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Statistical Analysis of An Eigendecomposition 
Based Method for 2-D Frequency Estimation*t 

HUA YANG:I: and YINGBO HUA:I: 

The large-sample covariances of  2-D frequency estimates using the matrix 
enhancement and matrix pencil method have been derived and analyzed. 

Key Words--Signal processing; frequency estimation; matrix pencil; statistical analysis; 
eigendecomposition. 

Abstract--An eigendecomposition based method for two- 
dimensional frequency estimation is analyzed in this paper. 
This method, to be referred to as matrix pencil (MP) 
method, computes a smoothed data covariance matrix, then 
its eigendecomposition, and then the two-dimensional 
frequencies via a MP approach. The MP method is now 
known to be more efficient in computation than many other 
methods and able to provide a near optimum performance 
for relatively large signal-to-noise ratio (SNR). The aim of 
this paper is to provide a further analysis of the MP method 
assuming a moderate SNR. To make the problem tractable, 
a large two-dimensional data set is considered. In this paper, 
a number of fundamental relations inherent in the MP 
method are revealed which lead to a general expression of 
the large-sample covariances of the estimated two- 
dimensional frequencies. The large-sample covariances are 
reduced to a very simple form for the single two-dimensional 
frequency case. The theoretical covariances are verified by 
the simulation results. 

1. INTRODUCTION 

THE STATISTtCAL ANALYSIS of multi-dimensional 
(M-D) frequency estimation techniques is an 
open research field. In the past two decades, a 
large number of algorithms have been developed 
for frequency estimation (or the related prob- 
lem: array processing), and an increasing 
attention has been received for statistically 
analyzing these algorithms (see Stoica and 
S6derstr6m (1991) and a list of references 
thereof). However, relatively little analytical 
work has been reported for M-D frequency 
estimation methods. This is partially due to the 
fact that most one-dimensional methods can be 
effectively used for the M-D problem and an 
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understanding of the one-dimensional methods 
can provide many insights we need to know. The 
second reason for a lack of analytical work for 
the M-D problem is the level of complexity 
involved in the M-D analysis which certainly has 
discouraged many researchers. On the other 
hand, however, the M-D analysis is very 
important in that (1) the M-D analysis can 
provide an insight that could not be obtained 
through one-dimensional analysis, and (2) the 
M-D analysis can allow us to see certain aspects 
of the M-D methods more easily than time- 
consuming computer simulations. Note that most 
M-D frequency estimation methods are 
searching-type which can be very expensive in 
computation. 

In this paper, we present a statistical analysis 
of an M-D frequency estimation method which is 
to be referred to as the matrix pencil (MP) 
method. We will consider the two-dimensional 
case instead of the general M-D case. The MP 
method recently shown in Hua (1992) is superior 
to many existing two-dimensional methods in 
computation, and can achieve a near optimum 
performance for large SNR. A statistical analysis 
of the MP method for large SNR is available in 
Hua et al. (1993). This paper focuses on the case 
of relatively moderate SNR. To make the 
problem tractable, a large data set will be 
assumed. This work incorporates the skill shown 
in Stoica and S6derstr6m (1991). But the novelty 
here includes: (a) considering the two- 
dimensional case instead of the one-dimensional, 
and (b) assuming unknown deterministic phases 
instead of the uniform random phases (the latter 
was assumed in Stoica and S6derstr6m (1991) to 
make their problem simpler). As noted in Stoica 
and S6derstr6m (1991), the frequency estimation 
problem where a single data set is available is 
unique from the array problem (e.g. in Ottersten 
et al., 1991) where a large number of data sets 
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are assumed. In fact, the former problem is 
more involved than the latter due to the need (in 
the former) to deal with correlated noise. Also 
unique for the two-dimensional frequency 
estimation is the pairing procedure required by 
the MP method. But due to the space limit, our 
work on the pairing analysis will be on a 
separate paper. 

The paper is organized as follows. In Section 
2, the data model of the two-dimensional 
frequency estimation problem is formulated. In 
Section 3, the MP method is summarized. 
Section 4 contains the original contributions of 
this paper, where a number of fundamental 
relations inherent in the MP method are shown 
in Sections 4.1-4.4,  a general expression for the 
covariances of the estimated two-dimensional 
frequencies are provided in Section 4.5, an 
analysis of this general expression is carried out 
in Section 4.6, and then a simulation is 
illustrated to verify our theory in Section 4.7. In 
particular, a very simple form of the estimation 
covariances is given in Section 4.6 which clearly 
reveals how the accuracy of the MP method is 
affected by the data sizes, SNR, and the window 
sizes (explained in Section 3). Our expressions 
for the estimation covariances are valid for a 
median range of SNR. 

2. DATA MODEL 

We consider a two-dimensional data set 
z ( t , t ' )  which consists of a sum of two- 
dimensional complex exponentials and noise: 

z(t, t ' ) =  s(t, t') + e(t, t'), 

t - - 0 ,  1 . . . . .  M -  1, (1) 

t ' = 0 ,  1 . . . . .  N - l ,  
where 

! 

s(t, t') _~ ~,  ri exp {](dpi + to,it + to2it')}. 
i=1 

Note j&  X/-2-i , 1 is the number of the two- 
dimensional complex exponentials, { r ;}  are 
(positive) amplitudes, {$i} are phases, and 
{ ( t o l i ,  (O2i)} are the two-dimensional fre- 
quencies. All the parameters are assumed to be 
deterministic. Except I, they are also unknown. 
Let y; ~ d .... and zi A= eJ,O~ which are called poles. 
{(Yi, zi)} are assumed to be distinct pairs of 
poles. 

It should be noted here that in the 
one-dimensional analysis shown in Stoica and 
S6derstrom (1991), {~} are assumed to be 
independent uniform random variables which 
has simplified that analysis. But it appears to be 
a more natural model for {~}  to be unknown 
deterministic. 

The two-dimensional noise component  e(t, t') 
is complex, white and Gaussian, and satisfies 

E[e(t, t ')] = 0, 

E[e(t, t')e~(s, s')] = o2 6,.~6,. ~., 

E[e(t, t ')e(s, s')] = 0 (for all t, t ' ,  s and s') ,  

where the superscript c denotes the complex 
conjugation, and 6,.., is the Dirac delta function. 

While only the case of single two-dimensional 
data set will be considered in this paper, a finite 
number of independent two-dimensional data 
sets could be treated similarly, But it should be 
noted that our analysis will assume a large data 
set which is opposed to the assumption of a large 
number of finite data sets. The latter assumption 
was treated by Ottersten et al. (1991). 

