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On the Representation of Sensor Faults in Fault 
Detection Filters* 
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~ - - T h i s  paper presents an extension of the well- 
known Beard-Jones detection filter that permits isolation of 
sensor faults in a dynamic system to a fixed direction in 
output space. The method is based on augmenting the system 
equations by an auxiliary state to represent t h e  dynamic 
behavior of the sensor fault, and in effect converts the sensor 
fault into the same form as an actuator 'fault. The only 
condition required is observability of the original system. 

1. Introduction 
THIS PAPER IS concerned with the formulation of a method 
for the detection and isolation of sensor faults in dynamic 
systems. The proposed method is an extension of the 
well-known Beard-Jones detection filter. In such fault 
detection and isolation (FDI) methods, a model of the 
system is used to predict the plant outputs. The residual 
vector (i.e. the difference between measured and calculated 
outputs) is then examined. In the ideal case (zero noise and 
perfect reference model), the residual vector is zero as long 
as there is no fault or change in the plant from nominal 
(reference model) conditions. On the other hand, any fault 
or change in the plant results in a nonzero residual vector. 
Recent surveys of the state of the art in such model based 
fault detection methods may be found in Patton et al. (1989), 
Gertler (1991), Frank (1990,1991) and Patton and Chen 
(1991a). 

One method of isolating a fault is by assigning directional 
properties to the residual vector through the design of 
observers with suitable dynamics. Beard (1971) and Jones 
(1973) first introduced this technique in the early 1970s. In 
their method, which we will term BJDF (for Beard-Jones 
detection filter), the observer is designed such that the 
residuals generated by actuator faults propagate in a fixed 
direction in output space for any given fault. Extensions and 
applications of the BJDF have been reported, for example in 
Massoumnia (1986a,b), White and Speyer (1987), Massoum- 
nia et al. (1989), Min (1987), Liubakka (1987), Rizzoni and 
Min (1991) and Park (1991). 

The isolation of sensor faults to a fixed direction is not 
generally possible using the BJDF with the exception of 
sensors measuring uncontrolled inputs to the system. Faults 
in the latter sensors enter into the system equations in a 
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manner similar to actuator faults and are often termed 
pseudo-actuator faults. However, in the presence of faults in 
sensors measuring state variables the residual vector 
generated by the BJDF cannot be constrained to a fixed 
direction, but can only be constrained to lie in a plane. While 
this may still permit fault isolation, it would be desirable to 
extend the unidirectionality property of the BJDF to sensor 
faults. 

This paper presents a method for representing any sensor 
faults in the form of an actuator fault, thereby permitting 
isolation of sensor faults to a fixed direction in the output 
space. The method is based on augmenting the state space to 
account for the dynamics of the sensor fault, and can be 
applied to both open-loop and closed-loop systems. This 
approach is mentioned but not developed by Massoumnia 
(1986a). The authors have recently been alerted to the fact 
that a similar result was also obtained by Massoumnia 
(1986b). 

Several other approaches to sensor fault isolation using 
observer-based residual generators have been proposed in 
recent years. We mention, for example Min (1987), Caglayan 
(1980) and Emami-Naeini et al. (1988). 

The problem of designing observers for linear systems with 
unknown inputs is one that has received much attention over 
the past several years. It has been shown by Viswanadham 
and Srichander (1987) and Frank (1990) that the unknown 
input observer (UIO) may be applied to the problem of 
detecting and isolating faults in linear systems. The UIO 
design as proposed by Viswanadham and Srichander (1987) 
and by Hou and MUller (1992) consists of transforming the 
system equations, such that the state vector can be divided 
into two parts--a part that can be directly obtained from the 
measurements, and another part consisting of the states that 
have to be estimated. A reduced-order observer can be 
designed to estimate these states, and the observer gains are 
selected so that they decouple the observer dynamics from 
the unknown input. 

