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Diagnostic Reasoning Strategies for Means-End Models*

JAN ERIC LARSSON†

Three model-based, diagnostic methods, for measurement validation, alarm
analysis, and fault diagnosis, are presented. Multilevel flow models are used
to describe the process model. Thus, the three methods represent model-based
approaches to tasks normally solved by rule-based expert systems.
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Abstract—This paper describes three diagnostic meth-
ods for use with industrial processes. They are measure-
ment validation, alarm analysis, and fault diagnosis.
Measurement validation means consistency checking of
sensor and measurement values using any redundancy
of instrumentation. Alarm analysis is the analysis of
multiple alarm situations to find which alarms are di-
rectly connected to primary faults and which alarms are
consequential effects of the primary ones. Finally, fault
diagnosis is a search for the causes of and remedies for
faults. The three methods use multilevel flow models,
(MFM), to describe the target process. They have been
implemented in the programming tool G2, and success-
fully tested on simulations of two processes.

1. INTRODUCTION

INDUSTRIAL PROCESSES can be described
and modeled in several ways. However, most
model types contain little or no means-end
information, and thus provide no good support
in diagnostic reasoning tasks.

This paper utilizes one type of explicit
means-end models, multilevel flow models,
(MFM), as developed by Lind (1990 a). Lind
has suggested a syntax for a formal language
and given general ideas on how to use the
MFM representation. The contributions of this
paper are descriptions of three methods for
diagnostic reasoning using MFM:

○ Measurement validation

○ Alarm analysis

○ Fault diagnosis

All three methods use MFM as a common base,
and the alarm analysis and fault diagnosis can
be used together during execution.

The measurement validation algorithm
takes a set of measured flow values and uses
any available redundancy to check consistency.
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A single erroneous flow measurement will be
marked and corrected; if there are several
conflicting values, the consistent subgroups of
measurements will be marked but no flow
value corrected. The alarm analysis algorithm
takes as input a set of alarm states such
as normal, low flow, high flow, low volume,
and high volume. The method recognizes
the primary alarms, while the other alarms
are either primary or consequences of the
primary ones. The fault diagnosis algorithm
uses an MFM model to produce a “backward
chaining” style of diagnosis. The system will
look for faults, provide explanations, and give
remedies.

2. AN OVERVIEW OF RELATED WORK

The main contributions of MFM has been
made by Morten Lind and his group. Lind
(1990 a) describes the basics of MFM, while
Lind (1990 b) contains Lind’s suggestion for
a diagnostic system. Lind has also treated
real-time diagnosis, Lind (1990 c), and design
of operator interfaces, (Lind 1989). Lind’s
group has developed a graphical interface, see
Osman (1990), a STRIPS planning system, see
Norby Larsen (1990), and a system for alarm
analysis and fault diagnosis, see Creutzfeldt
(1990).

MFM has been used in operator interfaces
for fault diagnosis, see Duncan and Prætorius
(1989), for constructing COGSYS diagnostic
systems, see Sassen et al (1991, 1992) and
Sassen and Jaspers (1992), and for chemical
fault diagnosis, see Walseth et al (1992).

For readings on the classical forms of mea-
surement validation, i.e., data reconciliation,
see for example Mah (1990), or the overviews
of Isermann (1984) and Frank (1990, 1991,
1992).

Classical methods of alarm analysis is
overviewed in Lees (1983), while Modarres
and Cadman (1986) and Padalkar et al (1991)
describes efforts based on functional models,
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and Oyeleye (1989) and Finch (1989) present
the qualitative reasoning system MIDAS,
based on graph representations.

The premier example of fault diagnosis
is the MYCIN system, see Shortliffe (1976).
Chung and Modarres (1989), Padalkar et
al (1991), and Allen and Rao (1980) all
describe fault diagnosis using functional
models. Dvorak and Kuipers (1991), Dvorak
(1992) describes the MIMIC fault diagnosis
system, based on the QSIM language for
qualitative simulation, see Kuipers (1984,
1986, 1989). The Inc-Diagnose system of Ng
(1991) also uses a QSIM representation.

The Diagnostic Model Processor, (DMP),
performs fault diagnosis with quantitative
models in the form of set of equations, see Petti
et al (1990), Petti and Dhurjati (1991), and
Petti (1992).

Vina and Hayes-Roth (1991) use a set
of different models to build a real-time
knowledge-based system for fault diagnosis
using a blackboard architecture. Struss (1987,
1991, 1992) describes a fault diagnosis
system using multiple representation of
physical structure and function, while Mariño
et al (1990) describes a fault diagnosis
expert system with a general multiple-view
representation.

The DICE system, Jager (1990), Krijgs-
man et al (1990, 1991), and Krijgsman and
Jager (1992), is a real-time expert system for
control systems. It is based on a blackboard ar-
chitecture and represents its knowledge with
production rules. The RIGAS system, see Cre-
spo et al (1991, 1992), is another real-time,
blackboard architecture. The project described
in Årzén (1989, 1990, 1993) and Årzén et al
(1990) defines a general architecture for a real-
time knowledge-based control system.