3. TWO-DIMENSIONAL MATRIX PENCIL METHOD 

The MP method was introduced in Hua (1992) 
for estimating the two-dimensional frequencies 
from the two-dimensional data z(t,  t'), which 
can be summarized as follows just for the 
purpose of our analysis. 

Step 1. Choose two integers (window sizes) K 
and L such that 

M - I + I > _ _ K > _ I + I ,  

N - I + I > _ L > _ I + I .  

Step 2. Compute the data covariance matrix 

/ ~ & l z ~ z ~ -  w i t h c & ( M  - K + I )( N - L + I ), 
c 

where the superscript H denotes the conjugate 
transpose and 

Z ,  Z, " ' "  ZM-K 

(K x (M - K + 1) Hankel block matrix) 

with 

Z, & 

z( t ,O),  z(t ,  1) . - -  z(t ,  N -  L) \ 
z(t,  . . . . . . . . . . . .  1), z(t,  2) . ' '  z ( t , N - L + I )  ) 

\ z ( t , L - 1 ) ,  z ( t , L )  . . .  z ( t , N - 1 )  / 

(L x (N - L + 1) Hankel matrix). 

Step 3. Compute the eigendecomposition of/~¢, 

i.e. 1~ = ~L ~igigi H" Estimate 1 the number of the 
i=1 
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two-dimensional frequencies from the eigen- 
values ~ - > ~ 2 ~ . . .  ->~KL by following a detec- 
tion algorithm such as the one in Wax and 
Kailath (1985). But 1 will be assumed to be 
known for our analysis. Then define 

U,. & (gl . . . . .  g/) (matrix of principal 
eigenvectors), 
Ut & U~ with the last L rows deleted, 
02 & 0.. with the first L rows deleted, 
p___A (et, el+L . . . . .  el+oC-t)L, • • •, eL, et.+C, • • •, 
et_+(K_t)L) v (shuffling matrix), where e~ is the 
ith column of KL x KL  identity matrix and 
the superscript T denotes the transpose, 
U.~ & P/)~ (shuffled version of-U~) 
01 &/3,! with the last K rows deleted, and 
"_' ^ 0 '  U, = ., with the first K rows deleted. 

Step 4. Find {9~} by computing the generalized 
eigenvalues (GEs) of 0 2 - ) . 0 1  (matrix pencil), 

U2 - 3.01 (matrix pencil). and {2i} the GEs of ^' 

Step 5. Match {.9i} with {2~} into 1 pairs by 
minimizing the null spectrum function: 

D(p ,  q, On) & (al l(p)  ® bH(q) )O,O H 

X (a(p)  ~ b(q)) ,  

where 0,, & (g~+, . . . . .  gKL), a(p )  A= (1, p . . . . .  
pK-J)T, b(q)  A= (1, q . . . . .  qg-t)T,  and p and q 
are two complex variables associated with y~ and 
zi, respectively. @ denotes the Kronecker  
product. 

Step 6. Compute 6Jti & Im [iog.9i] and (~)2i ^ 
Im [log zi] which are the MP estimates of toli and 
t o 2 i .  

4 .  S T A T I S T I C A L  A N A L Y S I S  O F  M A T R I X  P E N C I L  

M E T H O D  

4.1. Preparation 
In this section, we first rewrite the data model 

into a matrix form to facilitate our analysis. A 
number of essential covariance matrices are then 
introduced. 

The data model (1) can be rewritten as 

/ 

z(t  + u, t' + v)  = ~ xi(t, t')y~/z~ ' 
i ~ l  

+ e ( t + u , t '  + v ) ,  (2) 

where xi(t, t') & ri exp (J( CPi + to,it + tozit') }. 
We define a sequence of data submatrices 

{Z(t ,  t')} by moving a window of the size K x L 

in the t - t '  plane. Each submatrix is given by 

Z(t, t') & 

z(t, t') 

z(t+..1.,t ')  

z ( t  + K - 1, t ' )  

z(t, t' + 1) 

z( t  + 1, t' + 1) 

z(t  + ' K -  l, t' + l) 

° ° ° 

× 

° ° ° 

• "" z(t, t ' +  L -  1) 

z ( t + l , t ' + L - X )  ) .  

• "" z ( t + K - l , t  + L - l ) /  

In the same way, we define a sequence of noise 
submatrices {e(t, t ')} from e(t, t '). 

Let V(v ,  m)  be a Vandermond matrix 

O I "O 2 

* * °  

m - 1 
I U 2  

• . .  1 / 
• - -  U I 

t~,l -- I 
• - -  U I / 

where m is an integer and v = (v~, vz . . . . .  or) v 
is a vector. 

It can be shown that Z(t,  t') can be 
decomposed as 

Z(t,  t') = V(y ,  K) diag (xl(t, t') . . . . .  xt(t, t ' ) )V T 

x (z, L) + e(t, t'), (3) 

for t = 0 , 1  . . . . .  M - K ,  t ' = 0 , 1  . . . . .  N - L ,  
where Y & (Y,, Y2 . . . . .  Y0 T and z & 
( z , ,  z ,  . . . . .  z , )  T. 

The following notations and names will be 
used: 
parameter matrix: 

A k (a(y,)  ~ b(z,) ,  a(y2) 

~)b(z2) . . . . .  a(yt)  ® b(zt)),  (4) 

source covariance matrix (spatial varying): (x,,,, / 
B.... £ 

\x,( t ,  r )  / 

x ( x ~ ( t -  n, t' - n ') . . . . .  x~(t - n, t' - n')) ,  

averaged source covariance matrix: 

1 M - - K  N - - L  

c ,Z X " "  
• O n , n ' y  

= ) t ' = O  

data covariance matrix (spatial varying): 

t , t '  R.. . ,  A= E[Vec(Z( t ,  t ' ) )VecH(Z(t  -- n, t' -- n'))], 

averaged data covariance matrix: 

1 M - K  N - - L  

R,,.°.^ X 2 '" = - -  R n . n .  , 
C t = o  t ' = ( }  
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averaged sample data covariance matrix: 

1~,, ,,, ~ 1M~ K N~L 
- V e c ( Z ( t ,  t ' ) ) V e c  n 
C t= l}  t ' = O  

X ( Z ( t  - n,  t '  - n ' ) ) ,  (5) 

noise covariance matrix: 

Q,,. , A= E [ V e c ( e ( t ,  t ' ) ) V e c H ( e ( t  -- n, t '  -- n ' ) ) ] ,  

(6) 

where c = ( M - K + I ) ( N - L + I )  as defined 
before and V e c ( . )  is the stretch operator  which 
cascades the rows of the matrix under operation 
into one column vector. From the above 
definitions, the averaged data covariance is the 
expectation of the averaged sample data 
covariance, i . e .R . . . ,  = E[/~,,.,,,]. 

