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Abstract

This paper presents a readily computable formula for the real structured stability
radius with respect to an arbitrary stability region in the complex plane.
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1 Introduction

In many engineering applications it is required that a square matrix has all of its eigenvalues
in a prescribed area in the complex plane. We will use the word stability to describe such
an eigenvalue clustering property. Furthermore, it is often desired that the matrix should
maintain this stability property when its elements are subject to certain perturbations. The
real structured stability radius measures the ability of a matrix to preserve its stability under
a certain class of real perturbations.

Let us partition the complex plane C into two disjoint subset C, and C,, i.e., C =
C, UGy, such that C, is open. A matrix is said to be stable if its eigenvalues are con-
tained in C4. Denote the singular values of M € CP*™, ordered nonincreasingly, by o;(M),
i =1,2,...,min{p,m}. Also denote o1(M) by o(M) and oy (pm}(M) by a(M). Let F be
either the real field R or the complex field C. Following (Hinrichsen and Pritchard, 1986b),
we define the (structured) stability radius of a matrix triple (A, B,C) € F™"*"™ x F"X™ x FpPxn™

as
re(A, B,C) :=inf{g(A): A € F™*P and A + BAC is unstable}.
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We abbreviate rg(A4, I, 1) by r¢(A) and call it the (unstructured) stability radius of A. For real
(A, B,C), mg(A, B,C)is called the realstability radius and for complex (4, B,C), r¢(A, B,C)
is called the complez stability radius. The stability radius problem concerns the computation
of re(A, B,C) when (A, B, C) is given.

Let OC, denote the boundary of C,. By continuity, we can easily show that for stable A,

re(A,B,C) = inf{a(A):A € F™*P and A+ BAC has an eigenvalue on 9C,}
i181£ inf{g(A): A € F™*?P and det(s] — A — BAC) = 0}
EIS

g

ig’{: inf{a(A): A € F™*P and det[] — AC(s] — A)~'B] = 0}.
s€ g

Hence the key issue in the computation of the stability radius is to solve the following linear

algebra problem: given M € CP*™, compute
pE(M) := {inf{G(A) : A € F™*P and det(I — AM) = 0}}~".

Simple singular value arguments show that pc(M) = a(M). Hence

-1

rc(A,B,C) = { sup o[C(sl — A)_lB]} , (1)
s€0Cy

which was essentially obtained in (Doyle and Stein, 1981; Chen and Desoer, 1982; Hinrichsen

and Pritchard, 1986b). Equation (1) relates the complex stability radius to the concept of

the Ho norm.

This paper concerns the computation of rg(A, B,C). As we have seen,
-1
rr(A, B,C) = { sup ugr[C(sI — A)_lB]} . (2)
s€0Cy

Our main result is a simple formula for pur which allows computation of the real stability
radius using (2).

Main Result:
. ReM  —yImM
pR(M) = inf o2 ([ y'ImM  ReM D ‘ (3)
The function to be minimized is a unimodal function on (0,1].

Since the function to be minimized in (3) is unimodal, any local minimum is a global
minimum. Many standard search algorithms, such as golden section search, can be used with

guaranteed convergence to a global minimum.



In a sense the stability radius problem, although not having been called so, has been
studied since decades ago. It is difficult to trace the exact history, partly because it has been
treated by several authors in different fields independently. A theorem in (Rudin, 1973, p. 239)
and its proof immediately leads to rg(A) > {supseacg al(sl — A)_l]}_l. Various versions of
this inequality have appeared in many text books. The fact that this inequality is actually an
equality when F = C follows from Schmidt/Mirsky’s classical theorem (often also attributed
to Eckart and Young) of approximating a matrix by a lower rank one, see e.g., (Stewart and
Sun, 1990, Theorem 4.18). For contributions to various aspects of the complex unstructured
stability radius r¢(A), see also (Van Loan, 1985; Hinrichsen and Pritchard, 1986a; Martin,
1987; Byers, 1988).

The stability radius rg(A, B, C) has been motivated from several different viewpoints. It
arises in the stability robustness analysis of a feedback loop consisting of a fixed linear time-
invariant system and a norm bounded uncertain gain representing uncertain parameters. It
can also be posed from a pure matrix perturbation point of view, in which the matrices B and
C reflect the structural information of the perturbation matrix BAC, as in (Hinrichsen and
Pritchard, 1986b). The solution to the structured complex stability radius problem, again, is
a simple application of Schmidt/Mirsky’s lower rank matrix approximation theorem.