The methods described in this article has
been presented in earlier papers; measure-
ment validation in Larsson (1992 a), alarm
analysis in Larsson (1991), and fault diagnosis
in Larsson (1992 b). They have all been thor-
oughly described in the Doctor’s thesis Lars-
son (1992 c), which is the basis for this arti-
cle. Larsson (1992 d) contains more detailed
descriptions of the implementation of the algo-
rithms.

The advantages of the methods presented
here are that they are based on a crisp and
explicit description of means and ends, which
is exactly the information needed in diagnostic
reasoning, and that the graphical structure
of MFM enables them to be very efficiently
implemented, in comparison to the methods

mentioned above.

3. THE BASIC CONCEPTS OF MFM

An MFM model is a normative description of
a system, a representation of what it has been
designed to do, how it should do it, and with
what it should do it. Thus, the three basic
concept types of MFM are:

○ Goals

○ Functions

○ Physical components

The goals are the objectives or purposes of
the system, i.e., the ends that the constructors
and operators want the system to reach. The
functions are the means by which the goals are
obtained, i.e., the powers or capabilities of the
system. The physical components are what the
system is constructed from, the equipment of
which it consists.

The goals, functions, and components
depend on each other in specific ways. Thus,
in MFM there are different types of relations,
that can be used to connect the objects:

○ Achieve relations

○ Condition relations

○ Realize relations

An achieve relation connects a set of functions
to a goal, and it signifies that these functions
are used to obtain that goal. A condition
relation connects a goal to a function, and
signifies that the goal must be fulfilled in
order for the function to be available. A realize
relation connects a physical component to a
function, and signifies that the component is
used to realize or implement the function.

4. GOALS

The concept of a goal is central to MFM. Three
different types of goals are recognized:

○ Production goals

○ Safety goals

○ Economy goals

A production goal is used to express that
to enable production, some specific process
variable should be kept within a specified
interval. A safety goal is used to express that
for reasons of safe operation, some specific
process variable should be kept above or below
some value, or inside or outside an interval. An
economy goal is used to express considerations
of overall process optimization.
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5. FUNCTIONS

The second important concept of MFM is that
of a function. MFM describes the functional
structure of a system as a set of flow
structures. The levels are connected via
achieve and condition relations, and the flow
structures consist of connected flow functions.
The types of flow structures currently treated
in MFM are:

○ Mass flows

○ Energy flows

○ Information flows

There are also several function types, which
are treated in MFM. These are shown in Fig.
1. A detailed description of the different flow
functions can be found in Larsson (1992 c).
The given description of MFM is based on Lind
(1990 a), while the following is original work.

Source Transport Barrier Storage Balance Sink

Manager Network GoalObserver Decision Actor

Mass flow functions

Energy flow functions

Figure 1. The symbols for the different MFM
objects.

6. AN EXAMPLE OF A FLOW MODEL

The following example will be used to explain
the basic concepts of MFM. The target process
consists of a plate heat exchanger, see Fig. 2.

Pump

Pump

Valve

Steam injector

HTX
Product

Water

Steam

Water

Product

Figure 2. A heat exchanger system. The
flowsheet shows how water is pumped through
a steam injector, where it is heated with steam,
and through a plate heat exchanger, where it
heats the product.

This simple system serves quite well to explain
the concepts of MFM. The primary goal is

to heat the product to a certain temperature,
but a brief analysis shows that there are
two subgoals also: having water and product
available, i.e., bringing the media to the heat
exchanger:

○ G1: Heat product to certain temperature

○ G2: Bring product to heat exchanger

○ G3: Bring water to heat exchanger

The given example process is rather small, but
there are many functions present:

○ F1: Provide product

○ F2: Transport product

○ F3: Transfer thermal energy between
media

○ F4: Provide thermal energy

○ F5: Transport thermal energy

○ F6: Transport water

○ F7: Provide water

○ F8: Provide stream

○ F9: Transport steam

○ F10: Mix water and steam

The third type of objects are the physical
components. Note that the product and water
tanks do not actually appear in Fig. 2:

○ C1: Product tank

○ C2: Product pump

○ C3: Heat exchanger

○ C4: Water tank

○ C5: Water pump

○ C6: Steam system

○ C7: Steam valve

○ C8: Steam injector

These are the sets of goals, functions, and
components. However, the relations between
these objects are as important. First, the goal
G1 is superior to G2 and G3, i.e., the latter are
subgoals of G1. Thus, there is a goal hierarchy,
formed by goal-subgoal relations. There are
also relations between goals, functions, and
components. For example, the heat exchanger
component is used to realize the function of
transferring thermal energy from water to
product, and this function is used to achieve
the goal of heating the product. In Fig. 3,
both the goal hierarchy and the means-end
relations are shown in a graph.
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C1 C2 C3 C4 C5 C6 C7 C8

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

G2

G1

G3

Figure 3. Goals, functions, components, and
relations of the heat exchanger system.

