
Finding building shapes that 
minimize mean trip times 
R V Johnson 

The paper provides a computer-aided means of ensurin 0 
that a proposed multiple-floor building is shaped so that 
the time that people need to move around inside the building 
is minimized. The metric that captures this is the mean 
trip time. This is lower, for example, on a square floor 
than on an elongated floor of the same area. Spreadsheet 
formulae are provided to identify the number and shape of 
building floors that minimize mean trip time given buildin# 
areas, people's walking speed, and lift speed and wait times. 
In the case of  buildings with two floor sizes, the optimal 
number of floors of each size and the ratio of the two floor 
areas are also found. These formulae assume evenly 
distributed trips, i.e. that trip starts and finishes are equally 
aad independently distributed throughout the building. This 
alleviates the need to obtain interdepartment-trip volumes 
and department areas. New simple distance theorems form 
the basis of the formulae. One odd finding is that, in some 
situations, a multiple-floor building with two floor sizes 
has a marginally lower mean trip time than a building of 
equal area in which all the floors are the same size. 

buildino shape, productivity, design, layout, layout planning 

This paper provides a computer-aided method of 
determining which building shapes are suitable for 
efficient layouts on the basis of just four readily available 
items of information. Formulae are provided so that 
anyone with a basic knowledge of spreadsheets can copy 
the formulae and use them for their own analyses. These 
results can be used in a broader analysis, not discussed 
in this paper, of building shape that includes criteria such 
as costs of construction, energy and land. The mean trip 
time can be readily converted to a cost that can be 
weighed against these criteria. 
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PREVIOUS APPROACHES 

A number of computer-aided approaches locate depart- 
ments within a building of a predetermined shape so the 
total time or distance of all the trips between departments 
is minimized. The first approach was that of Armour and 
Buffa 1. Their idea was extended to multiple-floor 
buildings by Cinar 2, Liggett and Mitchell 3, Johnson 4, 
Kaku, Thompson and Baybars 5 and others. In all these 
studies, layout efficiency is captured as the sum of the 
products of interdepartmental travel times or distances 
and the number of trips within an arbitrary time interval, 
or a close approximation. When this is divided by the 
number of trips, a more readily understood metric is 
obtained: mean trip distance, or, in the multiple-floor 
case, mean trip time, which resolves the problem of adding 
horizontal and vertical distances to time spent waiting 
for lifts. Some approaches, known as improvement 
procedures, improve on a provided starting layout, while 
constructive procedures start from scratch. Many building 
shapes can be tested with layout methods until a 
satisfactory shape is found. 

ROLE OF NEW APPROACH 

The author's approach does not provide a departmental 
block layout. Instead, it reveals building shapes that 
provide the minimum mean trip time under the 
assumption that trips start and finish independently and 
uniformly throughout the building. Its great advantage 
over layout-focused approaches is that it avoids the 
significant task of collecting data of department areas 
and the estimated interdepartmental traffic volumes. 
Further, these traffic patterns may change over time, and 
so the uniformity assumption may be more robust for 
the long term. 

The author's method has two roles. First, if the 
department data or the software to perform a layout- 
based analysis is unavailable, results derived from the 
assumption of an even distribution of trips throughout 
the building are a reasonable substitute. Second, even 
when department data is available, the computational 
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F i g u r e  1. Necessary routes for three sample trips in two 
buildings of equal area 
[Mean trip time for three sample trips = (tAa + /CO -t'- tEv)/3. 

burdens of layout methods are heavy, and the methods 
described in this paper allow one to obtain a 'big-picture' 
feel for the tradeoff of floor sizes and the number of floors 
quite easily. 

TYPES OF ~ T I O N  WI,IERE 
BUILDING SHAPE IS UM~DRTANT 

Internal traffic costs are most important in buildings with 
significant traffic volume. These buildings typically 
contain just one organization, such as a company head 
office, a government department, a hospital or an 
educational institution. Traffic tends to he lighter in 
buildings with many independent tenants. However, in 
some buildings with significant traffÉc, the building shape 
does not have much impact on the mean trip time. This 
occurs if a dominant traffic flow exists, as in high-volume 
dedicated manufacturing. This is unusual in office 
buildings. 

TRIP-DISTANCE T ~ O R E M S  

Theorems and formulae are provided below that relate 
the mean rectilinear distance of trips to start and finish 
points that are evenly and independently distributed 
throughout a building with rectangular floors (see 
Figure 1 ). Only one cluster of lifts is considered. (The 
formulae can be extended for buildings with two or more 
lift clusters). Theorem proofs are provided in Appendix 1. 

Theorem for single-floor trips 

Theorem 1." For evenly distributed rectilinear trips, the 
following are true: 

• The expected trip distance is one-sixth of the perimeter 
of the floor. 

