
Pergamon 
Autoraatica, Vol. 30, No. 6, pp. 1023-1027, 1994 

Copyright ~) 1994 Elsevier Science Ltd 
Printed in Great Britain. A l l  rlghts reserved 

0005-1098/94 $7.00 + 0.00 

Brief Paper 

Attitude Stabilization of A Rigid Spacecraft 
Using Two Control Torques: A Nonlinear 

Control Approach Based on The Spacecraft 
Attitude Dynamics* 

HARIHARAN KRISHNAN/f MAHMUT REYHANOGLU~ 
and HARRIS McCLAMROCH§ 

Key Words---Spacecraft stabilization; attitude control; discontinuous feedback. 

Abstract--The attitude stabilization problem of a rigid 
spacecraft using control torques supplied by gas jet actuators 
about only two of its principal axes is considered. If the 
uncontrolled principal axis of the spacecraft is not an axis of 
symmetry, then the complete spacecraft dynamics are small 
time locally controllable. However, the spacecraft cannot be 
asymptotically stabilized to any equilibrium attitude using 
time-invariant continuous feedback. A discontinuous stabi- 
lizing feedback control strategy is constructed which 
stabilizes the spacecraft to any equilibrium attitude. If the 
uncontrolled principal axis of the spacecraft is an axis of 
symmetry, the complete spacecraft dynamics are not even 
assessible. However, the spacecraft dynamics are strongly 
accessible and small time locally controllable in a reduced 
sense. The reduced spacecraft dynamics cannot be 
asymptotically stabilized to any equilibrium attitude using 
time-invariant continuous feedback, but again a discon- 
tinuous stabilizing feedback control strategy is constructed. 
In both cases, the discontinuous feedback controllers are 
constructed by switching between several feedback functions 
which are selected to accomplish a sequence of spacecraft 
maneuvers. The results of the paper show that although 
standard nonlinear control techniques are not applicable, it is 
possible to construct a nonlinear discontinuous control law 
based on the dynamics of the particular physical system. 

1. Introduction 
THE ATnTUDE stabilization problem of a rigid spacecraft 
using control torques supplied by gas jet actuators about only 
two of its principal axes is revisited. A rigid spacecraft in 
general is controlled by three independent actuators and it is 
well known that three gas jet actuators can be used to 
accomplish arbitrary reorientation maneuvers of the 
spacecraft using smooth feedback. The situation considered 
in this paper may arise due to the failure of one of the 
actuators of the spacecraft. Since we are considering a 
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space-based system, the problem considered here, namely, 
the attitude stabilization of a spacecraft operating in an 
actuator failure mode, is an important control problem. The 
translational and rotational motions of the spacecraft are 
decoupled and therefore we assume that the center of mass 
of the spacecraft is not translating. 

We first consider the case where the uncontrolled principal 
axis of the spacecraft is not an axis of symmetry. In this case, 
the complete spacecraft dynamics are small time locally 
controllable at any equilibrium attitude. However the 
spacecraft cannot be asymptotically stabilized to any 
equilibrium attitude using a time-invariant continuous 
feedback control law. Using local controllability results, an 
algorithm which locally asymptotically stabilizes the space- 
craft to an isolated equilibrium is proposed in Crouch (1984). 
That algorithm is extremely complicated and is based on Lie 
algebraic methods in Hermes (1980). The algorithm yields a 
piecewise constant discontinuous control. Although very 
complicated, the algorithm is the only one proposed in the 
literature thus far which locally asymptotically stabilizes the 
spacecraft attitude to an equilibrium. In this paper a new 
discontinuous stabilizing feedback control strategy is 
constructed which stabilizes the spacecraft to an equilibrium 
attitude. The control strategy is simple and is based on 
physical considerations of the problem. We next consider the 
case where the uncontrolled principal axis of the spacecraft is 
an axis of symmetry. In this case, the complete spacecraft 
dynamics are not even accessible. Under some rather weak 
assumptions, the spacecraft dynamic equations are strongly 
accessible and small time locally controllable at any 
equilibrium attitude in a reduced sense. The reduced 
spacecraft dynamics cannot be asymptotically stabilized to 
any equilibrium attitude using time-invariant continuous 
feedback. Nevertheless, a discontinuous feedback control 
strategy is constructed which achieves attitude stabilization of 
the spacecraft. 