As can be seen, the graph of objects and
relations is quite complex, even for a small
process as the one in the example. In an MFM
model, the goals, functions, and relations are
represented in a graphical language. A model
of the example process is found in Fig. 4.

Steam Valve Injector HTX Cooling

Water Pump

Water flow Product flow

Tank HTX Packing

Water available Product available

Heat product

Heat transfer

Steam

Water
HTX

Injector

Product

Figure 4. A flow model of the heat exchanger
system. The goals and goal hierarchy are
shown in the tree structure of the graph, while
the functions are connected into flow paths in
three networks. The topmost goal, to heat the
product, is achieved by the heat transfer flow
path, (upper network), while the subgoals, to
bring water and product to the heat exchanger,
are achieved by the water flow path, (lower
left), and the product flow path, (lower right).
The components and realize relations are not
shown.

7. MEASUREMENT VALIDATION

Most industrial processes are equipped with
a large number of sensors, of which several
directly or indirectly measure the same
variables. Especially when material and
energy balance equations are taken into
account, the total set of measurements
commonly gives rise to redundancy, which can
be used to check the consistency of the signals,
i.e., to validate them.

Flow Semantics

In order to use MFM as a basis for
measurement validation, a semantics has
been defined that assigns flow values and
grouping information to the different flow
functions. Four of the flow functions have their
attributes in common, and have thus been
grouped into one class, called flow carrier.
Sources, transports, non-forking balances, and
sinks are all flow carriers. Storages, barrier
functions, and forking balances are given a
separate treatment.

Flow carriers have one flow value; a
quantitative variable that corresponds to a
physical flow of mass or energy. Storages
have three flow values. There are input
and output flows connected to corresponding
measurements. There is also a third attribute,
corresponding to the rate of change of the
mass or energy contained in the storage.
Barriers have no flow value, as they do not
transport any matter or energy in working
states. Forking balances have no flow value.
Instead, the sum of the inflows should equal
the sum of the outflows.

Generation of Measurements

The measurement validation method takes a
set of flow signals as inputs. These inputs can
be obtained in several different ways. They
can be direct or filtered signals from sensors.
It would be more probable, though, that they
were the outputs of some low level data
filtration on the direct signals, e.g., outputs
from a Kalman filter or from some statistical
algorithm. The signals could also come from
any other hardware or software that produced
flow values; the origin of the flow values does
not matter for the method.

Consistent Subgroups

With use of the semantics above it is possible
to split an MFM model, (i.e., a set of connected
flow functions), into internally consistent
subgroups. This is done via use of the following
rules:

○ If the flows of two connected flow carriers
are equal, the flow carriers belong to
the same consistent subgroup. If the flow
values disagree, they belong to separate
subgroups.

○ If the input flow of a storage is equal to
the flow of the flow carrier connected at
the input of the storage, the input part of
the storage belongs to the same subgroup
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as the flow carrier. The corresponding is
true for the output flow of a storage and
the flow of the flow carrier connected to it.

○ For each storage, the derivative of the
volume may be measured. In this case
a simple balance equation should hold
between input, output, and derivative.

○ For each balance, the sum of the inflows
should equal the sum of the outflows.

○ If the flow values of two flow functions
agree, and the flow functions are in the
same flow path, but separated by one
or more inconsistent subgroups, they still
belong to the same subgroup.

Application of the five rules above will enable a
splitting of each flow into smaller groups with
consistent measurement values. It should be
noted that the last rule means that there can
be groups with holes in them; they need not be
directly consecutive. This is the case in Fig. 5.

1.0 1.0 1.0 0.5 1.0

Figure 5. An example of a flow path.
Here the flow functions form two consistent
subgroups, where one group is surrounding the
other. The three possible fault hypotheses are
that the four measurements are correct and the
one is faulty, that the one is correct and the
four are faulty, and that all measurements are
faulty.

Flow Propagation

The description so far has used the assumption
that all flow functions have measurements.
This is quite seldom the case. Many of the flow
values needed in the algorithm will usually be
unknown.

The MFM flow paths can be used,
however, to propagate flow information, i.e.,
to guess the unknown flow values. The idea
is quite simple: if an unknown flow value
is connected to a known one, the known
value is propagated to the unknown. Values
that support each other have precedence over
values based on single measurements.

Validation

Each flow value has a corresponding validated
flow attribute. This is set according to the
following rules:

○ If a flow value is the only one in
its subgroup, and it is surrounded by
a consistent subgroup, its own flow

value is overridden, and the flow of the
surrounding group becomes the validated
flow of the flow function.

○ In all other cases, the validated flow is
equal to the corresponding measured flow.

In addition to the presentation of validated
flow values, the implementation also presents
some subgroup information to the user:

○ A coloring scheme is used to separate the
inconsistent subgroups in the graphical
representation of the MFM model. Thus,
the symbols of the flow functions in the
different subgroups receive a light gray,
gray, or dark gray rim, depending on
which group they belong to.

○ Each flow function that is alone in its
group is highlighted in red.