For zero lags (n = 0  and n ' = 0 ) ,  the three 
matrices B~,~, R., .  and/~. . ,  will be referred to as 
B, R and /~. By the definition of Z¢ and /~¢ in 
Step 2 of the MP method, it can be verified that 
/~ =/~¢. So R = E[/~] = E[/~¢I. The structure of 
the data covariance R ..... ,, the noise covariance 
Q . , . ,  and the source covariance B..,,, are 
essential in our analysis and discussed next. 

4.2. S t ruc ture  o f  data, source  and  no ise  

covar iances  
The following result gives the structure of 

R',;~,, and R,,..,. 

Proof .  See Appendix B. 

Note each source covariance B..,,, is not 
diagonal for finite data sizes. The asymptotic 
structure of B . . . ,  is given by the following 
Lemma 2 which tells us that the off-diagonal 
elements in B..., are approximately equal to zero 
when the data sizes M and N are large. 

We need the notation O(.).  Let O(1) denote a 
bounded quantity IO(1)1~C,,,  where the con- 
stant Co does not depend on the data sizes M 
and N. Also define 

(1 )  1 ( 1 ) 1 
O ~ = N O ( l )  and O ~ =~--~O(1) .  

Using the assumption that {(yk, zk)} are 
distinct two-dimensional poles and the fact that 

M-~ l _ z  M 
Z z m _ _ _ _  , 

m = 0  1 - -  Z 

when z 4: 1, it is easy to prove the following 
lemma. 

L e m m a  2. B,,.., is an 1 x 1 matrix. When the 
data sizes, M and N,  are large, 

• = . . .  r l y t z t )  ( r t y t z t  , B,,,,. diag 2 , ,,' 2 . . . .  ' 

T h e o r e m  1. 

R',;~,, = A B',;~,.A H + Q,., ,. (7) 

R,,.,,, = AB, , . , , .AII  + Q,,.,,.. (8) 

Proof .  See Appendix A. 

The noise covariances {Q,.,,} are a sequence 
of K L  x K L  matrices with the properties (a) 
Q , . , , , = O  for I n l > - K  or I n ' l > - L  and (b) 

H Q,,.,,, = Q .... -,,,. 

Define Jcr ~._~l Qcr. Then J / r  is a sparse 
o -  

matrix and its elements are zero or one. The 
following lemma shows its exact structure. 

L e m m a  1. For all l and 1', we have the equality 

Ju '  = J~S" ® J~>, (9) 

where {J/m, l =0 ,  +1, +2 . . . .  } is a sequence of 
K x K matrices. For Ill -> K, j~K) = 0, and for 
- K < I <  K, the (u, v)-element of 

1, if o - u = l ,  

j~h-I= 0, otherwise. 

The matrices {j}LI} are defined similarly. 

4.3. Resu l t s  easy  to get  
From (8) in Theorem 1 and (9) in Lemma 1, 

we know that for n = 0 and n '  = 0  

R = A B A  H + 021KL, (11) 

where I x t  denotes the K L  x K L  identity matrix. 
The properties of the eigendecomposition of the 
data covariance matrix R are known in Stoica 
and S6derstr6m (1991). But for easy reference in 
later analysis, they are reproduced below. 

Define U~& (st . . . . .  st), consisting of the I 
(orthonormal) principal eigenvectors of R; 
U. A= (sl+~ . . . . .  SKL), consisting of the rest 
(orthonormal) eigenvectors of R; A 
diag(t~ . . . . .  i t ) ,  consisting of the I largest 
eigenvalues of R; and ,~ & A - a 2 1 t .  Note that 
given A and B which are of the rank I, the 
decomposition (11) implies t k > o  2 for k =  
1 . . . . .  I, and t t+l . . . . .  tin_ = a z. The condi- 
tions for A to be of the rank I are discussed in 
Hua (1992) and should be satisfied by Step  1 of 
the MP method. The full rankness of B is easily 
understood. 

Based on the equation UsAU~U = A B A  H which 
follows from (11), we can show that 

U~ = A C ,  (12) 
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where C is an 1 x I nonsingular matrix and given 
by C = BAHUsA -I, and its inverse is 

C - ' =  U~A. (13) 

Also from UsAU~ = ABA H, we have 

Lemma 3. Let X & UsA-IU~nA. Then 

x = A ( A " A ) - ' B - ' ,  (14) 

It follows from (10) and (14) that 

1 
x~, ---~ u ak, k = 1 . . . . .  1, 

r k  

as (15) 
M---~ oo and N---~ o0. 

where Xk and ak are the kth column of the matrix 
X and the kth column of the matrix A(AHA) -t, 
respectively. 

The following equality will be used to simplify 
some expressions in later sections. 

d(u,, u9 =MI Z 
I k ' l < L  

(18) 

Proof. See Appendix C. 
The two expressions above are the two- 

dimensional version of the one-dimensional 
expressions (3.22) and (3.23) in Stoica and 
S6derstrOm (1991). It is important to note that 
(17) and (18) hold for both the random 
(uniformly distributed) phase model and the 
deterministic phase model. The derivation of 
these expressions for the deterministic phase 
model is more involved because the data 
covariance matrix "" R,,, .  depends on t and t' (i.e. 
spatial or time dependent) and the sequence of 
the noise submatrices {e(t, t')} are correlated. 
The derivation for the two-dimensional random 
phase model is much simpler because the data 
covariance matrix "" R,. , .  is independent of t and 
t I" 

Lemma 4. For u e Range(U,),  we have 

~, J, rue -i'0'''-'`''~ = O, k = 1 . . . . .  1. 
III<K II ' I<L 

(16) 

Proof. Following (12), Range (A) -- Range (Us). 
Then 
AHU, = 0 and (a(tolk) ® b(to2k))nu = 0. So 

0 = (a(y,) ® b(zk))(a(y,) ® b(z,))"u 

= (a(y,)an(yk) ® b(zk)b"(zk))u 

Y. 
- - I I I < K  / ~I I ' I<L , , , '  

= Y, 
III<K II ' I<L 

= ~ ~ Jt.vue -jto''*-jr'°u. Q.E.D.  
III<K II ' I<L 

4.4. Results hard to get 
To calculate the large sample covariance of 

the estimated frequencies, we need the following 
lemma to compute G(ul, u2) A E[vlvH2], and 
t~(ut, u2) & E[vW~,  where ul and u2 belong to 

A H ^ Range (U,) and v, = (ui (st - s t )  . . . . .  uiH(~, 
si)) T, i = 1, 2. 