When the stability radius is used to analyze the stability of a linear time-invariant sys-
tem under parametric perturbation, the real stability radius is more natural than its com-
plex counterpart. It however turns out to be a much more difficult problem. Obviously,
rr(A, B,C) > re¢(A, B,C). The ratio rg(A, B,C)/rc(A, B,C) can actually be arbitrarily
large. Hinrichsen, Pritchard, and associates studied various properties of the real stability
radius and surveyed their results in (Hinrichsen and Pritchard, 1990). Several lower bounds
on rgr(A) were obtained in (Qiu and Davison, 1991) by using tensor product techniques.
Conditions under which rg(A) equals r¢(A) were investigated in (Lewkowicz, 1992).

The specialization of the right hand sides of (2) and (3) to the case when B = C = I was
shown to be a lower bound on rg(A) in (Qiu and Davison, 1992) and was also conjectured to
be actually equal to 7gr(A). Our main result stated above completely solves the general real
structured stability radius problem. In particular, it shows that the conjecture by Qiu and
Davison is indeed true.

The paper is organized in the following way. Section 2 gives a proof of the main result.
The idea is to rewrite the mixed problem involving a complex matrix and a realness constraint
into a purely real problem. It is then easy to prove that the left hand side of (3) is less than
or equal to the right hand side. To prove the opposite inequality, we construct a specific real
A such that [ — AM is singular and [3(A)]~! is equal to the right hand side of (3). Section 3



addresses the sensitivity of ur(M) to the changes in M. In Section 4 we specialize the results
to the unstructured real stability radius and also generalize the definition of the structured
stability radius so that it covers linear fractional perturbations. Section 5 presents several
examples which illustrate different possible behaviors of the function on the right hand side of
(3) at its minimum and also illustrate the extra sweep over dC, needed for the real stability

radius computation. Section 6 presents some concluding remarks.

2 Proof of the Main Result

Let M € CP*™ be given. Introduce X := ReM and Y := Im M. The case when Y = 0 is
trivial; we then have ug(M) = pc(M) = (X). Hence we assume Y # 0 in the following
proof. For A € R™*? the matrix I — AM is singular if and only if there are v;, v, € R™ with
(v1,v2) # (0,0) such that

[I = A(X +jY)](v1 + jvz) = 0. (4)
An equivalent form of (4) is
A0 X -Y V1 —U2 o
The advantage of (5) is that only real numbers are involved. Since (v1,v3) # (0,0), the

vy —v . .
columns of Y 2 | are linearly independent, therefore

rank([—[ﬁ g}[g‘f _)2,/ )§2m—2. (6)

To proceed, we need a version of the Schmidt/Mirsky theorem, tailored according to our need.

Lemma 1 Let E € F™*P and F' € FP*™. Then for i =1,...,min{p, m},

inf{G(E) : rank (I, — EF) < m — i} = [0;(F)] L.

To avoid the conservatism caused by applying Lemma 1 directly to (6), we resort to the

widely used technique of scaling. Let v € R\ {0}. From (6) we get
L0 A0 X -Y ey )
mk(I lo IHOA Y X 0 I
B A 0 X Y
S (1[92 ][ A F)

< 2m — 2. (7)



Let us introduce a notation:

Lemma 1 and inequality (7) imply that

a(A) = 5[ ﬁ 2 ] > 07 ' [P(7)), Y7 #0.

Consequently,

pr(M) < inf o2 P(y)] = vélg ] a2 P(7)]-

Here, the search over v has been restricted to (0,1] due to the fact that P(y), P(—7v) and
P(y71) all have the same singular values.
The rest of this section is devoted to the proof of the reverse inequality:

pr(M) > qei?(f,u"?[P(A’)] =07, (8)

which is significantly more difficult. We only need to prove this for the case when o* > 0.
The proof is done by an explicit construction of a real A such that I — AM is singular and
(A) = 0* . Let us use (-)' to denote the Moore-Penrose generalized inverse. The following

lemma, whose proof is left to the reader, is needed in the construction.

Lemma 2 Let U € RP** and V. € R™*. [f UTU = VTV # 0, then a(VUT) = 1 and
vulu =v.