2. Kinematic and dynamic equations 
Let J = diag (Ji, J2, ~),  Ji > 0, i = 1, 2, 3, be the inertia 

matrix of the spacecraft in a coordinate frame defined by its 
principal axes. We assume that the control torques u~ and u~ 
are applied about axes represented by unit vectors b~ and b z 
respectively and without loss of generality, let b t = (1, 0, 0)" 
and b2 = (0, 1, 0) r. Define 

u~ " 

Suppose ~ol, c02, to 3 are the principal axis components of the 
absolute angular velocity vector to of the spacecraft. Then 
the equations describing the evolution of the angular velocity 
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of the spacecraft are given by 

to = alca2to 3 + Ul, (1) 

~2 = a2calca3 + u2, (2) 

~3 = a3ca,°)2, (3) 

where 

J z - J 3  a2=J3 - J ,  a3 J , - J 2  
a t =  j ,  , .i 2 , = .i. . 

The orientation of a rigid spacecraft can be specified using 
various parametrizations of the special orthogonal group 
SO(3). Here we use the Z - Y - X  Euler angle convention for 
parametrizing the orientation of the rigid spacecraft 
(Greenwood, 1988). The Euler angles Ip, 0, q~ are limited to 
the ranges - ~  < ~p < ~, - ~ / 2  < 0 < ~r/2, - ~  < q~ < ~. Then 
we have (Greenwood, 1988) 

~ = caj + ca2sin ~ tan 0 + ca3cos ~ tan 0, (4) 

O = ca2 cos ~ - ca3 sin q~, (5) 

~b = tOE sin ~ sec 0 + o~3 cos $ sec 0. (6) 

3. Controllability and stabilizability properties 
It is easily verified that the linearization of equations 

( t ) - (6)  about any equilibrium has an uncontrollable 
eigenvalue at the origin. This implies that an inherently 
nonlinear analysis is necessary in order to characterize the 
controllability and stabilizability properties of the complete 
spacecraft dynamics. Moreover, a linear feedback control 
law cannot be used to asymptotically stabilize the spacecraft 
to any equilibrium attitude. We now present fundamental 
results on the controllability and stabilizability properties of 
the complete spacecraft dynamics described by equations 
(1)-(6). 

Theorem 3.1. The complete spacecraft dynamics described 
by state equations (1)-(6) are strongly accessible if and only 
i f / t  #=12, i.e. the uncontrolled principal axis is not an axis of 
symmetry. 

Theorem 3.2. The complete spacecraft dynamics described 
by state equations (1)-(6) are small time locally controllable 
at any equilibrium if and only if J, #=J2. 

Theorem 3.3. The complete spacecraft dynamics described 
by state equations (1)-(6) cannot be asymptotically stabilized 
to any equilibrium using a time-invariant continuous 
feedback control law, but can be asymptotically stabilized to 
any equilibrium using a piecewise continuous feedback 
control law. 

The reader is referred to Krishnan et al., (1992a) for the 
proofs of Theorems 3.1 and 3.2. A weaker version of the first 
part of Theorem 3.3 (with "continuous" replaced by " C ' " )  
was proved in Byrnes and Isidori (1991). However, the first 
part of Theorem 3.3 follows from Byrnes and Isidori (1991) 
using results in Sontag (1989) and Zabczyk (1989). The 
second part of Theorem 3.3 is a consequence of small time 
local controllability (Sussman, 1987). Clearly, traditional 
nonlinear control design methods based on linearization, 
Lyapunov methods, center manifold theory, or zero 
dynamics cannot be used to asymptotically stabilize the 
spacecraft to any equilibrium attitude since there is no 
general procedure for the design of a discontinuous feedback 
control. 