Lemma 5. For large M and N, we have 

G(u , u2) 

= M L I ~ K  '" t,,< ~] H - - I  T c c---I Ut Qk.k'u2A U" Rk.~.UsA , 
Ik ' l<L 

(17) 

4.5. Large sample covariance of  the MP 
estimator 

Define 

At - A  with the last L rows deleted, 

A2 =A A with the first L rows deleted, 

A' & PA(shuffled version of A), 

U] & PUs(shuffled version of U,), 

A[ & A' with the last K rows deleted, and 

A~ & A'  with the first K rows deleted 

In the same way that C]I, ~]2, C]~ and 06 are 
defined from 0s and 0~ in Section 3, we define 
Ut,/-/2, U~ and U~ from Us and Us'. Also define 

(o 16K-, ) -e'°"(I(K-,L l o), 
F~ & (0 I I(L-,)K) - ei'°~(l(t.-t,r 10), 
r/~ & the kth row of the matrix 

x (A~At)-'A~Fk, 

and 

T/~, H & the kth row of the matrix 
[ A  I H A  l , t - - l  A tH r~l lJ 

X [ t ' t  I x- t l ,  I "11 a k J "  

Then we have: 

Theorem 2. The two-dimensional MP estimators 
{(&Jk, &2k), k = 1 . . . . .  1} of the frequencies 
{(t01k, ta2k), k =  1 . . . . .  I} have the large 
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sample covariance matrix: 

cov (,~,,, ~ , , )  cov (~,,i, ~ , ) ]  
cov (~2i, ~ . , )  cov (~2~, ~2, ) /  

- ~ Re ZCrliH ] _  2MNrir,  III<K II'I<L 

) 
J,.,Jkn,aT r/;,aT]\ 0 J,.r~ 

(yka~k z,Oack)_(Y'~iH 0 r "~{Ji.r 0 ) 
x \ 0 Z~r/iH}\ 0 J~.r/ 

[aka T akaT'~(Ji.r O )(yckr/~ 0 ) ]  
X \aka r aka~]\ 0 Ji.r \ 0 z~r/'ck " 

(19) 

Proof. We first derive the following expression: 

COY ( (bU,  (-~)lk) =A E [ ( t ~ u  _ to l i ) (¢.~l  , - t o i k ) ]  

0 4 

=2MNr2r 2 Z E III<K I/ ' I<L 

['*.. Il i ,." l , l '  l l kW k .." l . l ' u i  

- -  ~ a - - J ( o J I k + t O l , ) n T l  ~ t ' ~ H l  ~ 1 
M i a l .  l ' l l k l l i  J l , l ' U k J .  

(20) 

From the definition of Uj, U2, A~ and Az, we 
have the following relations: Uj =A~C, Uz = 
A2C and Az = At Yd, where Yd = 
diag (Yl . . . . .  Y/). Given rank (U~) = 1 as guar- 
anteed by the Step 1 of the MP method, the GEs 
of Uz-,1U~ are also the eigenvalues of the 
matrix ~ &  (U~U~)-'U~U2. By the above 
relations, Uz=A2C=A~YdC=U~C-~YdC,  and 
so @ = C-tYdC, i.e. {y~} are eigenvalues of ~ ,  
and y,~ A r = e ,C  (the kth row of C) and flk & C-~e, 
(the kth column of C-t) ,  k = 1 . . . . .  1, are the 
right and left eigenvectors of ~ ,  respectively. 

Note the GEs {.f~} of 02-~.U~ are the 
eigenvalues of the matrix ~ (Ut~0~)-~0~Uz. 
Similarly to the proof of Theorem 2 in Stoica 
and S6derstr6m (1991), we can get the following 
expressions: 

tb,k - tO.k ~ Im (e-J""r/p(O, - U,.)fl,) 

= Im (e-i~"vV, fl,) 

= Im (e-~""flTv,). (21) 

COV(tb.i, 6~.,) --- ½ Re [e jr'°'' . . . .  )flTo(r/i. r/k)tick 

- e-i("'*+"")fl[t~(r/i, r/k)fl,], 

(22) 

where vi & (r//n(g~ - s~) . . . . .  r/H(#~ -- S,)) T, i = 
1 . . . . .  1.  

Recalling (13) and the definition of x, 
following (15), we know that U~.A-~flk= 
U,.A-~C-~e,=U~A-'U.~Aek=x, ,  i.e. U,.A-' f l ,= 

x,. Applying this relation and Lemma 5, for 
large M and N, we have 

MN#[G(r/ i ,  r/D#~ 

= ~, ~ r/~QI.I.r/k#[A-'U[R~),u~A-'#', 
III<K II ' I<L 

E H T c c = r/i Qt.rr/kxi Ri.rXk 
1,1' 

H H H = rh Qi.rr/kxk RI.rXi 
I,l '  

= ~" r/HQt.rr/,x~AB~rAHx i 
1.1' 

~-E H H H r/i QI.rrlkx, Qi.rXi, (23) 
1.1' 

where (8) of Theorem 1 is applied to get the last 
equality. 

By Lemma 3, 

x~A B~rA HXi = eT x HA B ~t'A HXei 

= e '[B-tB~t.B-le i. 

Using this and Lemma 2, for large M and N the 
first term in (23) is approximately equal to 

r/i Qt.rr/,Y, zk ,i 
I/'I<L 

- -  r l i  a l . l ' l l k ~ . ,  , 
r 2 E E _F I .  _ , ~ - j h o , t , - j l ' , o , ~ ,  

I I I<K I/'I<L 

which is zero by Lemma 4, where 6,i is the Dirac 
delta function. 