First we will treat the case when inf, ¢ q)02[P(7)] is attained for some v* € (0,1]. Let

u = l Zl } and v = Z] be a pair of left and right singular vectors of P(y*) corresponding
2 2

to o*, with uy,us € RP and vy, vy € R™, and set

A= a*'l[ v Uy H Uy U ]T. (9)
If v and v can be chosen so that
[ul ug]T[ul UQ]:[Ul DQ]T[’U] ’02], (10)

then it follows from Lemma 2 that (A) = 0*~! and that

[ — A(X 4 3Y)])(v1 + jy v2) = v1 + j7™ve — Ac™uy — Ajy*c*us = 0



which means that I — AM is singular. Hence A given by (9) is the desired construction.
What follows is a long elaboration which shows that the singular vectors v and v can always
be chosen so that (10) is satisfied when v* € (0,1).

The proof for the case when inf,¢ (g 1) 02[P(7)] is attained only as ¥ — 0, which occurs if
and only if rank (Y) = 1, is carried out in a different way, in which an explicit formula for
pur(M), involving no minimization, and a more direct construction of A are available.

We start with several claims on the singular vectors of P(v). The first one is of a purely

algebraic nature.
uy

U2
vectors of P(7) corresponding to some nonzero singular value o. Then ufuqy = v¥v,.

Claim 1 Lety € R\ {-1,0,1} and let | ] and [ ZI } be a pair of left and right singular
2

Proor The singular vectors satisfy

X —vY V1 ] _ Uy
XT  4-yT uy | v
|: —7YT XT g = 0 vy . (12)
The difference between [ ul  uf ] times (11) and ' ol of ] times (12) gives

(y+ 7 H(uFYv, — ulYvy) = 20(ufuy — vfvy). (13)

Similarly, the sum of [ ud  —uf ] times (11) and [ vl —of ] times (12) gives
(v =y Hufyv, —ulYw,) =o0. (14)
Since 0 #0 and v # 0 or =+ 1, the claim follows from (13) and (14). O

The second claim concerns the singular vectors of P(y) corresponding to singular values
at extrema. We need several lemmas.

Lemma 3 Let F(y) € RP*™ be a (real) analytic matriz function on an open set I' C R.
Then there exist an analytic diagonal matriz function (y) = diag(51(7), - - +» Tmingp,m} (7)) €
RPX™ and analytic orthogonal matriz functions U(y) = [iy(7) - - -ip(7)] € RPXP and V(y) =
[01(7) * - - Om(7)] € R™*™ all of which are defined on T', such that

S(y) =TT () F(7)V (7).

Furthermore,

2 - oy S, (15)

fori=1,...,min{p, m}.



Proor The first statement above follows from a similar result for Hermitian matrices in
(Baumgdrtel, 1985, p. 149), see also (Kato, 1966, Section I1.6.2). To prove (15), differentiate
F(y)vi(y) = i(y)ui(y). This gives

) + PO ) = ) + 5 ),

Multiplying both sides by @/ (y) from the left and noticing that @’ (y)F(7) = &;(7)7 (v), we

obtain
i) 3 + TG = T+ ()G ()

From @} (7)d@:(y) = 1 and 97 (y)%:(7) = 1, it follows that i; ('y)‘fl—?yi(fy) =0 and ¥} (7)%(7) =

0. Hence (15) follows from (2). a
Apparently, |5;(y)|, 2 = 1,...,min{p, m}, are singular values of F(y). However, they are

da2

not in any particular order. In the following, we will also use the ordered singular values
a1(7) >+ 2 Omin{p,m}(7) = 0 of (7). The difference between &;(7) and o;(7) is that the
former are analytic whereas the latter are generally not and the latter are nonnegative and
ordered nonincreasingly whereas the former are generally not. Despite its lack of analyticity

on the whole T, 0;(7y) is continuous and piecewise analytic.

Lemma 4 Let F(y) € RP*™ be an analytic matric function on an open set I' C R. Let
o1(7) 2 *** 2 Omin{p,m}(7) = 0 be its ordered singular values. If o;(7y) has a nonzero local
extremum y* € T, then there exists a pair of left and right singular vectors u € RP and v € R™
of F(v*) corresponding to o;(v*) such that u” dF(7 Jo=0.