Another method of fault detection and isolation is to 
design observer-based residual generators that produce what 
are called structured residuals, i.e. residuals that exhibit 
certain special properties in the presence of particular faults. 
The most popular form of the structured residual is a residual 
that maintains a fixed direction in the parity space under the 
influence of a specific fault. Construction of observers using 
eigenstructure assignment lends itself naturally to the 
production of such unidirectional (under the influence of a 
fault) residuals. Patton et al. (1989) and Patton and Chen 
(1991a) demonstrate the use of eigenstructure assignment in 
FDI. Both left and right eigenvector assignment may be used 
to produce structured residuals that are robust to 
disturbances, and capable of isolating faults. 

It is beyond the scope of this brief paper to discuss the 
very important issues of robustness to noise and model 
uncertainty and threshold selection [see for example Frank 
(1991) and Patton and Chen (1991b) for a discussion of these 
topics]. We will simply state that the design freedom that is 
available in the BJDF can be exploited to provide the desired 
properties. 
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2. Dynamic system model 
Consider the linear, t ime-invariant  system 

dx(t) = Ax(t) + Bu(t), (1) 
dt 

y(t) = Cx(t). (2) 

For simplicity, we shall omit the argument  (t), where x e 11 ~ 
is a state vector, u E R p is a control vector, y ~ 11 m is a 
measurement  (or sensor) output  vector, and A, B, C are real 
matrices of compatible dimensions. 

2.1. Actuator fault model Assume that an actuator has 
failed in the system represented by equations (1) and (2). 
The fault can be modeled by an additional term in equat ion 
(1): 

-~= Ax + Bu + fin, (3) 

y = Cx, (4) 

where ft E R" is defined as an actuator fault event vector 
(which is the column of B associated with the i th actuator),  
and n is a scalar function which represents the t ime evolution 
of the fault. 

2.2. Sensor faults. Assume that  a sensor failed in the 
system represented by equations (1) and (2). The  fault can be 
modeled by an additional term added to equat ion (2): 

dx 
- -  = A x  + B u ,  (5) 
dt 

y = Cx + f~, (6) 

where f~ e R "  is a sensor fault event  vector and ~r is a scalar 
function which represents the evolution of the fault. Often, 
(but  not  always ) f~ is a s tandard (unit)  vector 

E , =  [ 0 . . .  1 . . . 0 l  T, (7) 

which represents the i th sensor fault. 

3. A new method for sensor fault detection and isolation 
In this section, a new method for detecting and isolating a 

sensor fault is formulated to overcome some of the 
limitations ment ioned in the introduction. Given the system 
described by equations (1) and (2), we augment  the state and 
output  equat ions by one additional state. This auxiliary state 
describes the behavior  of the sensor fault event  which is to be 
diagnosed; the new output  equation,  however,  does not  
contain the fault event  vector, the fault event  vector will 
appear  as an additive term in the state equat ion and can 
therefore be treated as an actuator  fault. The  necessary and 
sulticient conditions that  permit  isolation of sensor faults to a 
fixed direction in the output  space will also be given. 

Consider a linear, t ime-invariant  system with a sensor fault 
described by 

dx 
dt = Ax + B(u + Ky), (8) 

y = Cx + ~ ' ( t ) ,  (9) 

where f~ e R "  is a sensor fault event vector, ~" is a scalar 
function which represents the evolution of the fault and A, 
B, C a r e  real matrices of compatible dimensions. Here,  the 
output  feedback term Ky is writ ten separately since the 
output ,  y, is no longer free of fault. Note  that this provision 
is made to account for both  open-loop and closed-loop 
systems. Let us introduce the new system equations including 
the auxiliary state describing the dynamics of the sensor 
fault: 

)7 = C.~, (11) 

where f • R n+~ is a new state vector, ,4 E R (n+~)xtn+~) a new 

state matrix, B • R(n+l)×(p+ I) a new input matrix, 
6" • R m×(n+~) a new output  matrix and f • R a sensor error 
input as defined below: 

d~" 
~: = ~ -  ,~', (13) 

where 0 is a zero matrix of appropriate dimension. The 
differential equation for the auxiliary state variable, r, given 
by 

d~= ct~" + ~: (14) 
dt 

is always satisfied. This fact can be easily proved by 
substituting ~: from equat ion (10) in equat ion (11). Therefore,  
the output  )7 in equation (11) is always equal to the original 
output  y. Note that  a in (12) represents the additional 
degree-of-freedom in est imator design which is obtained by 
adding another  state to the new state equations. It should be 
remarked that  the fault signal ~" can be modeled by a linear 
system of arbitrary order, and that  this fact may be exploited 
t o  best match the characteristics of the fault. 