By (15), the second term in (23) is approximately 
0 4 

- -  r/i Jt.rrlkakJt.rai • So (23) equal to z 2 Y~ H H T 
? ' i r k  I I l < K , I I ' l < L  

leads to 

#TG(n,, n,)#~ 
G 4 

-~ ~, ~ ~ n~"J,.,.n,a~.Y[.,.a, (24) 
M N r i r ~ .  ItI<K I r l<L  

No te  when a is too  smal l  o r  S N R  is too  h igh 
such that it is comparable to the data sizes M 
and N, the above approximation is inaccurate 
since the first term in (23) is not negligible as 
compared with the second term in (23). In this 
case, the contribution from the off-diagonal 
elements in B/.r should be included in the 
approximation (24). But in this paper we are 
only interested in the median range of SNR. 

In the same way deriving (24), we can get 

0 4 

: Z Z " ~ , (25) , r/i Jt.rakaiJt.cr/,. 
MNr?r', m<K Irl<L 
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Therefore, using (24) and (25) in (22) yields 
(20). We can repeat the above procedures and 
get the large sample covariance 

c o v  - o ) 2 , ) ( ( 0 _ , ,  - , 0 2 , ) 1  

0 .4 
- E 

2MNr,r ,  ut<r Irl<L 

x Re[ff ('°'~-'°')~'H" ~,~U,V t l i  Jl, l ' t l k t 4 k . l  l.l't~i 

e - j ( t u u + t u ~ ) ~ T l  ~ , c ~ , H !  • 
- -  Mi. t l ,  l , t l  k t l i  J l , r a k J .  

(26) 

One step used to yield the above expression is 

(02, - o9_,, ~ Im (e-i'°:krl'kH(l].~ -- U~.)fl,) 

= Im (e-J'~-'*v~,Vfl,) 

= Im (e-i"':*flkVv~.). (27) 

Combining (21) and (27). we can get the large 
sample covariances cov ((01, (0,.,) and cov ((oz, 
(01,). These results combined with (20) and (26) 
are summarized in (19). [] 

4.6. Analysis o f  the estimation covariance 
In the case of single two-dimensional sinusoid, 

the right-hand side of (19) can be simplified, 
through a very tedious calculation, into the 
following: 

1 2(2L 2 + 1) 
cov ((011, (011) = M N S N R 2 3 ( K  _ 1)KZL 3 , 

1 2(2K 2 + 1) 
cov ((021, (021) - MNSNR~ 3(L - 1)L2K 3' 

c0v((011, (021)=0, where SNRI ^ r~ 
o -  

These expressions have been verified through 
numerical computation of (19). 

The first and second expressions are consistent 
with the expression (6.3) in Stoica and 
S6derstr6m (1991), when L = 1 is chosen in the 
first expression and K = 1 in the second. The 
first expression implies that the first frequency 
component is more affected by the window (1) 
size K - ~ 5 3  than the other window size 

L ( 1 ) .  The second expression implies a similar 

property for the second frequency component. 
Note that in the derivation of the estimation 
covariances, the window sizes K and L are 
assumed to be fixed as the data sizes M and N 
are allowed to become larger, i.e. much larger 
than K and L. The above expressions imply the 
estimation variances of to,, and o)2, are always 
decreasing as K and L increase (provided K and 
L are much smaller than M and N of course). 
The third expression tells us that the estimates of 

the two components of the single two- 
dimensional frequency are uncorrelated. Also 
note that all covariances here are independent of 
the value of the single two-dimensional 
frequency. 

In general multiple-frequency izase, Theorem 2 
clearly shows a simple relationship between the 
estimation covariances and the important para- 
meters: the data sizes M and N and the 

2 

signal-to-noise ratios SNR, ~ ~ ,  k = 1 . . . . .  1. 

For the following discussion we define 

var ,, ((0,) ~ 2MNSNRZ~ E[( (0, - o ) / i ) 2 ] ,  

1= 1, 2, i = 1  . . . . .  1, 

which are normalized estimation covariances, 
independent of the data sizes and SNR but 
dependent upon the data covariance R, the 
number of the two-dimensional frequencies and 
the window sizes K and L. The following 
numerical example shows how the normalized 
covariances are affected by the window sizes K 
and L. 

Assume that the frequency matrix is 

o)21 o)22 o) ,3 /=2~0.24_ 0.24 0.36]' 

which specifies three two-dimensional frequency 
pairs. Figures 1-2 illustrate varo ( ~ , ) ,  i = 1, 2, vs 
K and L. The plots for other frequencies are 
similar and omitted. As shown in the figures, the 
estimation covariances are reduced by two 
orders of magnitude by increasing the window 
sizes from (3, 3) to (7, 7). (The corresponding 
computations increase is also dramatic (Hua, 
1992).) Being consistent with the single fre- 
quency case, these figures also suggest that the 
variance of a frequency estimate in each 
dimension is more affected by the window size in 
that dimension than the one in the other. 

4.7. Simulation and discussion 
For simulation, we assume that there are two 

two-dimensional frequency pairs 

( w , , [ o ) , 2 )  /0.26 0.24) 
o)2 , /=  2sr~0.24 I 0.26/ \ 0 ) 2 1  _ 

and the amplitudes {ri} are equal to one and the 
phases {¢i} are zero. The choice of the 
frequency pairs as shown in (28) would lead to 
the same conclusion to be drawn. We choose the 
data sizes M = N = 200 which are large com- 
pared to the window sizes K = L = 7 .  The 
sample variances of (0~1 and ~b 2, obtained from 
80 independent runs (with Gaussian white noise) 
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0.1 

0.01 

3 ~ 5  L 

7 3 

FIG. 1. Normalized variance var.  (&~t) vs window sizes. 

are shown in Figs 3 and 4 against SNR in dB 
( S N R = S N R I = S N R 2 ) .  Also shown in Figs 3 
and 4 are the theoretical results computed from 
(19) and the Cramer-Rao Bound (CRB). The 
plots for the second two-dimensional frequency 
pair are similar to Figs 3 and 4 and omitted. 

It can be seen from these figures that the 
theory is consistent with the simulation for a 
median range of SNR, which is [ -12,  10] dB in 
this example. The reason why the theory is not 
accurate beyond a median range of SNR can be 
explained as follows. Our analysis is based on a 
first order approximation of the perturbations in 
the eigendecomposition of the noisy data 
covarance matrix/~e- When SNR is too low, the 
first order approximation (namely (35)) breaks 
down and hence the result becomes inaccurate. 
On the other hand, when SNR is too high so that 

it is comparable to the data sizes M and N, then 
the first term in (23) is not negligible and so the 
approximation (24) is inaccurate. The high SNR 
phenomenon is unique for the single data set 
problem (although it is not pointed out in Stoica 
and S6derstr6m (1991)) and is still under 
investigation. 