Proor If g;(7) is analytic at v*, then we can assume, without loss of generality, that o;(7)
is equal to &1(7) in an open neighborhood of 4*. Thus y* is also a stationary point of G1(7).
Let () and #,(y) be a pair of left and right analytic singular vectors corresponding to

&1(7). The lemma then follows since (15) gives

~ * dF *\ ~ *

i (7)o (M) =
If instead o;(7y) is not analytic at 4*, then we can assume, without loss of generality, that in an
open neighborhood of v*, o;(y) = 61(7y) for v < v* and o;(y) = G2(y) for v > v*. Let ax(y)

and 9x(7y), k = 1,2, be the a pair of left and right analytic singular vectors corresponding to
k(7). Then (15) gives

d& B wAF
d—; ) = WO TR0
dé, dF

77—7*) = af(y" )dv( Y*)oa(7).



Put uy = aiy + (1 — a?)/%4, and v, = ady + (1 — a?)/25, for a € [0,1]. Then uq(y*)
and v,(7*) also form a pair of singular vectors of F'(y*) corresponding to the singular value
0:(7*). Define

f(a) = uZ(y" )df (r)va(r):

Since v* is an local extremum of o;(7), we must have f(0)f(1) = d—"l('y )M(fy ) <0, By
continuity, f(a) = 0 has a solution in [0,1]. This proves the lemma. a
For the matrix P(y), the singular vectors described in Lemma 4 satisfy some pleasant

alignment conditions:

Claim 2 Let v € R\ {0} and let u = [ Zl } and v = [ Zl ] be a pair of left and right
2 2

singular vectors of P(7y) corresponding to a nonzero singular value o. If the extra condition

TdP (7)1) = 0 is satisfied, then uTu; = vl vy and ulug = v vy.

Proor The singular vectors satisfy (11), (12), and
0 -Y v
T ,T 1 —
[uy u3] [ —7_2Y 0 ] [ vy ] =0. (16)

wI'Yvy + vy 2ulYw = 0.

Equation (16) gives

Multiplying (11) by [uf — ul] from the left and (12) by [vf — vI] from the left, we obtain
uwI Xy —yul Yy — v Wl Yo, — ul Xvy = uf Xvy — ul Xvy = o(ufuy - ulug)
and
oI XTuy + 7 20F Y Tug + 40l VTuy — vl XTuy = 0T XTuy — oI XTuy = o(vf vy — vlvy).

Since o > 0, we get

u{ul - ugu2 = ’Uf’l)] — ’Ug’vg.

Claim 2 now follows from u{ul + u%uz = vlT v + vg vy = 1. O
We are now ready to show inequality (8). We need to treat three different cases separately.
Case 1: 0* = o5[P(y*)] for some v* € (0,1).

Lemma 4, together with Claims 1 and 2, tells us that a pair of singular vectors [ Zl ]
2

and [ :jl ] of P(v*) corresponding to o* can be chosen to satisfy (10). Then (8) follows as
2

discussed previously.



Case 2: 0* = 03[ P(1)] but o* < g2[P(7)] for all vy € (0,1).

We have to treat this case separately since Claim 1 is not valid for y = 1. We however know
that the singular values of P(1) are paired so that og;_1[P(1)] = 09;[P(1)] = 0;(M) for all 7. In
particular, the largest and the second largest singular values of P(1) are equal to o*. We need
to consider two possibilities. The first possibility is that the multiplicity of the largest singular
value of P(1) is two. Without loss of generality, assume o1[P(1)] = o[ P(1)] = 61(1) = 2(1),
where &1(y) and G4(7) are analytic singular values of P(y). Note also that if o(7) is a singular
value then sois o(y7!). Since y = 1is a minimum of o5(7) which is equal to min{1(7), 72(v)}
locally around v = 1, it follows that vy = 1 must be a local minimum of &,(y) and &2(7).
Let [ w(7) ] and [ v(7) ] be a pair of analytic singular vectors of P(y) corresponding to

u2(7) va(7)
G2(7). By Claim 1 we know that

o (Mua(v) = of (Peay) 7 # 0, £1L
By continuity, we must therefore have
uf (L)up(1) = of (1)oa(1).
Using the fact that dd—‘?yz(l) = 0, we conclude from derivative relation (15) and Claim 2 that
uf (Dui(1) = vf (oy(1)
uj (Dua(1) = vz (L)va(1).

2 Ug(l) V2 ’02(1)
We have completed the proof for the first possibility of Case 2. However, the construc-

Putting [ Zl } = w(1) ] and [ vl ] = on(1) , it follows that (10) holds.

tion above is not quite readily implementable numerically. Here we pause for an interesting
observation which renders surprising numerical advantages.