Although the full set of equations (1)-(6) cannot be 
asymptotically stabilized to any equilibrium via continuous 
feedback, one may still wish to design a smooth control law 
which stabilizes at least a particular subset of state variables. 
Consider the state equations for tot, to2, ca3, ~ and /9 given 
by equations (1)-(5). These equations are not affected by the 
Euler angle lp. Asymptotic stabilization of this subset of the 
original equations corresponds to stabilization of the motion 
of the spacecraft about an attractor, which is not an isolated 
equilibrium. A result from Byrnes and Isidori (1991) shows 
that the closed-loop trajectories can be asymptotically 

stabilized to the manifold 

= ((~o, ,  ~o2, ca3, ~ ,  O, ~p): ca, = ~o 2 = , ~  = ¢ = 0 = 0}, 

using smooth C' feedback. 
We mention that although the complete spacecraft 

dynamics described by equations (1)-(6} cannot be 
asymptotically stabilized to an equilibrium by continuous 
feedback, an algorithm generating a piecewise constant 
discontinuous control has been developed in Crouch (1984) 
which locally asymptotically stabilizes the complete space- 
craft dynamics to an equilibrium. The algorithm requires that 
• /1 #=J2, i.e. the uncontrolled principal axis must not be an 
axis of symmetry. The algorithm is based on Lie algebraic 
methods in Hermes (1980). The algorithm is extremely 
complicated and is not an easily implementable control 
strategy. However, stabilization of the complete spacecraft 
dynamic equations (1)-(6) is an inherently difficult problem 
and the algorithm in Crouch (1984) is the only control 
strategy proposed in the literature thus far. 

4. Attitude stabilization o f  a non-axially symmetric spacecraft 
In this section, we assume that the uncontrolled principal 

axis of the spacecraft is not an axis of symmetry, i.e. J, #=J2, 
and we restrict our study to the class of discontinuous 
feedback controllers in order to asymptotically stabilize the 
complete spacecraft dynamics. Here we present a particular 
discontinuous feedback strategy, which is obtained by 
requiring that the spacecraft undergo a sequence of specified 
maneuvers. Without loss of generality, we assume that the 
equilibrium attitude to be stabilized is the origin. We first 
present a physical interpretation of the sequence of 
maneuvers that transfers any initial state to the origin. 
Maneuvers 1-3. Transfer the initial state of the spacecraft to 
an equilibrium state in finite time; i.e. bring the spacecraft to 
rest. 

There are control laws based on center manifold theory 
(Aeyels, 1984) and zero dynamics theory (Byrnes and 
Isidori, 1991) which accomplish this in an asymptotic sense. 
Here we use a sequence of three maneuvers, and 
corresponding feedback control laws, which bring the 
spacecraft to rest in finite time. 
Maneuver 4. Transfer the resulting state to an equilibrium 
state where ~ = 0 in finite time; i.e. so that the spacecraft is 
at rest with ¢ = 0. This maneuver is accomplished using the 
control torque u, only. 
Maneuver 5. Transfer the resulting state to an equilibrium 
state where q~=0, 0 = 0  in finite time; i.e. so that the 
spacecraft is at rest with ¢ = 0, 0 = 0. This maneuver is 
accomplished using the control torque u2 only. 

In order to complete specification of the sequence of 
maneuvers, the Euler angle ~, must be brought to zero. This 
cannot be accomplished directly since a control torque 
cannot be applied about the third principal axis of the 
spacecraft. However, the resulting state can be transferred to 
the origin indirectly using three maneuvers. The three 
maneuvers correspond to three consecutive rotations about 
the two controlled principal axes of the spacecraft, the first 
and the third being around the first principal axis. This 
produces a net change in the orientation of the spacecraft 
[see Fig. 9 in Marsden et al. (1991)] so that the state of the 
spacecraft is transferred to the origin in finite time. The three 
maneuvers are described as follows. 
Maneuver 6. Transfer the resulting state to an equilibrium 
state where ~ = ~ / 2 ,  0 = 0  in finite time; i.e. so that the 
spacecraft is at rest with ~ = n/2,  0 = 0. This maneuver is 
accomplished using the control torque u, only. 
Maneuver 7. Transfer the resulting state to the equilibrium 
state (0, 0, 0, ~/2,  0, 0) r in finite time. This maneuver is 
accomplished using the control torque u 2 only. 
Maneuver 8. Transfer the equilibrium state (0, 0,0,  ~/2,  
0, 0) r to the equilibrium state (0, 0, 0, 0, 0, 0) r in finite time. 
This maneuver is accomplished using the control torque u, 
only. 