The relationship between the estimation vari- 
ance and the CRB is also worth mentioning. As 
suggested by the figures, the MP method is not 
statistically efficient for large data sizes particu- 
larly in the median range of SNR while the MP 
method was shown in Hua (1992) and Hua et al. 
(1993) to be near efficient for moderate data 
sizes and high SNR. In fact, we know that the 
CRB for the data model considered in this paper 

1 
is proportional to S - ~  (Hua, 1992) while (19) 

y a r o (  

0 . I  

0 . 0 1  

&2a) 

7 

!, 

. . . . . . . . . . .  ]>:"< . . . . . . . . . . . .  .-" ...... ~ L 

7 3 

FIG. 2. Normalized variance vat .  ( 6 h 0  vs window sizes. 



Statistical analysis of 2-D frequency estimation 165 

1 

0.I 

0.01 

0.001 

0.0001 

le-05 

le-06 

le-07 

le-08 

le-09 

le-10 

le-ll 

le-12 I I I I I 

-15-12.5-10 -7.5 -5 -2.5 0 

I l I I I I I I I I I I I I I I 

simulation -- 
theory ..... 

CRB . . . . .  

..................... 

I I I I I I I I I I I 

2.5 5 7.5 I0 12.5 15 17.5 20 22.5 25 27.5 30 
SNR dB 

F I G .  3.  Estimation variance and CRB for m,,. 

implies that the variance of the MP method is 
1 

proportional to SNR------- i . So given the best case 

that the MP method approaches the CRB at high 
SNR, it must deviate from the CRB in the 
median range of SNR. 

At this point, one may ask whether other 

methods can achieve the CRB in the median 
range of SNR for large data sizes. Based on the 
relationship between the maximum likelihood 
(ML) method and the CRB, one expects the ML 
should be efficient in the median range of SNR 
for large data sizes. But the exact median range 
of SNR vs data sizes remains to be found. An 

1 
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asymptotical version of the ML method (for 
large data sizes) is the periodogram. The analysis 
of the periodogram along the lines shown in this 
paper needs to be carried out. Another method 
that should come into one's mind in this context 
is (two-dimensional) MUSIC. In fact, the 
analysis of the MUSIC can be similarly carried 
out as for the MP method. Due to the amount of 
work involved, the properties of the MUSIC are 
separately shown in Yang and Hua (1993). 

Ottersten, B., M. Viberg and T. Kailath (1991). Perfor- 
mance analysis of the total least squares ESPRIT 
algorithm. I E E E  Trans. on Signal Processing,  39, 
1122-1135. 

Stoica, P. and T. S6derstr6m (19911. Statistical analysis of 
MUSIC and subspace rotation estimates of sinusoidal 
frequencies. I E E E  Trans. Signal  Processing,  39, 1836- 
1847. 

Wax. M. and T. Kailath (1985). Detection of signals by 
information theoretic criteria. I E E E  Trans. on Acoust ics ,  
Speech and Signal  Processing,  33, 387-392. 

Yang. H. and Y. Hua (1993). Asymptotic properties of 2-D 
MUSIC estimator with comparison to MP estimator, to be 
submitted. 

5. CONCLUSION 

We have derived the covariances of the 
two-dimensional frequency estimates obtained 
by the MP method, assuming large data sizes, 
single data set and deterministic phases. The 
derivation has been very involved due to the 
nature of this problem. The problem with 
deterministic phases is more difficult than the 
one with random phases used in Stoica and 
S6derstr6m (19911. A single and large data set is 
also more challenging than a large number of 
data sets as dealt with in Ottersten et al. (1991). 
The hard found general expression of the 
estimation covariance has also been analyzed. In 
particular, for the case of a single two- 
dimensional frequency, the general expression is 
reduced to a very simple form which reveals 
clearly how the accuracy of the MP method is 
affected by the data sizes, SNR and the window 
sizes. While the general expression remains to be 
studied analytically for multiple two-dimensional 
frequencies, it has been numerically compared to 
the simulation. The numerical results have 
confirmed the accuracy of the theoretical 
expression. It is important to stress that the 
analysis of two-dimensional frequency estimation 
methods is still an open field where simulation 
has been widely used in place of analysis. As has 
been demonstrated in this paper, analysis can 
provide important insights that could not be 
found through simulation. 
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APPENDIX A 

Proof of Theorem 1. 
Applying the stretch operator Ve t ( . )  to the both sides of 

(3). we get 

Vec(Z(t, t ')) = (V(y,  K) ® V(z, L)) 

x Vec(diag (xl( t ,  t ' )  . . . . .  x t ( t ,  t ' ) ) )  

+ Vec(e( t ,  t ')).  (A.I )  

Let x a ( t ,  t ' )  A_ diag (xl( t ,  t ' )  . . . . .  xt( t ,  t ' ) )  and 

P',;~," A_ Vec (Xa( t ,  t , ) )Vec '=(xa ( t  _ n, t' - n ' ) ) .  

Since 

Vec(Xd( t ,  t ' ) )  
= ( x l ( t , t ' )  0 . . .  

t 
1st 

' x tx '  (" 0 . . 

0 (1 . .  

0 0 - .  

x,x]" 0 

0 0 . • 

x~x]' O • 

0 x , ( t ,  t ' )  
t 

( / +  2)th 

0 x , x "  0 

0 0 0 

0 0 0 

0 x,x;'" 0 

0 0 0 

0 x l x "  0 

0 0 xAt ,  t ' ) ) ' .  

r- h 
• . 0 x l x ; " l  

• . 0 (1 

• . 0 0 

0 x_..r;' 
0 0 

0 x l x ; ' l  

(A.21 

where x, = x,(t,  t ' )  and x; = x,'(t - n, t' - n ' ) .  
Because E[e(t ,  t ')] =0 ,  from (A.I )  we get 

R'/,I~,. = ( V ( y ,  K)  ~ V ( z ,  L))P',;~;,. 

× ( V ( y , K ) ~ V ( z , L ) ) I I + Q , , . , , . .  (A.3) 

Let 

Ep_~diag( 1 0 . - .  0 I 0 . . .  0 I ). 
t t _t 

1st ( / +  2)th /-'th 

A,, A=(V(y, K ) ®  V(z, L))E r. 