Remark If (10) holds for a pair of left and right singular vectors Zl and 21 of P(1)
2 2

corresponding to a nonzero singular value o of multiplicity 2, then it holds for every such
pair.

Uy
U2
corresponding to a nonzero singular value o of multiplicity 2 if and only if u; +jus and vy + v

Proor It is easy to check that and zl form a pair of singular vectors of P(1)
2

form a pair of singular vectors of M corresponding to the same singular value of multiplicity

i 031 .r . . .
1. Now suppose ot ] and [ 5 ] are another such pair. Then since o is a distinct nonzero
U2 2

singular value of M, we have

i + jitz = (w1 + juz)e’’  and By + by = (v + jva)e’?

9



for some 6 € [0,27). These can be rewritten as

o )= [ ]| 50y 0]

(5w )= [ w][ 5 0.

We immediately see that if Zl and [ Zl ] satisfy (10), then so do [ Zl } and [ U1 ] O
2 2 2

and

V2
The second possibility of Case 2 is that the multiplicity of the largest singular value is

greater than two. This means that the largest four singular values of P(1) are equal to o*,
i.e. the two (or more) largest singular values of M = X + jY are equal to ¢*. This possibility
is related to a problem considered in (Lewkowicz, 1992), which inspired our solution. Bring

in a singular value decomposition

min{p,m}

M =o*(mrf + pavy )+ Y ol M)uf.
1=3

where ()H means conjugate transpose. Introduce

Hol | B H2
where £ € C? is a unit length vector. Then p and v also form a pair of singular vectors of M
g g

corresponding to o*. If ¢ can be found so that u?'u — vTv = 0, then [ Zl ] = [ irelﬁ ] and
2

[ :l ] = [ izz ] form a pair of left and right singular vectors of P(1) corresponding to
2

o* and condition (10), which is equivalent to T — vTv = 0, is satisfied. Inequality (8) now
follows as discussed previously. To show the existence of such a desired £ one needs to study
how u® yu — vTv varies with €. This can be done straightforwardly with elementary calculus
as in (Qiu et al., 1993), but an alternative is to introduce the Takagi factorization (Horn and

Johnson, 1985, Corollary 4.4.4):

T
B M2 I 0 pop2 | _=r| M 0 |2
vy UV 0 -1 vy Ve - 0 )\2 .

where Z is a unitary matrix and Ay > Ay > 0. Clearly, a desired £ can be chosen as follows:

any unit length vector in C? ifA1 =0
5 = —H j\/ )\2 1 .
= m m if /\1 ;é 0.

10



Case 3: 0* = lim,—o 02[P(7)] but 0* < o2[P(y)] for all y € (0,1].
It follows from e.g. (Stewart and Sun, 1990, Theorem 1.4.4)) that oo[P(7)] > o2(y~'Y),

so Case 3 is relevant only if rankY = 1. We need a lemma to proceed.

Lemma 5 Let F(v) = G(y)+ v 'H € RP*™, where G(v) is analytic on an open interval T
around 0 and H is a constant matriz with rank (H) =: r < min{p, m}. Let o1(y) > -+ >
Omin{p,m}(7) > 0 be the ordered singular values of F(v) defined on I'\ {0}. Assume a singular
value decomposition of H is given by

1 = [0 U3) [ " g]m V)T

where Y1 € R™*". Then
lin%) ori(Y) = Ui[UzTG(O)Vg]
y—
fori=1,...,min{p,m} —r.
Proor Without loss of generality, assume an analytic singular value decomposition of v F'(y)
is _
R ~ Yi(v) 0 & = T
YF(y)= | Th(r) Da(y) | [ 0 Sy0p) | L) V)]
where £1(0) € R"™*" and £5(0) = 0. Then
77182(7) = U3 (MF(Va(y) = U5 (1)G(1)Val) + 4705 (1) HValy),

and

= ) ﬁ2(0>][§1(§°) 8}[%(0) ) ]

Since both UZ (y)U1(0) and VT (0)Va(y) are analytic and vanishing at y = 0, it follows that
%%7_163(7)5172(7) = %i_rﬂ)7_1ﬁZT(')’)(71(0)21(0)‘7111(0)‘72(7) =0.

Therefore
lim ™" %5(7) = U3 (0)G(0)V2(0).

Since all singular values of y~151(7) go to infinity as vy — 0,
lim o,1i(y) = lim o[y ™' Sa()] = il U7 (0)G(0)V2(0)] = il UF G(0)Va].

