G(q) depends on the geometry 
between the links and the actuators. One can 
also extend the derivation of the control laws for 
simultaneous constraint force and position 
tracking presented here to constrained robot 
systems which include both the effects of 
significant actuator dynamics, and the effects of 
joint flexibility. 

4. CONCLUSION 

In this paper, we have considered the problem 
of designing a feedback control law so that 
certain desired outputs track given reference 
inputs in control systems described by a class of 
nonlinear differential-algebraic equations. A 
nonlinear feedback control law has been 
designed which ensures, under appropriate 
assumptions, that the tracking error in the closed 
loop differential-algebraic system approaches 
zero exponentially. In particular, applications to 
simultaneous force and position tracking in 
constrained robot systems have been discussed. 
Explicit feedback control laws have been derived 
for constrained robot systems with rigid joints, 
constrained robot systems with joint flexibility, 
and constrained robot systems with significant 
actuator dynamics. 

AUTO 30:12-F 
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APPENDIX 

We first define the variables fl, Bl,f2, B2,f3 and f4 used in 
Section 3.2. Suppressing the arguments, we denote M(q~) as 
M,J(qO as J, P(qO as P, and H(ql, (11) as H. The variables 
are defined as 

f~(ql, ql) = (JM -1JT) ](JM 1H -)(11 +JM IK2q,) , 

Bz(ql) = - (JM IjT) i jM 1K2 ' 

f~(q,,(1,)=p(1, - p M - , ( H  + K2q,)+ p M ,jyf~, 

Bl(ql) = PM I(K 2 +jTB2) , 

f2(ql, (11, q2) - c)(fl + Blq2)(1, + Ofl 
Oql 0(1~ 

× [M-] ( -H  + K2(q2 - q))) 

+ M tjT(f~ + Beq2)] ' 

f4(ql, ql, q2) - 0(~ + Bzq2) ql +3f~ 
0ql 0(11 

× [M I ( - H +  K2(q2-q)))  

+ M ijv(f~ + B2q2)]. 

The variables Ai and A2 in Section 3.2 are defined as 

Al(ql, (12, (12) 

_ 3(f2 + B1 (12) (11 + 0 ~  2 (12 - B1M2-1K2(q2 - qt) 
Oq~ 

+ Ofz [ M - ' ( - H  + KE(q2 - q~)) + M ,jT(f~ + Bzq2)], 
O(h 

Az(ql, (11, q2, (12) 

_ O(f4 + B2(12) (11 + Of 4 (12 - B2M2 IK2(q2 - q t) 
Oq] Oq2 

+ ~ [ M - I ( - H  + K2(q2 - qO) + M 'if(f3 + B2q2)]. 

Next, the variables fs, B3, f6, B4 in Section 3.3 are defined. 
Suppressing the arguments, we denote M(q) as M,J(q) as 
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J, P (q )  as P, and h(q,  d1) as H. The variables are defined as 

A(q, d1) = ( JM- ' JT ) - ' ( JM- '  H -  )d1), 

B4(q ) = - ( J M -  i f  r ) -  1 j M  - 1NKm, 

fs(q,  d1) = Pd1 - P M - ' ( H  - J'rf6), 

B3(q) = PM-1J ' rB4  + PNK,,, .  

The variables A 3 and A 4 in Section 3.3 are defined as 

As(q ,  d1, la) 

_ O(f5 + Bsla)  d1 _ B s L - 1 ( R I ,  + K,,,Nd1 ) 
Oq 

+ ~J-'~.[M-'(-H + NK,,,la) + M - 1 J T ( f  6 + B41~)], 
oq 

A4(q, q, /a)  

_ 0(f6 + B4/a)d1 - B 4 L  ~(RI~ + KmNd1) 
~q 

+ ~ [ M - ' ( - H  + NK,da) + M-'JT(A + B4h)]. 
oq 