Since 

Vec(diag (xl( t ,  t ' )  . . . . .  xt( t ,  t ' ) ))  

= EI, Vec(diag  (xl( t ,  t ' )  . . . . . .  rt(t, t ' ) ) )  

and P~;I~,' = Et, P',;~," = EpP~;~,'Et,, equation (A.I )  can be 
rewritten as 

Vec(Z( t ,  t ' ) ) =  A,, Vec(diag (xt( t ,  t ' )  . . . . .  xl( t ,  t ' ) ) )  

+ Vec(e( t ,  t ')). (A.4) 

it is easy to verify that Range (A, , )= Range(A), because 
when the matrix ( V ( y ,  K)  @ V ( z ,  L))  is multiplied by the El, 
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all columns become zero vectors except the 1st column, 
( l + 2 ) t h  column . . . . .  and l'~th column. These non-zero 
columns form the matrix A. These facts and the expression 
(A.4) are particularly useful in simplifying some complicated 
expressions in this paper. 

From (A.3). we have 

R',;~,. = A,,P',;~,,AI,' + O,.,,.. (A.5) 

From the expression .(A.2) for P',;~,. we know there exists a 
real unitary matrix P which is the product 
permutation matrices such that 

/ B"" I O\ " ' 1 "  t,t' - n.n'  

and (V(y, K) ® V(z, L))EpP = (A I 0). Therefore 

R',;~;,, = (V(y. K)® V(z. L))P',;I',,.(V(y, K)® V(z, L))" 

+ Qn.n. 
(V(y ,  K) ® V(z,  L))EpF'pr p',L'~,.PP"Ep 

x (V(y ,  K) ® V(z,  L) )"  + Q,,.,,. 
,mllx 

(A I 0 ~ ' P " "  ~ ( - - ~  + O,.. 
' -  ..... ' - k O /  "' 

l , l "  I I  AB,. , , ,A + Q,.,,,. 

This is (7) from which it is straightforward to get (8). [] 

of several 

(A.6) 

APPENDIX B 

Proof of  Lemma 1. 
For III -> K or II'l >- L, the identity (9) is true because both 

sides of (9) are zero. 
Now we consider the case I I l<K and I I ' I<L.  For 

t = 0, 1 . . . . .  M - K, and t' = O, I . . . . .  N -  L, define 
e , ( t , t ' ) ~ ( e ( t . t ' ) ,  e ( t , t ' +  I) . . . . .  e ( t , t ' + L -  1)) 'l. Then 
VecT(e(I, 1')) = (e~(/, I'), f~(t  + 1, I') . . . . .  g~(l + K - 1, t ')) T. 

The matrix Qt.r = ElVec(e(l, r))Vec"(e(O, 0))1 is a K x K 
block matrix. The (u, u)-block in Qt.r is 

F/ eCt+.,r) \ 
Eler(t+.,r)e"(u,O)I=EI ( e(l+uil' + l) ) 

L \e(l +u,l" + L -  I ) /  

- I  

X (e"(u, 0), e"(u. 1) . . . . .  e"(v, L - 1)) / 

..1 
¢ 02tit-) if u - u = 1 

t 0, elsewhere, 

i.e. Q t . r = 0 2 J / " ( J r  ) where the matrix Jt ( J r ' )  is 
obtained from j~r) by substituting l ' s  in j j r )  with jjt.) and O's 
with L x L zero matrix. So j~K)(j~.t))=j}r)®j~.c).  Hence 

(K) (L)  (K) (L)  QIr=O"J t  ® J r  a n d J t . r = J i  ® J r  • [] 

APPENDIX C 

Proof of  Lemrna 5. 
Similar to the discussion in Appendix A in Stoica and 

S~5derstr/Sm (1991), we can get the approximation 

U~'I~U. -~ Af-]~.'U. or 

u'.'O. = u'.'fi u~h-'. (c. i) 

So H- = H - " t t u ' e i , l  - 0  2, U, si U,,(s i - s , )  = U~,thU~A-lei = u H'~- 1 

i.e. H- fi~si z i 1 U . s ,=UI .  _ 0 2 .  For ut,  u_ .eRange(U. ) ,  the 

column space of U,. by the above equality, 

(x,  - 02) . ' / ( .~ ,  - s ,)  ~ ~,'h~, 
and 

(;tj - o-'),,~'(~, - s , )  ~ u ~ ' , % .  

From above, we know 

( Z , -  o2) (Z/ -  02)Gq = E[u~'Rs,(u~2l~si)n], (C.2) 

where G u is the ( i , j ) th  element of the matrix G(u I, uz). To 
simplify notations, we assume that the data set {z(t, t'), 0 <- 
t - < M + K - I , 0 < - t ' - - - N + L - I }  is available. Then the 
sample estimation of R can be taken as 

A ~ ~ ~.  VecCZ(t, t '))Vec"(ZCt, t')). 
- M N , : t  ,'=l 

Substituting the right-hand side of (A.4) into the above 
expression and then substituting/~ into (C.2), we can get the 
expression 

(x, - 02) (x ,  - 02)G, ,  

, 
E ~ u'/VecCZ(t, t'))eec" 

=M2"-M~ t=l  t ' ~ l  p = l  p ' ~ l  

x (Z(t, t '))sis~lVec(Z(p, p ' ) ) V e c ' ( Z ( p ,  p'))u~]. (C.3) 

The right-hand side of the above expressions can be further 
simplified by employing (A.4)  and the fact that for u e U,,, 
Atolu = 0 (because Range (A,,) = Range (A)). 

( A, - 02)(3 V - 02)GiiM2N ~- 

= , ' ) ) A ' :  

+ Vec"Ce(t, t'))]s~sJl[A,, Vec(Xa(p,  p ' ) )  

+ Vec(e(p, p'))lVecHCeCp, p ' ) )u2]  

= E l  ~ [u','Vec(eCt, t ' ) )Vee"(xa( t ,  ' " " t ) )A,s is  i A,,Vec 
t , t  , , p '  

x (Xa(p,  p ' ))VecH(e(p,  p'))u2 

+ ulIVec(r(t, t '))VecH(Xa(t,  t'))A~,,IsisJIVec 

x (e(p, p ' ) )Vec"(e(p ,  p'))u2 

+ u'lIVec(eCt, t'))VecHCe(t, t'))sisJ~A,,Vec 

X ( xa (p ,  p ' ) )Vecn(e(p ,  p ' ) )u :  

+ u'lIVecCe(t, t ' ) )Vec ' (e( t ,  t'))s,sJIVec 

x (e(p, p ' ) )Vec"(e(p ,  p'))u2]] 