• A square floor has a lower expected trip distance than 
any other rectangular floor. 

• If the length/width ratio of the floor is k, the expected 
trip distance is greater than that for a square floor of 
the same area by a factor of 0.5 (k :/2 + 1/k u2), which 
is called an inefficiency ratio. 

A few statistics are computed in Table I using the 
theorems for three sample single-floor building shapes. 

Five theorems for multiple-floor trips 

Theorem 2." If a rectilinear trip originates at an arbitrary 
point on a rectangular floor and ends at the centroid, 
the expected trip distance is one-eighth of the floor's 
perimeter. 

This gives the expected distance from an arbitrary point 
on a floor to lifts located at the centroid. 

Theorem 3: If a rectilinear trip originates at an arbitrary 
point on a rectangular floor and ends at a specific point 
that is a fraction x of the way along the length 0 of t h e  

floor, and a fraction y of the way along the breadth b of 
the floor, the expected trip distance is (x 2 - x + 0.5)g + 
(y2 _ y + 0.5)b. 

This gives the expected distance from an arbitrary point 
on a floor to a lift located at any fixed point. 

Theorem 4: An interfloor trip that originates on the lowest 
floor and ends on another, arbitrary, floor in a building 
with n floors travels an expected n/2 floors. 

Theorem 5: An interfloor trip that originates and ends 
on a different, arbitrary, floor of a building with n floors 
travels an expected (n + 1 )/3 floors. 

Corollary 1: The expected number of floors travelled is 
(m + 1 )/3 for trips travelled solely between the lower m 
floors. 

Corollary 2: The expected.number of floors travelled is 
(n - m + 1 )/3 for trips travelled solely between the upper 
(n  - m) floors. 

Table 1. S t m l i e  t ~ t t i l t ~  l e t  Ira, r e  f l t e m  of  Ulu t l  a r m  

Squarefloor R ~  floors 
(4 x 4) (8 x 2) (16 x l )  

Perimeter* 16.000 20.000 34.000 
Length/width ratio 1 : 1 4 : I t6 : 1 
Mean rectilinear trip distance* 2.660 3.330 5,660 
Inefficiency ratio 1.000 1.250 2.125 

[* The unit of distance is the length of  a module side.] 
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Theorem 6: In a building with n floors, the mean number 
of floors travelled in a trip between one of the lower m 
floors and one of the upper (n - m) floors is n/2. 

Theorem 4 is relevant for trips that originate at a 
building's ground floor, while Theorems 5 and 6 are 
relevant for travel within a building. Corollaries 1 and 2 
and Theorem 6 are relevant in buildings with two floor 
sizes, the lower m floors being larger than the upper 
(n - m) floors. 

Important assumptions lie behind these theorems. 
First, it is assumed that the lift speeds and wait times are 
targets that are achieved by the selection of the correct 
number and speeds of lifts, With few floors, a smaller 
percentage of the trips require a lift than for a building 
with many floors, and so a relatively lower lift capacity 
is required. Second, as these formulae assume evenly 
distributed trips, the interfloor lift times and wait times 
do not depend on the layout of a particular building 
shape. 

MEAN TRIP-TIME FORMULA 

The mean trip-time formula is derived below for 
rectilinear trips with evenly distributed and independent 
start and finish points. The user tests the formula for 
independent variable values of interest, given the four 
required data items. 

Independent variables: 

number of floors = n 

length/breadth ratio of each floor = k 

Required data: 

horizontal speed of people = h m/s  

vertical time of lifts = v s/floor moved 

expected wait time for lift = w s 

building area = A m 2 

Mean trip time: 

mean trip time 

= (mean trip time for trips that stay on one floor) 

x (proportion of trips that stay on one floor) 

+ { (mean trip time for trips going to and 

from lifts) 

+ (mean time in a lift) 

+ (mean time waiting for a lift)} 

x (proportion of trips that go to 

another floor) 

= {(AIn) l /2 /3}(k l /2  + l l k l / 2 ) ( 1 / h ) ( 1 / n )  

+ {(A/n) l /2/2}(kl /2  + 1/kl /2)(1/h){(n - 1)/n} 

Finding building shapes that minimize mean trip times 

x {v(n + 1 ) / 3 } { ( n -  1)/n} 

x w { ( n -  1)/n} 

This formula is developed in Appendix 2. 

DETERMINATION OF NUMBER OF 
FLOORS THAT MINIMIZES MEAN 
TRIP TIME 

The mean trip-time formula should be used for each 
contending number n of floors. The use of a spreadsheet 
program makes this a straightforward calculation. The 
program quickly reveals the optimal number of floors, 
and it permits sensitivity analysis, as demonstrated for 
the following public-utility company example. 