The decision to explicitly mark all single
subgroups is only one possible alternative
of many. It is derived from the obvious
possibility that the measured value in question
probably is in error. It is very important to
observe, however, that this is only probable,
not certain. It is also possible, albeit with
a lower probability, that all measurements
of a larger, consistent subgroup is in error,
while the single value is correct. The third
possibility is that all the measurements are
wrong. It is very important that these cases
be taken into account when the results of
the analysis are presented to the operator or
higher level algorithm. This is the reason why
the implemented system primarily displays
information about the different consistent
subgroups.

Examples of Measurement Validation

Let us demonstrate the method on a small
example. The process consists of a storage
tank, a pump, and two cylindrical tanks, see
Fig. 6.

Figure 6. The tanks process. Water is
pumped from a storage tank, to a cylindrical
tank, from where it flows down into another
tank, and then back to the storage again.
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The main goal of the process is to keep the
water level in the tanks at a specified level.
This is achieved by the primary mass flow,
i.e., the circulation of water. Here, the storage
tank has been modeled both as a source and
a sink. One of the transport functions, (the
one that corresponds to the pump), depends
on the subgoal that the pump motor has
power, and this goal in turn is achieved by a
secondary flow of electrical energy. The power
support system is quite complicated but has
been modeled simply as a source, a transport,
and a sink. All this can be seen in the MFM
model in Fig. 7.

F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

Correct level in tanksG1

G2 Keep pump running

Water flow

Energy supply

Figure 7. An MFM model of the tanks
process. The main goal is to keep the level
of the upper tank correct, and it is achieved
by a water flow. In order for the transport
function F2 to be available, i.e., to keep the
pump running, energy must be supplied.

EXAMPLE 1
Now assume that flow measurements are
available from the outflow of the storage tank,
the throughput flow of the pump, and the
inflow, derivative, and outflow of the upper
tank, and that these flows have the following
values.

flow of F1 20 × 10−6 m3/s (outflow from storage)
flow of F2 10 × 10−6 m3/s (flow through pump)
inflow of F3 20 × 10−6 m3/s (upper tank inflow)
deriv of F3 0 × 10−6 m3/s (volume change)
outflow of F3 20 × 10−6 m3/s (upper tank outflow)

Table 1. A set of flow measurement values.

The situation described in Table 1 is also
shown in Fig. 8, where only the concerned flow
functions are found. The flow values are shown
above the flow function symbols; the storage
function realized by the upper tank has three
values, corresponding the inflow, derivative of
volume, and outflow.

F1 F2 F3

20 20 2010 0

Figure 8. A flow path corresponding to Table
1. The flow of F2 disagrees from the rest, and
there are two consistent subgroups, whereof
one is single and surrounded.

The flow of F1 and all the flows of F3 agree,
and thus they form a consistent subgroup.
The flow of F2 disagree, however, forming
another subgroup, with only one function in
it. The system marks the two subgroups in
different colors, thus notifying that there is an
inconsistency. In this case it will also mark F2
specially, as it is a single function group, and
the validated flow value of F2 will be set to
20 × 10−6 m3/s, (the flow of the surrounding
group).

The consistent subgroup information has
been shown in Fig. 8 with a shading system.
In addition to this, the flow function F2 should
also have a special marking, for forming a
single function group.

flow of F1 20 × 10−6 m3/s (outflow from storage)
flow of F2 20 × 10−6 m3/s (flow through pump)
inflow of F3 10 × 10−6 m3/s (upper tank inflow)
deriv of F3 5 × 10−6 m3/s (volume change)
outflow of F3 5 × 10−6 m3/s (upper tank outflow)

Table 2. A second set of flow measurement
values.

EXAMPLE 2
Further assume the situation described by
Table 2, which is also found in Fig. 9.

F1 F2 F3

20 20 10 5 5

Figure 9. A flow path corresponding to
table 2. Here there are two consistent
subgroups which both consists of more than one
measurement. The algorithm signals that the
flows do not agree, but it cannot guess which
ones that are correct.

Here we have two consistent subgroups, each
with more than one measurement to support
it. This situation is difficult to assess, as many
sensor values must be wrong. The system
will mark the two inconsistent groups, but
will take no further action. Marking any
particular value as wrong could be misleading
and potentially dangerous.
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8. ALARM ANALYSIS

Most industrial processes are equipped with
a large number of alarms. In a failure state
it is quite usual that many of the alarms
will trigger. Some of them will be directly
connected to the primary sources of error, but
others may be secondary, i.e., not connected
to any failed equipment, but due only to
consequential effects of the primary failures.
In a failure state it is vital for the operator
to separate the primary from the secondary
alarms.

Failure Conditions for Flow Functions

Every flow function may or may not be
alarmed, i.e., be connected to a corresponding
part of the process, in such a way that
a measurement tells whether the function
is currently available or not. However, the
alarm conditions are limited according to the
following rules:

○ A source is working if the current outflow
F is less than the source’s maximum
capacity Fcap:

F ≤ Fcap.