Note that, excluding the first three maneuvers where the 
spacecraft is brought to rest, all subsequent maneuvers are 
such that the angular velocity component ca3 is maintained 
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identically zero. This is accomplished by carrying out 
maneuvers which require use of only a single control torque 
at a time. It is convenient to introduce some notation. 
Throughout, assume k > 0, and define 

k 

G ( x , , x 2 ) =  - k  

0 

We use the well-known 

for the system 

if {x, 1-' X22klX2[ > u[  ''[ 

or {x, + ~ =  0 and x 2 > 0 }  

if {xl + ~ . u [  

o r { x t + ~ = O a n d x 2 < O }  

if {x i -- 0 and x2 - 0}. 

property that the feedback control 

u = -G(x, - ~ , ,  x2) 

)~l ~ X 2  

. f 2 ~ U  

transfers any initial state to the final state ( i , ,  O) in a finite 
time. We also use the standard notation that 

{~_ i f x l > O  
sign (x,) = 1 i f x , < 0  

if x, =0 .  

Our mathematical construction of a control strategy which 
transfers an arbitrary initial state of the spacecraft to the 
origin is based on a sequence of equilibrium subsets and a 
sequence of control functions which transfers a state in one 
subset to another. Consider the following equilibrium subsets 

M, = {x ffi (0, 0, 0, ¢,  0, ~p)r I '), 0, W arbitrary}, 

M2 = {x = (0, 0, 0, 0, 0, ~p)r I 0, lp arbitrary}, 

M3 = {x = (0, 0, 0, 0, 0, lp) r [ Ip arbitrary}, 

M 4 = {x = (0, 0, 0, ~ ,  0, ~p)r[ ~, arbitrary}. 

We now present the feedback control laws that accomplish 
the sequential maneuvers described above; for each case we 
show that a desired terminal state which defines the 
maneuver is reached. 

Transferring any initial state to a state in M, 
In order to transfer the arbitrary initial state to a final state 
which satisfies 0), ffi 0)2 = 073 = 0 three sequential maneuvers 
are required. The first maneuver results in 0), ffi 072 = 0 while 
0)3#:0 in general; the second maneuver results in ~ot = 0)7 
and 0)2 = (o[, where 0)7, 0)[ are chosen to guarantee that at 
the end of the third maneuver 0)t = 0)2 = 0)3 = 0. These three 
maneuvers are described in detail as follows. 
Maneuver 1. Let (0)0, 0)0, 0)0 00, 0 o, lpo)r denote an initial 
state for the complete spacecraft dynamics described by 
equations (1)-(6). Define 

V I = a l0 )20)  3 + U I , 

v 2 = a20)30) I + U 2. 

Equations (1)-(3) can now be rewritten as 

cb, = v, ,  (7) 

(~)2 "~" V2' (8 )  

¢b 3 - -  a30)  ! o72. (9) 

Apply the feedback control functions 

v~ = - k  sign 0),,  

v2 = - k  sign 0)2. 

It is easy to see that after a finite time given by max (10)°l/k, 
t0)°l/k), (0, ffi w2 = 0; at this instant let 0 )3-  &3 where the 
constant value &3 can be evaluated. 
Maneuver 2. Apply the feedback control functions 

v, = - k  sign (0), - 0)7), 

v 2 = - k  sign (0)2 -- 0 ) [ ) '  

where 

(3k t~,3t~ 
0)~ = \ 2"-~'~31 / , 0)[ = -0)7 sign &3 sign a3. 

It is again easy to see that after a finite time given by 0)T/k, 
0), = 0)L (o2= 0)[, and in addition it can be shown that 
0)3 = 6)3/2. 
Maneuver 3. Apply the feedback control functions 

v, ffi - k  sign 0)t, 

v 2 = - k  sign 0)2. 

It can be seen that after a finite time given by 0)7/k, 0)t -- 0, 
0)2 = 0 and it can be shown that (03 = 0. 

Consequently, the resulting state after these three 
sequential maneuvers is (0, 0, 0, q)l, 0t, lp ' ) r  e Mt for some 
0 ' ,  0 ' ,  I f .  

Transfen'ins a state in M, to a state)inw ' r M2 
Maneuver 4. Let ( 0 , 0 , 0 , ¢  I, 0 ' ,  = M ,  denote a state 
of the spacecraft. Apply the feedback control functions 

u, = - G ( $ ,  (o,), 

/ / 2 = 0 .  