PUBLIC-UTILITY COMPANY EXAMPLE 

Data was collected so that the building shape that 
minimized the mean trip time could be found, and so 
that space could be allocated, for a new head-office 
building planned for a public-utility company. For this 
data, the mean trip time was the shortest for a 25-floor 
building (see Table 2). 

h = horizontal speed of people = 0.87 m/s  

v = vertical time of lifts 

w = wait time for lift 

A = building area 

Fixed decision variable: 

= 4 s/floor moved 

= 24s 

= 60000 m z 

k = length/breadth ratio of each floor = 4 

(constrained by real-estate shape). 

If the floor shape (represented by the k ratio) is a decision 
variable rather than a constant, the calculations should 
be repeated for contending ratios. The second point in 
Theorem 1 asserts that the lowest mean trip time is 
obtained with square floors (k = 1 ). 

BUILDINGS WITH TWO FLOOR SIZES 

Many multiple-floor buildings have more than one floor 
size. A building with upper floors that are smaller than 
the lower floors can have a faster mean trip time than a 
building of the same area with only one floor size. If the 
trips are equally distributed, the maximum difference is 
about 1%. To find some logic in this curious result, 
consider that the volumetric shape that allows the 
shortest mean trip time, when the trip is unencumbered 
by such entities as floors and walls, is a sphere. In a move 
towards reality via a requirement that the building's shell 
consist only of horizontal and vertical parts, with all the 
floors horizontal, and all the vertical travel taking place 
in a central lift, it may be conjectured that the optimal 
shape of the building is a series of cylinders, one for each 
floor, all of which have their center over the same point, 
but with floor areas that are small on the top and 
bottom floors, and largest on the middle floor. This shape 
is as close to a sphere as is practical. If no floor can be 
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Table 2. Results of public-utility company example 

Number Expected Expected Expected Expected Expected 
of total 1-floor time to time in time waiting 

floors trip time trip time and from lift lift for lift 

1 234.63 234.63 0.00 0.00 0.00 
2 221.38 82.95 124.43 2.00 12.00 
3 200.17 45.15 135.46 3.56 16.00 
4 184.30 29.33 131.98 5.00 18.00 
5 172.50 20.99 125.91 6.40 19.20 

10 142,38 7.42 100.16 13.20 21.60 
20 126.78 2.62 74.76 26.60 22.80 
22 126.08 2.27 71.62 29.27 22.91 
24 125.79 2.00 68.85 31.94 23.00 
25 125.77 1.88 67.57 33.28 23.04 
26 125.83 1.77 66.37 34.62 23.08 
28 126.15 1.58 64.13 37.29 23.14 
30 126.70 1.43 62.11 39.96 23.20 
40 131.88 0.93 54.26 53.30 23.40 
50 139.60 0.66 48.78 66.64 23.52 

larger than a lower floor (to keep the construction 
manageable), and just two rectangular floor sizes are 
permitted, the permissible shape that is closest to a sphere 
is the shape described in the second sentence of this 
paragraph. 

A formula is provided for computing the mean trip 
time within a building with two floor sizes, the smaller 
floors being at the top. 

Decision variables." 

number of floors = n 

number of larger-sized floors = m 

ratio of length to breadth on each floor = k 

ratio of area of larger floor to area of smaller floor = r 

Required data: 

horizontal speed of people = h m/s  

vertical time of lifts = v s/floor moved 

wait time for lift = w s 

building area = A m 2 

Expected time o f  one trip." 

Time = [{ ( A / ( m r  + n - m) ) l /2 /3} (M/2  + 1/kX/2)/h] 

x [(n -- m)/(mr + n -- m) 2] 

+ [ { ( r A / ( m r  + n - m))i/2/3} 

x (k 1/2 + 1 / k l / 2 ) / h ] [ m r 2 / ( m r  + n - m) 2] 

+ [ { ( A / ( m r  + n - m))~/2/2} 

x (k 1/2 + 1 /k l /2 ) /h ]  

x [(n - m)(n - m - 1 + mr) / (mr + n - m) 2] 

+ [ { ( r A / ( m r  + n - m))X/2/2} 

X (k U2 -F 1 / k l / 2 ) /h ]  

x [ m r ( m r - r + n - m ) / ( m r + n - m )  2] 

+ (w)[ (1- -  (mr z + n - -  m) / (mr  + n - -  m)2)] 

+ [v(n  - m + 1)/31 

x [ ( n - m ) ( n - m - l ) / ( m r + n - m )  2] 

+ [v (m + 1)/3] 

x [ ( m r Z ( m -  l ) / ( m r  + n -  m)2)] 

+ [ v ( n / 2 ) ] [ ( 2 m r ( n  - m ) / ( m r  + n - m)2)] 

This formula is developed in Appendix 3. An implemented 
spreadsheet, complete with formulae, is shown in Table 3. 
This spreadsheet can be used for buildings with one floor 
size by the number of larger-sized floors being set to 0, 
or to the total number of floors (i.e. either set m = 0, or 
r e = n ) .  