Observe,  now, that  equations (10) and (11) can be written 
as 

~----=Ax+B(UoKY)+[~]"dt (15) 

y = (~.  (16) 

These are equivalent  to the equations for a system with an 
actuator  fault. For this system, a detection filter can be 
designed as follows: 

d~ = Ag + B[ U oKY ] + D(y - Y (17) 

y = g'~, (18) 

where .~ and .9 are the estimated state and est imated output,  
u is the measured input, y is the measured output  and D is 
the detection gain matrix. Note that equat ion (17) has 
measured output  feedback Ky (not  Kg). 

By defining a state residual vector, E = . , ? - ~ ,  and an 
output  residual vector, q = y - f ,  we can write: 

dEdt dgdt didt / t ( f  - . f ) - D ( y - 9 ) +  B(~)  

= (.4 - DC')~- + ( ~ ) f ,  (19) 

q = y - 9 = 6"E, (20) 

Equat ion (19) has the same form as the error  state equations 
with an actuator fault event vector, [0, 1] "r. Hence, any BJDF  
design algorithm can be used to determine the gain matrix D. 

It is a well-known result that  the necessary and sufficient 
condition for detectability of the additive fault event vector 
[0, 1] T is that the fault event vector is detectable if and only if 
(A, C) is observable (Beard, 1971). In addition, we will now 
prove that  the same requirement  may be expressed in terms 
of the original system and output  matrices, A and C. Lemmas 
3.1 and 3.2 summarize this new formulation of sensor fault 
detection, by giving a necessary and sufficient condition for 
sensor fault detectability. 

Lemma 3.1. Let vl, v2 . . . . .  vn be eigenvectors of A. (A, C) 
is observable iff 

Cvi~O V i =  1,2 . . . . .  n. (21) 

For a proof, see Park (1991). The following lemma 
guarantees  the necessary and sufficient condition: 

Lemma 3.2. (fi,, C) is observable iff (A, C) is observable. 
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Proof. Le tv j ,  v2 . . . . .  v. and wa, w2 . . . . .  w. be ei_genvectors 
of A and A, respectively. From the definition of A 

it is easy to see that eigenvectors of ,4 have the following 
forms: 

Wl=[OI],  w2=[O2 ] . . . . .  Wn=[On ], W,+I=[~] .  (23) 

By Lamina 3.1, the pair (A, C') is observable iff the output 
matrix C and the eigenvectors satisfy the following condition: 

Cw~#0 V i = l ,  2 . . . . .  n + l .  (24) 

But 

Cvi i = 1, 2 . . . . .  n 
C.w,=[C ~]wi= f~ i = n + l  " (25) 

From equation (25), we see that 

(~wi ~ 0 iff Cvi ~ O. (26) 

Therefore, by I.emma 3.1 and equation (26), (A, C) is 
observable. Finally, the following theorem gives the 
necessary and sufficient condition for sensor fault detec- 
tability for the method proposed in this paper: 

Theorem 4.1. Consider the system of equations (8) and (9). 
The sensor fault, f~, is detectable and can be isolated (by 
constraining output error residual in one-dimensional 
subspace by choice of D, i.e. in the sense of the BJDF) iff 
(A, C) is observable. 

Proof. Apply Lemma 3.2 to equations (24) and (25). 

The advantage of this sensor fault detection method over 
previous methods is simply that it converts the sensor fault 
problem to an actuator fault problem. This method is 
applicable to sensor fault detection in both open- and 
closed-loop systems. 

4. Conclusion 
This paper has presented an extension of the well-known 

Beard-Jones detection filter that permits the isolation of 
sensor faults in a dynamic system to a fixed direction. The 
method is based on augmenting the system equations by an 
auxiliary state to represent the dynamic behavior of the 
sensor fault, and in effect converts the sensor fault into the 
same form as an actuator fault. The only condition required 
is observability of the original system. This method can be 
applied to both open-loop and closed-loop systems. 
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