Notice that U3(0) and V3(0) can be replaced by U, and V; since they have the same ranges
respectively. a

11



Following the notation in the lemma put

G(v)=[§ ‘}{Y}, H=[f, 8},

and let a real singular value decomposition of ¥ be

UYEY(VY)T _ [ UIY U2Y } [ UI%Y) 8] [ VIY V2Y ]T.

Then a singular value decomposition of H is

gl o s o] fvy o)
B RZAS) 0 0 0 I| -

Applying Lemma 5, we obtain
T
- 0 I X 0 vy 0
uy o 0 X 0 I

max{o[(U3 )T X],5(XV;)}.

Il

lim o[ P(7)]

Now we want to show that limy_o 02[P(7)] = inf,e(0,1) 02[P(7)]. If u and v are a pair of left
and right real singular vectors of (U )T X corresponding to @[(UY )T X], then the choice

A = —vu(U))T [5[(UF )T X] (18)

satisfies [I + A(X + jY)Jv = 0 and a(A)~! = F[(UY)T X]. Similarly, if v and v are a pair of
left and right real singular vectors of XV, corresponding to (X Vy ), then the choice

A= -V vl j7(XV)) (19)
satisfies ul[I 4+ (X 4 jY)A] = 0 and G(A)~! = (X Vy ). Together this shows that
max{7((Uy )T X],5(XV,")} < ur(M),
$0
v€(0,1]

inf 02[P(7)] < lim 05[P(7)] = max{z{(U3 )T X],5(XV;}")} < pr(M) < qé?({l]UZ[P(A’)]

and therefore the inequalities above can be replaced by equalities.
Note that if min{p,m} = 1 then U} or V¥ will be empty. We define the largest singular
value of an empty matrix to be zero.

12



We have completed the proof of the equality (3). Now suppose that o3[P(7)] has a local
extremum (either minimum or maximum) y** € (0,1) such that o3[P(y**)] > o*. Then using
exactly the same arguments as in Case 1, one can construct a real A such that I — AM is
singular and (A) = {o2[P(7**)]}~! < o*~!. This contradicts (3) and, therefore, can not
happen. This shows that o3[P(y)] is a unimodal function on (0, 1].

Note also that the proof shows that pur(M) = uc(M) if and only if the minimum value of
o2[P(7)] is attained at v = 1.

To recap, we summarize what we have proved in this section in the following theorem:
Theorem If X,Y € RP*™ and M = X + jY, then

. X Y
““(M)‘wé?in“?([rlY X D (20)

The function to be minimized is a unimodal function on (0,1]. IfrankY = 1, then furthermore

(M) = liny o ([ Gy X D = max{((U} )7 X1, 5(XV )}

where UY and Vy come from any singular value decomposition of Y

vl o] |70 [ ow

We also summarize a procedure to construct a worst A.

Construction of a worst A

1. If Y =0, find a pair of left and right real singular vectors w and v of X corresponding
to 3(X) and set A = vu’ /5(X).

2. Ifrank (Y) = 1, compute a real singular value decomposition

y =[uf UQY][E(S/) g][vf’ vy ]

o If(UNTX] > a(XVy), find a pair of left and right real singular vectors u and
v of (UY )T X corresponding to ug(M) and set

A = —va(U3)T [3((U3 )T X].

o IfE(XVyY) > a[(UY)'X), find a pair of left and right real singular vectors u and
v of XV corresponding to ug(M) and set

A = -VY vl j5(X V).

13



3. Ifrank(Y) > 1, find a minimum v* € (0,1] of o3[ P(7)].

o If v* € (0,1) and o3[P(v*)] has multiplicity 1 or if v* = 1 and o3[P(1)] has
multiplicity 2, find a pair of left and right real singular vectors Z; and [ Zl ]
of P(v*) corresponding to ur(M).

e Ifv* € (0,1) and o3[P(~*)] has multiplicity r > 1, find matrices U € R*™*" and

V € R?PX" with orthonormal columns such that
P(y*)V = o[ P(y)]U.

Carry out a real Schur decomposition

dP dPT
UTEZ ()W + VIE_U = W diag(M, g, ..., A) W7

dy dy
where W is orthogonal and Ay > Ag > -+ > A.. Lemma 4 implies that \j\, < 0.
Take
any unit length vector in R" fAM=A=0
w = T
WIV=A 0 0 VA VAN i M # A

and[ul]:Uwand[vllew.