MEAN n i p  TIME 

A spreadsheet should contain the formula for the expected 
time of one trip, which has been reduced to contain only 
four decision variables n, m, k and r, with four data items 
w, v, h and A. Use a sequential univariate search by 
varying each variable through all (this is important) of 
its feasible values to find the shortest mean trip time 
while holding the other three variables constant. Then, 
vary the next decision variable. Cycle through the four 
decision variables repetitively until a cycle is completed 
in which no improvement in the mean trip time can be 
found. This obtains a local minimum, which is probably 
also the global minimum. Two of the variables are 
integers, and two are real numbers. When the real 
numbers are varied, a small interval of 0.10 should be 
used, as the response curve has a diagonal ridge. The use 
of a larger interval can lead to the ridge leading to the 
optimum being missed. Once this has been done, it pays 
to make a further check into a region where the true 
optimum, if it has been missed so far, always seems to 
lie. To do this, increase the values of m and n by 1, and 
increase r by 0.1. Then, repeat the search. 

To find out how likely this procedure is to find the 
optimum, an experiment was performed to see if the 
recommended procedure globally minimized the expected 
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Table 3. Spreadsheet and formulae for buildings with two floor sizes 

Spreadsheet format 

A B C D E F G H 
MEAN TRIP TIME IN BUILDINGS WITH FLOOR SIZES 

Decision variables: 27 n, number of floors 
21 m, number of larger-sized floors 
4 k, length/breadth ratio of each floor 

2.6 r, larger-floor area/smaller-floor area ratio 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Required data: 0.87 h, horizontal speed, m/s 
4 v, vertical speed, s/floor 

24 w, lift wait time, s 
60000 A, building area, m s 

Results : Floor areas: Small 990.10 
Trip components: Time Proportion Mean time 

Small-floor trip 30.14 0.00 0.05 
Large-floor trip 48.60 0.04 1.88 
To + from small-floor lift 45.21 0.10 4.40 
To + from large-floor lift 72.90 0.86 62.86 
Wait for lift 24.00 0.96 23.03 
Ride between small floors 9.33 0.01 0.08 
Ride between large floors 29.33 0.77 22.68 
Ride to other-sized floor 54.00 0.18 9.63 

Mean trip time, s: 124.61 

Large 2574.26 

Cell ID Formula 

D12 
D13 
DI4 
D15 
DI6 
D17 
D18 
D19 
El0 
El2 
El3 
El4 
El5 
El6 
El7 
El8 
El9 
FI2 
F13 
F14 
F15 
F16 
F17 
F18 
F19 
F20 
G10 

((C9/(C3, C5 + C2 - C3)) ^ 0.5/3),  (C4 A 0.5 + 1/C4 A 0.5)/C6 
+C5 ^ 0.5, D12 
+ D 1 2 , 3 / 2  
+ D 1 4 , C 5  ^ 0.5 
+C8 
+ C 7 , ( C 2 -  C3 + 1)/3 
+ C 7 ,  (C3 + 1)/3 
+ C7 * C2/2 
+ C 9 / ( C 2 -  C3 + C3 ,C5)  
( C 2 -  C3) / (C3,C5 + C 2 -  C3) A 2 
+ C 3 , C 5  A 2 / (C3,C5 + C2- .C3)  ^ 2 
(C2 - C 3 ) * ( C 2 -  C3 - 1 + C3"C5) / (C3"C5 + C 2 -  C3) ^ 2 
+ C3 * C5 * (C3 * C5 - C5 + C2 - C3 )/(C3 * C5 + C2 - C3) A 2 
1 -- (C3,C5 ^ 2 + C 2 -  C3) / (C3,C5 + C 2 -  C3) A 2 
( C 2 - C 3 ) * ( C 2  - C 3 -  1) / (C3,C5 + C 2 - C 3 )  ^ 2 
+ C 3 , C 5  ^ 2 , (C3  - 1) / (C3,C5 + C 2 -  C3) A 2 
2 ,  C3 * C5 * (C2 - C3)/(C3 * C5 + C2 - C3) ^ 2 
+D12*E12 
+D13*E13 
+D14*E14 
+D15*E15 
+D16*E16 
+DI7*E17 
+D18*E18 
+D19*E19 
@SUM(FI2. .F19)  
El0* C5 

I-Items to be input are shown in bold typeface.] 