If this condition is not fulfilled, the alarm
locap is true.

○ A transport is working if the current flow
F lies within an interval, specified in the
design:

Flo ≤ F ≤ Fhi.

If the flow F is below Flo the alarm loflow
is true; if it is above Fhi hiflow is true.

○ A barrier is working if the current flow F
is low enough, (approximately zero):

F ≤ ε1.

If this condition is not fulfilled, the alarm
leak is true.

○ A storage is working if the current volume
V lies within a specified interval:

Vlo ≤ V ≤ Vhi,

and the following inequality is fulfilled:

j
dV
dt

− Fi + Foj ≤ ε1.

If the volume V is lower than Vlo, the
alarm lovol is true, if it is higher than Vhi,
hivol is true. If the expression within bars
is less than −ε 1 the alarm leak is true; if
it is larger than ε 1 the alarm fill is true.

○ A balance is working if the following
inequality is fulfilled:

jF1 + F2 + ⋅ ⋅ ⋅ + Fnj ≤ ε1.

If the expression within bars is less than
−ε1 the alarm leak is true; if it is larger
than ε 1 the alarm fill is true.

○ A sink is working if the current inflow F
is less than the sink’s maximum capacity
Fcap:

F ≤ Fcap.

If the condition is not fulfilled, the alarm
locap is true.

A Method for Alarm Analysis

Failures can only propagate from flow function
to flow function in certain ways. This is a
consequence of the failure conditions described
above. Thus, some primary failures in some
types of flow functions may cause secondary
failures in the connected functions, while
failures in others will not. An example is given
in Fig. 10, where a source F1 is connected to a
transport function F2. This could correspond
to, e.g., a tank connected to a pump.

F1 F2

Figure 10. A connected source and transport.
The source has a maximum outflow capacity,
Fcap , and the transport has a working interval,
Flo ≤ Ft ≤ Fhi . If the wanted outflow of the
source goes over its capacity or if the actual
flow through the transport leaves the working
interval, alarms occur.

The source has an output flow Fs , which must
lie beneath the maximum capacity, Fcap, of
the source. Thus, the following inequality must
hold:

Fs ≤ Fcap.

If it does not, either because the capacity, Fcap

has fallen or because the output flow Fs has
risen, the source will have a locap alarm.

The transport has a throughput flow Ft,
which must lie in between a lower and an
upper limit, Flo, and Fhi, which are set during
the design. Thus, the following inequalities
must hold:

Flo ≤ Ft ≤ Fhi.

If they do not, the transport will cause one
of two alarms. If Ft ≤ Flo, the alarm will be
loflow; if Ft ≥ Fhi, the alarm will be hiflow.
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Note the normative character of these
assumptions. Here, the working interval of the
transport must be decided during the design
and modeling phase.

Assume further that the output flow or the
source is controlled by the throughput flow of
the transport, so that during normal operation:

Fs = Ft,

and that the working interval of the transport
is small enough so that Fcap is always outside
it during normal working conditions. Then the
following analysis can be performed:

○ If the capacity Fcap of the source
should fall below the desired outflow,
the transport will not get enough flow
medium, and its throughput flow Ft will
be forced out of and below the working
interval.

○ If, on the other hand, the current
throughput flow of the transport should
become higher than the upper limit of the
working interval, i.e., Ft rises above Fhi

because of some fault, this may or may
not lead to the output flow of the source
going above the maximum capacity Fcap.

○ If the current throughput flow of the
transport should fall below the lower
limit of the working interval, the flow
demanded from the transport will still be
below the source’s capacity, and the source
will not be affected.

This analysis can be expressed very simply and
crisply in two rules, where all the quantitative
information is suppressed and only the alarm
information used:

○ A source locap alarm will force the
connected transport to have a loflow
alarm.

○ A transport hiflow alarm may cause a
connected source to have a locap alarm.

With the use of these two rules for how faults
may cause other faults, and thus, how alarms
may cause other alarms, any alarm situation
concerning a source connected to a transport
may be analyzed.

Assumptions of Flow Function Behavior

In the examples above, the different working
conditions gave rise to a set of assumptions
of how the flow functions involved will react
when connected to each other. Using such as-
sumptions for all flow functions, a small G2
program was written to automatically gener-
ate rules for all possible alarm causations, see

Larsson (1992 d). In fact, a set of rules was
first generated by hand; and when the auto-
matic rule generation program was ready, the
previous hand-generated rules where checked
and found to be correct.

Possible Secondary Alarms

The examples can be extended to all the
allowed connections of flow functions. This will
give a set of rules for how an alarm in one
flow function may or will cause consequential
alarms in the connected functions. A complete
set of rules is as follows:

○ A source locap will force the connected
transport to have a loflow.

○ A transport loflow may cause a storage
connected at the inlet of the transport to
have a hivol, and a storage connected at
the outlet to have a lovol. It may cause
another transport connected in the same
direction via a balance to have a loflow. If
the balance has no other connections the
same alarm will be forced.