U9 (%)
o Ifv* =1 and o3[ P(1)] has multiplicity 2r > 2, find matrices [ H1 o pho } € Cmx?

and [ v, Vs ] € CP*? with orthonormal columns such that

M[ v ] :O'Q[P(l)][ H1o 2 ]

Carry out the Takagi factorization

T
[ I o P1op2 | _=7| A 0
142N %) 0 -1 v Uy T 0 )\2

where = is a unitary matriz and A > Ay > 0. Take

[11

any unit length vector in C2 f A =0

£= iV ,
H[]\\//,_\?]m Zf)\15£0;

(1]

and

Finally set




3 Continuity Properties

In computation of the real stability radius it is of interest to know how sensitive pugr(M) is to

changes in M. The example

. 1 ife=0
/j’R(l_{_.]g):{ 0 lf€#0

shows that pgr(M) can be discontinuous at certain M. Upper semicontinuity of the map
M — ug(M) however follows from the following general argument: If I — AM is invertible
for all A € K, where K is compact, then I — AM is invertible for all A € K and all M in an
open neighborhood of M.

In addition, M — pgr(M) is continuous at any M with rank (Im M) > 1 as the following
relative error bound shows:
Proposition If rank (Im M) > 1, then for all E € CP*™

lun(M + E) ~ pa(M)] _ _o(E)
pr(M) ~ oy(Im M)’

Proor Let v* € (0,1] be a minimum of o3[P(y)]. Then

_ Re E —y*Im FE
<
MR(MJFE) = MR(M)—I—U([’)’*_IIHIE RGE ])

IN

*—1— ReF —ImFE
pr(M) + 7 a([ImE Re E

u(M)+ 75 (B).

Noting that 7y *o2(Im M) < pr(M) gives
pr(M +E) . 9(F)
pr(M)  — oo(Im M)
To obtain the other half of the inequality we exchange the role of M and M + F and invert:

pr(M + E) o(E) o o(E) 5(E)
ML E) () AT -

ur(M) oo[Im (M + E) Im (M + E)]+3(E) =~ o03(Im M)

a

The only possible discontinuity points are therefore at M with rank (Im M) < 1. For
Im M = 0, we have shown the existence above, but we have not been able to find any

example of a discontinuity at any M with rank (Im M) = 1.
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4 A Specialization and a Generalization

It is well known that a more convenient formula for the complex unstructured stability radius
is given by

rc(A) = min o(A — sI).

C( ) s€0Cy _( )

Analogously, an alternative formula for the real unstructured stability radius is available,
which might be sometimes simpler to apply.
Corollary Assume A € R™*"™ (n > 1) is stable. Then

rR(A) = min max o9,-1 ([

A— ResI —yImsl
s€8C4 ~€(0,1] ’

vy 1ImsI A — ResI

For each fized s € 0C,, the function to be mazimized is a quasiconcave function.

We leave it to the reader to derive this from (2) and (3) and to justify the use of “max”
and “min” instead of “sup” and “inf”. Note also that due to the proposition the only possible
discontinuity of the function to be minimized occurs at the intersection of dC, with the real
axis.

In the definition of rg(A, B, ), the perturbed matrix A + BAC depends on the pertur-
bation matrix A in an affine way. In applications, however, a perturbed matrix may depend
on the perturbation in a linear fractional way. This motivates a more general definition of
the structured stability radius. For (A4, B,C, D) € F"X™ x FrXm x FPX? x FPX™ introduce

rr(A, B,C, D)
= inf{a(A): A € F™*P det(I — AD)=0or A+ B(I — AD)"*AC is unstable}.

Again we leave it to the reader to show that if Cp is unbounded and A is stable, then

-1
re(A4,B,C,D) = { sup pur[D + C(sI — A)_IB]} .
s€9Cy

In the case when C; = {s € C: Re(s) <0} or C, = {s € C: |s| < 1}, re(A, B,C, D) gives
the smallest norm of a complex (F = C) or real (F = R) perturbation A which destabilizes
the feedback system shown in Fig. 1.

5 Examples

Example 1: Recall from Section 2 the notation
-~ X =Y
P(’Y)—{,Y—IY X }
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Figure 1: Feedback interpretation of the generalized stability radius

In this example, we illustrate various behavior of o3[ P(7)] at its minimum *. The data and

computed results are listed in Table 1. There are essentially five possibilities:

1. v* € (0,1) and o3[P(7)] is smooth at y*.