trip time for any specific set of variables required. For 
each of 43 197 problems (different combinations of the 
four data variables), two searches were conducted to find 
the best combination of the four decision variables. One 
was the sequential univariate search described above. 
The other was an enumerative search that considered 
64 000 combinations of decision-variables values. Thus, 
2 764 608 000 combinations of data variables and decision 
Variables were calculated. Of the 43 197 problems, both 
procedures obtained the optimal mix of decision-variable 
values for 43 100 problems. Of the other 97 problems, 
the sequential univariate search found a solution that 
was, at worst, 0.01% above the global optimum. Also, 
in all 97 cases, it was observed that, if n and m are 
increased by 1, and r is increased by 0.1, above the local 
optimal, and a univariate sequential search is resumed 

f r o m  there ,  a g l o b a l  o p t i m u m  is found .  Th i s  jus t i f ies  t h e  

u s e  of  the  m o d i f i e d  u n i v a r i a t e  search ,  wh ich  has  the  

d i s t inc t  a d v a n t a g e  o f  be ing  ab le  to  be  eas i ly  a n d  qu i ck ly  

execu t ed  on  a sp readshee t .  

PUBLIC-UTILITY BUILDING: 
TWO FLOOR SIZES 

F o r  the  a rea ,  m o v e m e n t  t imes  a n d  k r a t io  o f  the  

s ingle f loor -s ize  e x a m p l e ,  the  b u i l d i n g  shape  wi th  t he  

l owes t  m e a n  t r ip  t ime  has  27 f loors ,  21 b e i n g  o f  the  l a rge r  

size, a n d  a r a t i o  o f  the  l a rge r  f l oo r  a r e a  to  the  sma l l e r  

f loo r  a r e a  o f  2 .6:  1. T h e  m e a n  t r ip  t i m e  is 124.61, wh ich  

is 0 . 9 2 %  be t t e r  t h a n  c a n  be  a c h i e v e d  in a b u i l d i n g  in 

wh ich  al l  the  f loors  h a v e  the  s a m e  area .  W h e n  the  n u m b e r  

o f  f loors  is va r i ed ,  t he  m e a n  t r ip  t ime  c h a n g e s  in the  
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Table 4. Results of example of public-utility company with two floor sizes 

Number of Mean trip time Comments 
larger floors 

27 125.96 All floors equally sized 
25 125.20 
24 124.94 
22 124.64 
21 124.61 Fastest trip 
20 124.67 
15 126.16 
10 129.40 
5 132.35 
4 132.38 Slowest trip 
3 131.97 
2 130.95 
1 129.06 
0 125.96 All floors equally sized 

interesting nonlinear way shown in Table 4 for a 27-floor 
building with a k ratio of 4 and a ratio of the larger floor 
area to the smaller floor area of 2.6: 1. 

C ~ A R M t ~ ) N  OF R ~ T S  OF ~ Y O U T  
AND SPREAD6HEET A ~ O A C H E S  

Does the new spreadsheet method produce a building 
shape that is similar to that produced by the layout 
approach ? This is a potentially awkward question, as, if 
the results were different, it would be difficult to determine 
whether the problem lay in the spreadsheet assumptions 
or in the effectiveness of the ability to search with 
the more cumbersome layout methods used for each 
contending building shape. 

In the case of the public-utility building, Johnson's 
SPACECRAFT 4, a layout-based approach that was improved 
by an unpublished layout-generating procedure that 
made it a constructive, followed by an improvement, 
procedure, identified that 25 floors were best when all 
the floors were the same size. The same conclusion was 
drawn by the spreadsheet method. When two floor sizes 
were permitted, the results of the two procedures were 
in the same ballpark, but were not precisely the same. 
Of the 21 building configurations examined by the 
layout-based method, the best one according to the 
formulae was the seventh best according to the layout 
method. The best according to the layout method was 
the second best according to the formulae. 

This result indicates that interdepartment traffic 
patterns have some impact on the optimal building shape 
when two floor sizes are permitted. Otherwise, the 
spreadsheet and the layout-based method arrive at the 
same optimum. In the presence of a specific and lasting 
traffic pattern, a shortening of the mean trip time may be 
achieved by the careful selection of the building shape 
and the careful determination of the layout of depart- 
ments. To obtain a saving, the recommended procedure 
is to reach the ballpark of best configurations by the use 
of the spreadsheet formula, and to refine the building 
shape by the inputting of traffic-volume data into a 
layout-based constructive layout generator. If only one 
floor size is contemplated, the spreadsheet formulae are 
likely to give sufficiently accurate results. Either approach 

is likely to derive a considerably more efficient building 
than that obtained if the question of internal traffic is 
ignored. 