○ A transport hiflow may cause a connected
source or sink to have a locap. It may
cause a storage connected at the inlet
of the transport to have a lovol, and a
storage connected at the outlet to have a
hivol. It may cause a transport connected
in the same direction via a balance to
have a hiflow. If the balance has no
other connections, the same alarm will
be forced. It may cause another transport
connected in the opposite direction via a
balance to have a loflow.

○ A barrier leak may cause a transport
connected via a balance to have a loflow,
or a hiflow.

○ A storage lovol may cause an outgoing
connected transport to have a loflow.

○ A storage hivol may cause an incoming
connected transport to have a loflow,
and it may cause an outgoing connected
transport to have a hiflow.

○ A storage leak may cause the same storage
to have a lovol.

○ A storage fill may cause the same storage
to have a hivol.

○ A balance leak may cause a connected
outgoing transport to have a loflow, and
a connected incoming transport to have a
hiflow.

○ A balance fill may cause a connected
incoming transport to have a loflow, and

8



a connected outgoing transport to have a
hiflow.

○ A sink locap will force the connected
transport to have a loflow.

○ An alarm in a network will force a function
depending on this network to fail.

An Alarm Analysis Algorithm

The rules above can be used for automated
alarm analysis. Given a set of alarms, it
is possible to decide which of the alarms
that must be primary ones, and which ones
that may be secondary. It is important to
observe, however, that one cannot be certain
that a fault is indeed secondary; there
might be multiple faults. Thus, the method
will differentiate between positively primary
alarms, and alarms that may be either primary
or secondary.

As soon as a new alarm value is
discovered, the corresponding alarm of the
concerned flow function is set to an alarm
value, e.g., a transport loflow, a storage hivol,
or a balance fill. Then all rules that can be
applied to the new alarm are tried, in order to
see if they match the new situation. If so, the
failure state of one or several flow functions
may change, from normal to primary failed or
secondary failed. It should be noted that the
failure state secondary really means primary
or secondary.

Unknown Alarm States

When some alarm states are unknown, the
flow networks can be used to guess the missing
values. This method will be called consequence
propagation. The idea is simple. Given a set
of known (primary and secondary) alarms and
a set of unknown alarm states, the unknown
values are filled in with secondary alarms
according to a set of rules.

The rules used for this exactly correspond
to the alarm analysis rules. Every such rule
can be converted to a guessing rule, to be used
in case the flow function in question is not
given an alarm state from measurements.

Examples of Alarm Analysis

Let us now demonstrate the method on an
example. Once again the tanks process will be
used.

EXAMPLE 3
Assume that the functions F1, F2, F3, and
F5 have measurements connected to their
alarm states, while F4 and F6 have not.

Further assume that F1 has a locap, F2 a
loflow, F3 a lovol, and F5 a lovol alarm.
This alarm situation is shown in Fig. 11. The
shading of the flow function symbols is used to
indicate the failure state, (a dark shade means
a primary alarm, a lighter shade a primary or
secondary, and white a normal or unalarmed
state).

F1 F2 F3 F4 F5 F6 F7

locap loflow lovol lovol

Figure 11. An alarm analysis situation. The
functions F1, F2, F3, and F5 have locap,
loflow, and lovol alarms. The alarms of F4 and
F6 have been guessed. In this situation, the
locap of F1 is the only primary alarm.

This would correspond to the plethora of
alarms that could appear in, say, a complicated
fault situation in a larger plant, although this
situation is, of course, far simpler.

An application of the presented methods
will result in that the locap of F1 must be a
primary alarm, while the loflow of F2 and the
lovol of F3 may be secondary. The consequence
propagation implies that F4 and F6 might have
had loflow alarms, had they been measured.
Thus, assuming that F4 has a loflow alarm, the
alarm analysis can also conclude that the lovol
of F5 may be a secondary alarm. The result is
that the locap of F1 is the only primary alarm,
while all the others may be consequences of
it. This has been shown with the shading in
Fig. 11. F1 is the source function of the storage
tank, and the sole cause of the fault situation
could thus be that there is too little water in
that tank.

F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

locap loflow lovol lovol

loflow

Figure 12. Another alarm analysis situation.
Here the loflow of F2 must be primary, as there
is an alarm in the achieving network, (the
loflow of F9).

EXAMPLE 4
If the function F9 (transport of electrical
energy to the pump motor) was to have an
alarm also, the last rule in the rule set, (the
rule concerning causation via the achieve and
condition relations), would imply that F2 (the
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pump) also had had a primary fault, i.e., there
would now be at least two primary faults: no
power supply for the pump and too little water
in the storage tank, see Fig. 12.

9. FAULT DIAGNOSIS

The classical use of knowledge-based systems
in process control is to aid the process operator
in diagnosing faults. This is usually done by a
rule-based expert system, running the rules in
backward chaining. The techniques are well-
known, a good example being MYCIN, see
Shortliffe (1976).