= ~.  E[Term 1 + Term 2 + Term 3 + Term 4]. (C.4) 
t , l ' ,p ,p '  

Term 2 and 3 are zero since for three independent and 
zero mean Gaussian random variables X a, X ,  and X 3, 
elX?l  = O, i = 1, 2, 3, E[X2X~] = elX3X~] = EIX~X~I = O, 
and E[XtX,.X3] = 0. So the right-hand side of (C.4) is equal 
to 

{ul/ Q,_p.C_p,U~sJ' A,, Vec( Xa(p ,  p ')  ) Vec" 
t,t',pop" 

× (xd(t ,  t'))A[,Is~ + E[Term 4]} (C.5) 

in which the expectation of Term 4 (the product of the four 
complex Gaussian random variables) can be simplified by 
using the formula 

Elx ~x~.x ~.r ~] = E[x ix'-lElx.,x ,] 

+ EIx,x~lE[x2xA + E[x,xAE[x,x~l  
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(see Stoica and S6derstr6m 1991). So (C.5) is equal to 

{uC'Q,_. ,,_p.U2sHA, Vec(Xa(p, P'))VecH(Xd( t, t')) AHs, 
t.t',p,p" 

+ E[u]lVec(E(t, t '))Vec'(e(t, t'))si] 

x E[s]'Vec(e(p. p'))VecH(E(p, p'))u2] 

+ E[u~JVec(e(t, t'))s~'Vec(E(p, p'))]  

x E[Vec'(e(t, t '))siVec'(e(p, p'))Uz} 

+ EIull'Vec(e(t, t '))Vec'(~(p, p'))Uz} 

x E[VecH(E(t, t'))sis~lVec(~(p, p'))} 
,, 1' p.p" H = u t Qt_p.,._p.u2sj A,,Pp-,.p.-t'Ausi 

IJ ' ,p.p' 

+ ~, u','Q,_..,._p.U:]'Q._,..._,,s,. (C.6) 
t , t ' .p.p'  

The second term in (C.6) dividing by M:N" is 

1 M 
M'N',=I ,'=l p=l p'=i ul Qt-P't'-p'U2$i Ql'-t'P'-t'sl 

- , 1 2  ~ ~, (M-Ik l ) (N-Ik ' l )u ' , iQ,.k.u2s1'Q-k.-k 's l  
~"~ ;"  Ik l<K Ik ' l<L  

u. Q,.k,U. j Q_k._,,S~, (C.7) = l_~,,~,,,,,, ,l< ~ " s" I*'l<L 
for the large data sizes M and N. 

Comparing (A.5) and (7), we know that A. PP'P' AH -- u - t . p ' - t * * . u  I 

AB~,'P_~.p._,.A H. Therefore the first term in (C.6~ is equal to 

.II.#~AI 2 ~ ~,ll~e~ U $ ' t  ~I jDp'p" ~ | |¢ ~1 ~a~t--p.l'--p' 2 j ~ U p - - t . p - - t  "~  oi- 
tel l ;  i~  I 1'=1 p ~ l  p '-- I  

(c.8) 

The method used in deriving (C.7) is not applicable to 
simplify the sum (C.8) because the matrix B~I,C depends on p 
and p' .  This is a major difficulty in deriving the large sample 
covariance due to the deterministic phases. 

Let C~A_{(p,t):lp-tl<K, l<-t<-M, I < p ~ M }  and 
C'tA_{(p' , t ' ): lp '- t ' l<L, l<t '<-N, l<p '<-N}  be two 
index sets. 

Since Q,-..c-p' = 0 for It-pl >- K or It'-p'l >- L, the sum 
(C.8) only includes those terms with ( p , t ) ¢ C t  and 
(p ' ,  t ') ~ C;. C~ can be partitioned into three index sets 

C~={(p , t ) : lp- t l<K,  l<-t<-M, I<-p<-K}, 

C2={(p , t ) : lp - t l<K,  I < t < M ,  K + l < - p < M - K } ,  and 

C.a={(p,t): lp-t i<K, l<-t<-M, M - K +  l<-p<-M}. 

The number of points in C2 is ( 2 K - 1 ) ( M - 2 K )  which 
depends on the data size M. But the number of points in 
C, O C3 is K(3K - 1) which does not depend on the data size 
M. Similarly, we can define C[, C~ and C.-; which are 
partitions of C;. The number of points in C~ U C.~ does not 
depend on the data size N. So the sum (C.8) is equal to 

] i l l ' )  e l | A R p . p '  A l l , .  
M 2 N 2  ~ ~ 11, ~ ,_p . t ._p .Z l2~  j , , u p _ t . p . _ t .  ~i 

(p. I )6C 2 (p'.t')¢!C~ 

+ I 1 

in which the first term is equal to 

l M - K  p + K - I  N- -L  p ' + L - I  

E E E 
svL a *  p = K + l  t l p - - K + l  p ' = L + l  t ' ~ p ' - L + l  

,, f l / 1  ,* ~ I ' IARp,p"  AHo 
X ~1 $~l--p , l ' - -p '~2°j  ~p - - t . p ' - - t '  °i  

1 M - K  N - L  

~1 ~ k . k '  2° j  ~* - k . - k  "r* ° i  
. . . . .  p = K + I  p ' - L + l  Ik l<K Ik ' l<L  

1 ( M - 2 K ) ( N - 2 L )  ~ ~ H H 
- -  l.l I ~k , k 'M2S j  

MN MN ikl< K ik.l< L 
( 1 St-K N-L ) 

5". A'% A ( M - 2 K ) ( N - 2 L ) p  I p'-L+l 

u t Qk.k.u2sj AB_,._k.A s I. 
I/<'I<L 

Finally, from (C.6) and (C.7) we have 

y_, T, " " - -  U I Q k . k  "lJ2Sj 
' " ' "  Ikl<K Ik'l<L 

X (AB_k._, .A"  + Q_,_, . )s i  

I Qk.k'U2Sj R-k.-k'$i, y . . , ,  ,, 
I k ' l <L  

for large M and N. 
Since R_,._k. = R~,l., ', from the above expression we have 

I 1 
2., u, htk.,. :sj k.,.s~2 _ o:)(~, i _ ~) GO=-M--NI~'KkT'~ x" ; i~  u " R "  

Ik ' l< l -  ~ , ~ i  

, _ U,R,.k.U.,A e? 

So we have the equality (17). In the same way as above, we 
can prove (18). [] 