FUTURE RESEARCH: SHAPING 
BUILDINGS WITH MULTIPLE CRITERIA 

Considerable analysis and judgement is required in the 
blending of the several criteria relevant to the shaping of 
a building. Immediate costs include real-estate and 
construction costs, and ongoing costs include energy and 
traffic costs, and property taxes. Uncertainty of future 
use is an issue. In case the building is to be sold or leased 
some day, it should be located and sized in a way that 
is in demand. The patterns of use of most buildings change 
over time. A further difficulty in relation to the building- 
shape decision is that of obtaining enough information. 
The estimation of energy and construction costs for 
contending building shapes is time-consuming and 
expensive. Also, as the analysis becomes more careful, 
so does the need for data accuracy. At what point should 
the search for a better configuration stop ? The shaping 
of buildings is an art that can utilize many scientific 
results, including the results offered in this paper. More 
research is needed for the shaping of buildings to become 
a science. 
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APPENOIX 1 

Theorem ] (first point): First, it is proven that the 
expected distance of a trip with random start and finish 
points within a unit length is one-third of the length, Let 
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x and y be random points on a straight line between 0 
and 1, with both points following independent uniform 
distributions. By symmetry, P(x > y) = 0.5. 

E ( x -  y l x  > y) = ((x - y )p(x)p(y)dydx /  

P(x > y) 

;ofo = (x - y) dydx/0.5 

(as p(x) = p(y)  = 1 ) 

= ~o (x2/2) dx/0.5 

= (1/6)/0.5 

= 1/3 

As rectilinear distances can be split into length and 
breadth components, the components can be added. The 
above proof applies to length and breadth distances, 
proving that the expected trip distance is one-sixth of the 
perimeter. [] 

Theorem 1 (secondpoint): Let the floor's length be g and 
its breadth be b. The area A = gb, and the mean trip 
distance = (g + b)/3 = [(g + A/g)/3] and d/dg{(0 + 
A/g)/3} = 1/3 - Ag-2/3. d/dg = 0 being set to find an 
extreme point, 0 = At/2. This implies that b = A t/z, 
proving the second point of Theorem 1. [] 

Theorem 1 (thirdpoint): Let the floor's length be O and 
its breadth be b. The area A = gb. Also, k = g/b. These 
being solved, g = (Ak)1/a and b = (A/k)1/2. The appli- 
cation of these to the second point of Theorem 1 results 
in an expected trip distance of ((Ak) 1/2 + (A/k)  1/2 )/3 = 
(Al/2/3)(kl/2 + 1/kl/2). On a square floor, k = 1. The 
inefficiency ratio is therefore (At/2/3)(kl/2+ 1/kt/2)/ 
[ (A1/2/3)(1 + 1 )] = 0.5 (k 1/2 + 1/k 1/2 ), proving the third 
point of Theorem I. [] 

Theorem 2: Let the floor's length be g and its breadth 
be b. The mean lengthwise trip distance is half of the 
distance from the centroid to the end of the row, or 0/4. 
Similarly, the breadthwise distance is b/4. For rectilinear 
movement, summing obtains the desired result. [] 

Theorem 3: Let the floor's length be g and its breadth 
be b. The area A = gb. The rectilinear distance is split 
into lengthwise and breadthwise components. Consider 
lengthwise movement, where the fixed point is at xg. The 
proportion of trips that originate at a coordinate lower 
than xg is x, and the mean distance is xo/2. Therefore, 
the expected distance is x20/2. The proportion of 
trips that originate at a coordinate greater than xg is 
(1 - x), and the mean distance is (1 - x )0/2. Therefore, 
the expected distance is ( 1 - x ) 2 g / 2 .  The expected 
lengthwise distance overall is x20/2 + ( 1 -  x)20/2 = 
(x 2 - x  +0 .5)0 .  By similar reasoning, the expected 
breadthwise movement is (y2 _ y + 0.5)b. [] 

Finding building shapes that minimize mean trip times 

Theorem 4: Trips from the lowest floor (call this Floor 
1) to Floors 2, 3 . . . .  , n cover 1, 2 . . . . .  ( n -  1) floors, 
respectively. The expected number of floors travelled is 
therefore (1 + 2 + . . .  + ( n -  1 ) ) / ( n -  1) = ( n -  1)(n/ 
2)/(n - 1) = n/2, proving Theorem 4. [] 

Theorem 5: The proof of Theorem 5 is carried out by 
mathematical induction. For n = 2, the mean trip 
distance is one floor, as this is the only possible trip 
distance. This is predicted by the formula, as (2 + 1 )/3 = 1. 
Assume that the mean trip distance in a building with n 
floors is (n + 1 )/3 floors. If one floor is added, the mean 
distance from the (n + 1)th floor to other floors is 
(n + 1 )/2. There are n(n - 1 )/2 routes between n floors. 
Therefore, the mean over all (n + 1 ) floors is { (n(n - 1 )/2) 
(n + 1)/3 + n(n + 1)/2}/{(n + 1)(n/2)} = (n + 2)/3, 
proving the formula for (n + 1 ) floors. This completes 
the proof of Theorem 5. [] 