It follows that 0)2 = 0, 0)3 ffi 0, 0 = 0 I, ~p ffi lp', satisfy 
equations (2), (3), (5), (6) while equations (1), (4) become 

&, = - G ( ¢ ,  0),), 

~ =  0)1" 

Consequently, after a finite time 0), = O, 0 = O; and thus the 
maneuver transfers a state (0, O, O, ~l ,  0 ' ,  ~pl)r ¢ M, to the 
state (0, O, O, O, 0 ' ,  ~ t ) r  ~ Me in finite time. 

Transferring a state in M 2 to a state in M 3 
Maneuver 5. Let (0, 0, 0, 0, 0 t, lpJ) r ¢ M2 denote a state of 
the spacecraft. Apply the feedback control functions 

U t ----0, 

u2 = -G(0, o2). 

It follows that 0),=0, 0)3=0, ¢#=0, ~=~O', satisfy 
equations (1), (3), (4), (6) while equations (2), (5) become 

(o2 = - G (  O, 0)2), 

0 =  0) 2. 

Consequently, after a finite time 0)2 = 0, 0 = 0; and thus the 
maneuver transfers a state ( 0 , 0 , 0 , 0 , 0  I, l p ' ) r e M 2  to the 
state (0, 0, 0, 0, 0, Ip ' ) r  ¢ M~ in finite time. 

Transferring a state in M 3 to a state in M 4 
Maneuver 6. Let ( 0 , 0 , 0 , 0 , 0 ,  ¢ / I ) r c M  3 denote a state of 
the spacecraft. Apply the feedback control functions 

/~2 = 0. 

It follows that 0)2=0, 0)3=0, 0 = 0 ,  I p = l p ' ,  satisfy 
equations (2), (3), (5), (6) while equations (1), (4) become 

Consequently, after a finite time w, = 0, qb = ~r/2; and thus 
the maneuver transfers a state (0, 0, 0, 0, 0, Ip') r ~ M 3 to the 
state (0, 0, 0, ~/2,  0, lp') e M4 in finite time. 
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Transferring a state in M 4 to (0, O, O, : t]2,  O, O) r 
Maneuver 7. Let (0, 0, 0, s~/2, 0, 9'5)r • M4 denote a state of 
the spacecraft. Apply the feedback control functions 

U I ~ 0 ~  

u 2 = -G(Ip,  ( 0 2 ) -  

It follows that (0~ = 0, (0.' = 0, 9 = Jr/2, 0 = 0, satisfy 
equations (1), (3), (4), (5) while equations (2), (6) become 

&2 = -G(9",  (02), 

1~= (02" 

Consequently, after a finite time (02 = 0, ~, = 0; and thus the 
maneuver transfers a state (0, 0, 0, ~r/2, 0, 9"l)r • M4 to the 
state (0, 0, 0, .if/2, 0, 0) r in finite time. 

Transferring (0, 0, 0, if/2, 0, 0) r to (0, 0, 0, 0, 0, 0) 
Maneuver 8. Let (0, 0, 0, ~/2, 0, 0) r denote the state of the 
spacecraft. Apply the feedback control functions 

u, = - G ( 9 ,  (00, 

U 2 = 0 ,  

It follows that (02 = 0, (03 = 0, 0 = 0, 9" = 0, satisfy equations 
(2), (3), (5), (6) while equations (1), (4) become 

~5 =-G(9, (00,  

~) = (01" 

Consequently, after a finite time tot = O, ~ = O; and thus the 
maneuver transfers (0, O, O, :r]2, O, 0)"  to the state 
(0, O, O, O, O, O) r in finite time. 