Problems with Rule-Based Expert Systems

The techniques of building and using standard
rule-based expert systems are now more or
less mature. They have, however, several
shortcomings, some of which MFM can be used
to remedy:

○ Each rule base is specific for a certain
process and task. Thus, a new system
must be designed, built, and validated
each time fault diagnosis is needed for a
new process.

○ A rule base may contain inconsistencies,
and a large rule base most probably will
do so. It is very difficult to guarantee
consistency between the rules in an
automatic fashion.

○ A large rule base is difficult to overview,
both in building and updating.

○ A rule-based system can only diagnose the
faults anticipated in the design of the rule
base.

These shortcomings can be solved to a large
degree by using MFM. The whole process
of design, construction, and updating of
the knowledge database becomes much more
efficient, as the MFM models are easy to
present graphically, and thus quicker to build
and change. The other definite advantage of
MFM is that consistency within the model
is guaranteed. The graphical syntax makes
inconsistencies in the database impossible. In
addition, MFM can find any deviation from the
working state.

The MFM Data Structure for Diagnosis

The working conditions for flow functions used
in the fault diagnosis algorithm are the same
as used in alarm analysis. Thus, each flow
function might be in a normal or working

state, or have a fault, more or less directly
corresponding to a locap, loflow, hiflow, lovol,
hivol, leak, or fill.

The fault diagnosis algorithm must have
a way of finding out the failure states of
the physical components corresponding to
the different flow functions. Thus, each flow
function may have a question to be asked, or
a check or test to be performed, in order to
investigate the failure state of the function.
Each flow function can also have a remedy of
the fault, in the form of a text string to be
output by the algorithm.

As an example, we will once again use
the flow model of the tanks process. In order
to enable a fault diagnosis, the different flow
functions should be assigned questions. The
source F1 could for example have the question
“Is there water in the storage tank?” associated
to it, together with the remedy “Fill water in
the storage tank.”

The Search Strategy

An MFM model consists of information about
the goals of a process, how these goals
are achieved by networks of functions, how
the functions depend on subgoals, and how
they are realized by physical components.
In a standard rule-based expert system, this
information structure is implemented in rules,
but in MFM it is explicitly described. Thus, a
fault diagnosis can be easily implemented, as
a search in the model graph. The strategy used
for this search is as follows:

○ The user chooses a goal for diagnosis. If
this is a top-level goal, the whole model,
(and thus the whole process), will be
investigated. However, the goal chosen
can also be a subgoal, in which case only
part of the process will be diagnosed.

○ The search propagates downwards from
the goal, via achieve relations, into the
connected network of flow functions, each
of which is now investigated.

○ Each flow function may have a diagnostic
question, which is asked in order to find
out whether the corresponding physical
component is currently realizing the
function, i.e., whether the function is
available or not. Alternatively, there can
be a rule or relation to a physical
component, whereby information about
the working order of the function may be
found.

○ If a flow function conditioned by a subgoal
is found to be at fault, or has no means
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of being checked, the connected subgoal
is recursively investigated. If, however,
a function is working, that part of the
subtree is skipped.

An Example of Fault Diagnosis

Let us now demonstrate the method on a small
example. Once again, the tanks process will be
used.

EXAMPLE 5

Assume that the level of the upper tank is
not correct, i.e., the goal G1 is violated, and
that the user asks for a diagnosis of that
goal. The algorithm starts at the goal G1, i.e.,
the topmost goal, and moves down into the
network describing the mass (water) flow and
checks the flow functions in turn.

F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

Correct level in tanksG1

G2 Keep pump running

Water flow

Energy supply

Figure 13. The diagnostic search started
from the goal G1, followed the achieve relation
down into the water flow network, and has
reached the source F1.

The source F1 describes the source function
of the storage tank, and is the first flow
function to be reached by the search algorithm.
The current position is marked in the graphic
representation of the flow model, see Fig.
13. The source F1 has the following question
associated to it:

Q: Is there water in the storage tank?

The user checks this and discovers that there is
almost no water left in the storage tank. Thus
he gives the answer ‘no’ and F1 is marked with
a locap. The alarm analysis is activated but
can draw no further conclusions, see Fig. 14.

F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

Correct level in tanksG1

G2 Keep pump running

Water flow

Energy supply

Figure 14. The diagnostic search has con-
cluded that the source F1 is faulty. Then it has
moved on to reach the transport F2.

The algorithm now moves on to F2 and asks
the following question:

Q: Is the pump running?

Once again, the answer is ‘no’ and F2 is
marked with a loflow alarm. The alarm
analysis is activated and deduces that the
locap of F1 must be a primary fault, while the
loflow of F2 may be caused by the fault of F1,
see Fig. 15.

F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

Correct level in tanksG1

G2 Keep pump running

Water flow

Energy supply

Figure 15. The diagnostic search has con-
cluded that the transport F2 was at fault, and
the alarm analysis signals that the fault of F1 is
primary, while the fault of F2 may be secondary.
Then the search has reached the storage F3.