Corollary 1: Corollary 1 is proved by the application of 
Theorem 5 to the m larger floors. [] 

Corollary 2: Corollary 2 is proved by the application of 
Theorem 5 to the (n - m) smaller floors. [] 

Theorem 6: Under the constraint m = 1, the proof of 
Theorem 6 is complete by the application of Theorem 4. 
Next, it is shown by mathematical induction that the 
formula applies for any value of n, 1 < m ~< n. The total 
number of trips is counted, with there being one trip 
between each pair of floors. Double counting is avoided 
by the consideration only of trips from the smaller floors 
to the larger floors. It is assumed that the formula is true 
for m larger floors. The number of larger floors is 
increased to m + 1 by conversion of the lowest smaller 
floor to the highest larger floor. This has three effects: 
(a) the total number of trips between floors of different 
sizes changes from m(n - m)to  (m + l ) (n  - m - 1), (b) 
the reduced total of floors travelled between the converted 
floor and larger floors is 1 + 2 + . . .  + m = m(m + 1)/2, 
and (c) the increased total of floors travelled between 
the converted floor and smaller floors is 1 + 2 + . . .  + 
( n - m - 1 ) = ( n - m - 1 ) ( n - m ) / 2 .  With m large 
floors, the total floors moved = (n/2)(m)(n - m). With 
(m + 1) large floors, the total floors moved = (n/2)(m) 
( n -  m ) -  m(m + 1)/2 + ( n -  m -  1 ) ( n -  m)/2 = (n/2) 
( m +  1 ) ( n - m - I ) .  From this, the mean number 
of floors in a trip are computed by (n/2)(m + 1) 
(n - m - 1) / [ (m + 1)(n - m - 1)] = (n/2),  proving 
the formula for m + 1 larger floors, and hence proving 
Theorem 6. [] 

APPENDIX 2 

Development of mean trip-time formula: 
single floor size 

Derived expressions 
area of each floor = A/n 
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length g of each floor = ( A k / n )  1/2 

breadth b of each floor = ( A / k n ) ~ / z  

proportion of trips that go to another floor 

= ( n  - 1 ) / n  

proportion of trips that stay on one floor 

= 1/n  

mean distance of a trip that stays on one floor 

= (g + b ) / 3  

(from Theorem 1, first point) 

= { ( 4 / n ) l / 2 / 3 } ( k  I/z + 1 / k  1/2) 

(from Theorem 1, third point) 

mean time of a trip that stays on one floor 

= { ( A / n ) t / z / 3 }  

x (k 1/2 + 1 / kX /2 ) (1 /h )  

mean distance to lifts = (g + b ) / 4  ( f romTheorem2)  

= { ( A / n ) l / Z / 4 } ( k  1/2 + 1 / k  1/2) 

(from Theorem 1, third point) 

mean time going to and from lifts 

= { ( A I n ) l / 2 / 2 }  

x (M/z + l l k ' 1 2 ) { l l h }  

mean time in a lift = v(n + 1)/3 ( f romTheoremh)  

mean time waiting for a lift 

= W  

Mean trip time 
Mean trip time = (mean trip time of trip that stays on 

one floor) 

× (proportion of trips that stay on 

one floor) 

+ { (mean trip time of trip going to 

and from lifts) 

+ (mean time in a lift) 

+ (mean time waiting for a lift)} 

x (proportion of trips that go 

to another floor) 

= { ( A / n ) t / z / 3 } ( k  1:2 + 1/kX/2) (1 /h) (1 /n)  

+ { ( A / n ) l / 2 / 2 }  

x (k x/2 + 1 / k l / 2 ) ( 1 / h ) { t n -  1)/n} 

+ {v (n  + 1 ) / 3 } { ( n -  1) /n  } 

+ w { ( n -  1)In} 

APPENDIX 3 

Development of mean trip-time formula: 
two floor sizes 

Derived expressions 
area of each smaller floor 

= A / ( m r  + n -  m)  

area of each larger floor 

= r A / ( m r  + n -  m)  

g = length of smaller floor 

= ( A k / ( m r  + n - m ) )  1/2 

(as gb = a/(rnr  + n - m)  and k = g / b )  

b = breadth of smaller floor 

= ( A / ( k ( m r  + n - m ) ) )  1/2 

length of larger floor 

= ~g 1/2 

= ( r A k / ( m r  + n - In)) 1/2 

breadth of larger floor 

= brl/2 

= ( r A / ( k ( m r  + n - rn))) 1/2 

t 1 = mean time of trip that stays on smaller floor 

= (g + b ) / ( 3 h )  (Theorem 1, first point) 