2. v* €(0,1) and o2[P(7)] is nonsmooth at y*.

3. v* =1 and 03[ P(1)] has multiplicity 2.

4. v* = 1 and 02[P(1)] has multiplicity greater than 2.

5. inf,¢(0,1)02[P(7)] is attained as y — 0.

The construction of a smallest A such that I — AM is singular has to be carried out in

different ways for these different possibilities as done in Section 2.

Example 2: Assume C, = {s € C: Res < 0}. Find rg(4, B,C) for

C

[ 79 20 -30 -—20 0.2190
—41 -12 17 13 B _ | 0-0470
167 40 —60 —38 |’ ~ | 0.6789

335 9 —145 -11 0.6793

[ 0.0346 0.5297 0.0077 0.0668

| 0.0535 0.6711 0.3834 0.4175 '

0.9347
0.3835
0.5194
0.8310

We plot ug[C(jwl — A)"!B], computed by using golden section search, and uc[C(jwl —

A)71B] in Fig. 2. Their maximal values are 1.9450 and 2.5546 respectively. These maxima
occur at w = 1.38 and w = 9.9 respectively. We get rg(A, B,C) = 0.5141 and r¢(4, B,C) =

17



M singular values of P(7y) | pr(M) worst A remark
445 1 1 5.049 | [ 01382 —0.2236 oa[P(7)] is
-1 j 1 T ' 0.2236  0.1382 smooth at y*
245 1 ; oas05 | [ 03333 —0.2357 ] | oa[P(7)]is
1 247 X T T ’ 0.2357 0.3333 nonsmooth at y*
‘.“\
N *
. ~ v* =1 and
1+5 -1 ] ~_ [ 0.2000  0.4000 }
. ey | 2.2361 B oa[P(1)] has
[ 1 147 '. 0.4000 0.2000 eltiolicity 2
v*=1and
245 0 09361 | [ 03333 —0.2081 5[ P(1)] has
0 1442 ' 0.2981 0.3333 multiplicity
greater than 2
. inf.e(0,1) 02[P(7)]
1+75 2 T 99361 0.0000 0.0000 is attained as
0 1 1 ) 0.4000 0.2000 v — 0 since
i - rank (Im M) =1

Table 1: For Example 1: behavior of oo[P(7)].
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Figure 2: For Example 2, solid line is pc[C(jwl — A)~'B] and dashed line is pr[C(jwI —
A)71B].

0.3914. Note that the critical frequencies for pg[C(jwl — A)~'B] and pc[C(jwl — A)~'B]
are dramatically different.

To obtain a smallest real perturbation A such that A+ BAC is unstable, we need to find
a smallest A such that I — AC(jwI — A)™!B is singular at w = 1.38. At this frequency, the

minimum of the second singular value of

ReC(jwl — A)'B  —yImC(jwl — A)'B
Y 'Im C(jwl — A)"'B ReC(jwl - A)"'B

occurs at v = 0.2267. Its corresponding left and right singular vectors are

0.3892 —0.1615
ur | 0.9178 v | 0.9837
[u2 ~ | —0.0553 |’ [vz B 0.0669
0.0558 0.0411

A smallest real A is given by

—-0.4996 0.1214

A:TIR(A7B76)[U1 ”2”“1 UZ]T:[ 0.1214  0.4996 |-
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6 Concluding Discussion

This paper presents a formula for computation of the real stability radius. The basic problem
is a pure linear algebra problem: Given a complex matrix M, find the smallest real matrix
A such that I — AM is singular. Our main result reduces this problem to the minimization
of a unimodal function in the interval (0,1]. Our proof also gives a way to construct a worst
A such that I — AM is singular. This then gives a computationally efficient way to compute
the real structured stability radius and to construct a smallest destabilizing A.

It is of interest to notice that the linear algebra problem that we have considered in
this paper has rather deep and rich connections to many other problems in linear algebra,
in particular the theory of complex symmetric matrices (Horn and Johnson, 1985, Chap-
ter 4). The first three authors have recently shown the following extension of Lemma 1 (the
Schmidt/Mirsky approximation theorem): For M € CP*™  the smallest spectral norm of real
A such that rank (I — AM) < m — k is given by (3) with o, replaced by ogx. This result will
be published elsewhere.
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