The storage function F3 corresponds to the
upper tank. It could have a question associated
to it, that asked whether the volume of that
tank was within the correct limits. Assume,
however, that it is connected to a level alarm
sensor. It will automatically be assigned a lovol
alarm. Before the diagnosis has started, this
alarm was considered primary, but once the
loflow of F2 has been established, the alarm
analysis algorithm decides that it may be a
consequential fault.

The transport function F4 corresponds to
the gravitationally caused outflow from the
upper tank. It has no alarm and no question,
so here the consequence propagation will be
used to guess the alarm state, which will be
a loflow. The rest of the flow functions in the
flow path get their values in a similar manner.
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F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

Correct level in tanksG1

G2 Keep pump running

Water flow

Energy supply

Figure 16. The diagnostic search has fin-
ished its investigation of the water flow net-
work, and the alarm analysis concludes that
there is one primary fault, three secondary, and
two guessed faults, at F4 and F6. As the trans-
port F2 was at fault and there is a condition
relation, the search has continued down to the
energy supply network and has reached the
transport F9.

As there was a fault in F2, the algorithm now
goes down in the subtree below it, and starts
diagnosing the goal G2. It moves further down,
finds the transport F9, see Fig. 16, which
corresponds to the power switch of the pump,
it asks the following question:

Q: Is the power switch on?

The user discovers that the power switch is
in the ‘off ’ position and answers ‘no’ to this
question. The transport function F9 is marked
with a loflow alarm. The alarm analysis now
deduces that the fault of F2 was indeed
primary, as there is a fault in its support
system. The total fault situation is thus that
there are two independent causes of the level
being to low; there is not enough water in the
storage tank, and the pump power switch is
not on, see Fig. 17.

F8 F9 F10

F1 F2 F3 F4 F5 F6 F7

Correct level in tanksG1

G2 Keep pump running

Water flow

Energy supply

Figure 17. The state after the fault diagno-
sis. As the transport F9 is at fault, the fault in
F2 is also a known primary fault. The user may
now ask for explanations and remedies, and the
algorithm will search through the graph and
output the appropriate text strings from the
failed flow functions.

EXAMPLE 6
The implemented system also allows the flow
functions to have explanations and remedies
associated with them, and these can now be
asked for. In the example, the algorithm would
go through the different primary faults. The
remedy for F1 could be “Fill water in the
storage tank,” and the remedy for F9 “Switch
on the power.”

Instead of writing out a remedy in text
form, the system could also activate rules
or procedures to perform any actions needed.
These rules and procedures should be written
in the general G2 rule format.

10. IMPLEMENTATION

The algorithms described above have all been
implemented in G2, and tested simulations of
the tanks process and Steritherm. The latter
is a widely used, moderately sized process
for ultra-high temperature treatment of dairy
products, see Figure 18. The MFM model of
Steritherm consists of somewhat more than
100 objects.

Figure 18. The Steritherm flow sheet, as it
appears in the MFM toolbox implementation.

The toolbox implementation is reasonably
small, see Table 3, and provides a toolbox for
building and using MFM models in G2. The
methods were successful in all test cases, but
it should be noted that Steritherm is still a
rather small-scale process. G2 was developed
by Gensym Corporation, see Moore et al (1987,
1991).

Measurement validation 66 rules
Alarm analysis 93 rules
Fault diagnosis 19 rules

Table 3. The three methods have been
implemented as G2 knowledge databases.
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The algorithms are local and incremental.
They work in real-time, and propagate
information along static links only. This makes
them very efficient, and the effort as a function
of model complexity increases at worst linearly
with the size of the MFM models. The local
nature also has the benefit that feedback and
recirculation loops pose no problems for the
algorithms.

The efficiency of the fault diagnosis
method is shown by a simple implementation
in C, executing on-line using only tests and
no questions. Searching through the whole
Steritherm model, (more than 100 MFM
objects), takes only 110 microseconds on
a SPARC station 2, while finding a fault
in the thermal energy network takes 25
microseconds. The worst case of executing
time can easily be found out; for the
Steritherm it is 145 microseconds. Clearly, the
presented method enables knowledge-based
fault diagnosis in an on-line control algorithm.
All three methods may be equally efficiently
implemented.

Together with definitions of MFM data
structures and graphics, the three algorithms
constitute an MFM toolbox, which enables
a user to build MFM models of any
suitable process. Once the MFM model has
been constructed, all the three methods
are immediately available, without any need
for building a specific rulebase. Thus, the
toolbox greatly simplifies the construction of
knowledge-based systems for measurement
validation, alarm analysis, and fault diagnosis.

11. CONCLUSIONS

The paper has presented three newly invented
and implemented diagnostic methods for use
with multilevel flow models, MFM. The
methods use MFM as a database and performs
measurement validation, alarm analysis, and
fault diagnosis. They have been implemented
in G2 and successfully tested on two processes.
The search algorithms are all very efficient
and work in real-time, and their sensitivity
to large scaling of models is at worst linear.
Together with an implemented toolbox and
demonstrations, the project shows a good
example of the usefulness and power of means-
end models.
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