= { ( A / ( m r  + n -- r n ) ) l / 2 / 3 } ( k l / 2  + 1 / k l / 2 ) / h  

t2 = mean time of trip that stays on larger floor 

= { ( r A / ( m r  + n - m ) ) l / z / 3 } ( k  1/2 + 1 / k l / 2 ) / h  

t3 = mean time of trip going to and from lift on 
smaller floor 

= 2(g + b ) / ( 4 h )  (Theorem 2) 

= { ( A / ( m r  + n - m ) ) l / z / 2 } ( k  1/z + 1 / k l / 2 ) / h  

t4 = mean time of trip going to and from lift on 
larger floor 

= { ( r A / ( m r  + n - r n ) ) l / 2 / 2 } ( M / 2  + I / U / Z ) / h  

ts = mean time waiting for a lift 

= W  

t6 = mean time in lift on trip between smaller floors 

= v (n  - m + 1 )/3 (Theorem 6) 

t7 = mean time in lift on trip between larger floors 

= v ( m  + 1 )/3 (Theorem 6) 

t8 = mean time in lift on trip between floors of 
different size 

= v ( n / 2 )  (Theorem 6) 

proportion of trips that start on each smaller floor 

= l / ( m r  + n - m) 
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proportion of trips that start on each larger floor 

= r /(mr + n - m) 

p~ = proportion of trips that stay on one of the ( n  - m) 
smaller floors 

= ( n -  m ) / ( m r  + n - m )  2 

P2 = proportion of trips that stay on one of the m 
larger floors 

= m r 2 / ( m r  + n -  m)  2 

Pa = proportion of trips from smaller floor to any 
other floor 

= ( n - m ) ( n - m -  I + m r ) / ( m r + n - m )  2 

P4 = proportion of trips from larger floor to any 
other floor 

= m r ( m r -  r + n -  m ) / ( m r  + n -  m) 2 

proportion of trips that stay on one floor 

= ( n -  m ) / ( m r  + n - m) 2 + m r E / ( m r  + n -  m) 2 

= (mr 2 + n - m ) / ( m r  + n -  m)  2 

P5 = proportion of trips that go to another floor 

- - 1 - ( m r  2 + n - m ) / ( m r + n - m )  2 

P6 --- proportion of trips that start on smaller floor and 
end on another smaller floo.r 

-- (n - m ) ( n  - m - 1 ) / ( m r  + n - m)  2 

P7 = proportion of trips that start on larger floor 
and end on another larger floor 

= m r 2 ( m -  1)/(mr + n- -  m):  

Ps = proportion of trips that are between floors 
of a different size 

2 m r ( n  - m ) / ( m r  + n - m)  2 

Finding building shapes that minimize mean trip times 

Expected time of one trip 
time = t i p  ~ + t2p 2 

+ 

+ 

+ 

= [ {  

× 

(trips within one floor) 

t3P3 + t4P4 (to and from lifts) 

t sp  5 (waiting for lift) 

t6p 6 + t7p 7 + t sp  s (riding lift) 

( A / ( m r  + n - m ) ) l / 2 / 3 } ( k 1 / 2  + 1 / k l / 2 ) / h ]  

[ ( n -  m ) / ( m r  + n -  m) 2] 

+ [ { ( r A / ( m r  + n - m ) ) l / : / 3 } ( k  1/2 + 1 / k t / 2 ) / h ]  

x [ m r 2 / ( m r  + n - m) 2] 

+ [ { ( A / ( m r  + n - m ) ) t / 2 / 2 } ( k  1/2 + 1 / k l / 2 ) / h ]  

x [ ( n - m ) ( n - m -  1 + m r ) / ( m r + n - m )  2] 

+ [ { ( r A / ( m r  + n - m ) ) l / 2 / 2 } ( k  1/2 + 1/k l /2) /h ']  

x [ m r ( m r - r + n - m ) / ( m r + n - m )  2] 

+ (w)[(1 -- (mr  2 + n -  m ) / ( m r  + n -  m)2)] 

+ i v ( n - -  m + 1)/3] 

x [ ( n - -  m ) ( n - -  m - -  l ) / ( m r  + n -  m):]  

+ [ v ( m  + 1 ) / 3 ] [ ( m r 2 ( m -  1)~(mr + n -  m ) 2 ) ]  

+ [ v ( n / 2 ) ] [ ( 2 m r ( n - -  m ) / ( m r  + n - -  m)2)] 
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