In summary, the feedback control strategy outlined above 
can be implemented by sequential switching between the 
following feedback functions. 
Maneuver 1. Apply 

u[ (x )  = -a5(02(0.'  - k sign (05, 

u~(x)  = -a2(0.'(05 - k sign (02, 

until (0) 5 , (02, (0.') = (0, 0, 6).0 for some value 6).G then go to 
Manuever 2. 
Maneuver 2. Compute 

(3k 16).'1~".' (0~ = _ ( 3 k  16)31y/.' sign 6)3 sign a.'; 
(0[ = \ ~ /  \ 2 la3l / 

apply 

u~(x ) = - a  5 (02(03 - k sign ((01 - (0~), 

u~(x ) = -a1(03(0 5 - k sign ((02 - (0~), 

until ((05, (02, (03) = ((0{', (0~, 6).'/2); then go to Maneuver 3. 
Maneuver 3. Apply 

U31(X) = --a1(02(0 3 -- k sign (05, 

u3(x)  = -a2(03(0t  - k sign (02, 

until (o h ,  (02, (03) = (0, 0, 0), i.e. ((01, (02, (0.', 9, 0, 9 ' ) r6  
Mr; then go to Maneuver 4. 
Maneuver 4. Apply 

u~(x) = - G ( 9 ,  (00, 

.~(~) = 0, 

until ((05, (02, (0~, 9) = (0, O, O, 0), i.e. ((05, (02, (0.,, 9, 8, 
V') r ~/1'/2; then go to Maneuver 5. 
Maneuver 5. Apply 

u~(x) = o, 

u ~,(x) : - G ( O ,  (02), 

until (r(05, (02, (0.', 9, O) = (0, O, O, O, 0), i.e. ((05, (02, to.', 9, 
O, 9') e M3; then go to Maneuver 6. 

M a n e u v e r  6. Apply 

u~(x) = o, 

until ((0, (02, (0.~, 9, 0) = (0, 0, 0, :U2, 0), i.e. ((01, (02, (03, 
9, 0, W) T • M4;'then go to Maneuver 7. 
Maneuver 7. Apply 

,d(x) = 0, 

u7(x)  = - G (  9", (02), 

until (w~, (02, (03, 9, 0, 9') = (0, 0, 0, ~/2, 0, 0); then go to 
Maneuver 8. 
Maneuver 8. Apply 

u~(x) = - G ( 9 ,  (00,  

u~(x) = o, 

until ((01, (02, (03, 9,  0, 9") = (0, 0, 0, 0, 0, 0). 
This feedback control strategy achieves attitude stabi- 

lization of the spacecraft by executing a sequence of 
maneuvers. This strategy is discontinuous and nonclassical in 
nature. Justification that it stabilizes the complete spacecraft 
dynamics to an equilibrium attitude in finite t ime ,  under the 
ideal model assumptions, follows as a consequence of the 
construction procedure. A computer implementation of the 
feedback control strategy can be easily carried out. 

5. At t i tude  stabilization o f  an axially s ymmet r i c  spacecraft  
From the analysis made in Section 3, we find that the 

complete dynamics of a spacecraft controlled by two control 
torques supplied by gas jet actuators fail to be controllable or 
even accessible if the uncontrolled principal axis is an axis of 
symmetry of the spacecraft, i.e. if Ji =J2. In this section we 
concentrate on the case where the uncontrolled principal axis 
of the spacecraft is an axis of symmetry, i.e. J5 =J2. In 
particular we ask the question: what restricted control and 
stabilization properties of the spacecraft can be demonstrated 
in this ease? Our analysis begins by demonstrating that, 
under appropriate restrictions of interest, the spacecraft 
equations can be expressed in a reduced form. Controllabi- 
lity and stabilizability properties for this case follow from an 
analysis of the reduced equations. 

Consider the equations (1)-(6). I f  J~ =J2 and (03(0)#:0 , 
then (03 cannot be transferred to zero using any control 
function. If we assume that (03(0) = 0, then (03 ~ 0. Under 
the restriction (03(0) = 0, the reduced spacecraft dynamics for 
this case are described by 

('1) 1 = UI '  (10)  

(o2 = u2, (11) 

= (05 + (02 sin 9 tan 0, (12) 

= to 2 cos 9, (13) 

= to 2 sin 9 sec 0. (14) 

The following results can now be easily shown. The proofs of 
Theorem 5.1 and Theorem 5.2 arc similar to the proofs of 
Theorem 3.1 and Theorem 3.2 respectively in Krishnan et al. 
(1992a). Theorem 5.3 follows from the results in Brockett 
(1983), Sontag (1989), and Zabczyk (1989). 

Theorem 5.1. The reduced dynamics of an axially symmetric 
spacecraft controlled by two pairs of gas jet actuators as 
described by equations (10)-(14) are strongly accessible. 

Theorem 5.2. The reduced dynamics of an axially symmetric 
spacecraft controlled by two pairs of gas jet actuators as 
described by equations (10)-(14) are small time locally 
controllable at any equilibrium. 

Theorem 5.3. The reduced dynamics of an axially symmetric 
spacecraft controlled by two pairs of gas jet actuators as 
described by equations (10)-(14) cannot be asymptotically 
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stabilized to any equilibrium using a time-invariant 
continuous feedback control law, but can be asymptotically 
stabilized using a piecewise continuous feedback control law. 

The implications of the properties stated above are as 
follows. For all initial conditions that satisfy ¢o3(0 ) -~ 0, the 
axially symmetric spacecraft controlled by two pairs of gas jet 
actuators can be controlled to any equilibrium attitude. 
However, any time-invariant feedback control law that 
asymptotically stabilizes the spacecraft to any equilibrium 
attitude must necessarily be discontinuous. Thus arbitrary 
reorientation of the spacecraft can be achieved if oJ3(0 ) = 0; 
if oJ.~(0):~0, reorientation of the spacecraft to any 
equilibrium attitude cannot be achieved. Conveniently, it 
turns out that sequential execution of the maneuvers defined 
as Manuevers 3 through 8 in the previous section transfers 
any initial state of the reduced spacecraft dynamics (10)-(14) 
to the origin in finite time. The physical interpretation of the 
manuevers is the same as described previously. The reader is 
referred to Krishnan et al., (1992b) for additional details. An 
alternate discontinuous control strategy which achieves 
attitude stabilization of the spacecraft is presented in 
Krishnan et al. (1992a). 

6. Conclusion 
The attitude stabilization problem of a spacecraft using 

control torques supplied by gas jet actuators about only two 
of its principal axes has been considered. If the uncontrolled 
principal axis is not an axis of symmetry of the spacecraft, 
the complete spacecraft dynamics cannot be asymptotically 
stabilized to any equilibrium attitude using continuous 
feedback. A discontinuous feedback control strategy has 
been constructed which stabilizes the spacecraft to any 
equilibrium attitude in finite time. If the uncontrolled 
principal axis is an axis of symmetry of the spacecraft, the 
complete spacecraft dynamics cannot be stabilized. The 
reduced spacecraft dynamics cannot be asymptotically 
stabilized using continuous feedback, but again a discon- 
tinuous feedback control strategy has been proposed which 
stabilizes the spacecraft (in the reduced sense) to any 
equilibrium attitude in finite time. The results of the paper 
show that although standard nonlinear control techniques do 
not apply, it is possible to construct a stabilizing control law 
by performing a sequence of maneuvers. 

One of the advantages of the development in this paper is 
that feedback control strategies are constructed which 
guarantee attitude stabilization in a finite time. The total 
time required to complete the spacecraft reorientation is the 
sum of the times required to complete the sequence of 
maneuvers described. From the analysis provided, it should 
be clear that the time required to complete each maneuver 
depends on the single positive parameter k in the 
corresponding control law. There is a trade off between the 
required control levels, determined by the selection of k, and 
the resulting times to complete each of the maneuvers and 
hence the total time required to reorient the spacrcraft. In 
particular, the time to reorient the spacecraft from a given 
initial state to the origin can be expressed as a function of the 
value of the parameter k and of the initial state. 

We have presented a sequence of maneuvers which 
achieves the desired spacecraft attitude stabilization. There 

are many other maneuver sequences, and corresponding 
feedback control strategies, which will also achieve the 
desired attitude stabilization of the spacecraft. But each such 
strategy is necessarily discontinuous. We have demonstrated 
the closed-loop properties for the special feedback control 
strategies presented. Our analysis was based on a number of 
assumptions which are required to justify the mathematical 
models studied. Further robustness analysis is required to 
determine effects of model uncertainties and external 
disturbances. Unfortunately, such robustness analysis is quite 
difficult since the closed-loop vector fields are necessarily 
discontinuous. Perhaps, feedback control strategies which 
stabilize the spacecraft attitude, different from ones 
presented in this paper, would provide improved closed-loop 
robustness. 
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