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On the basis, of the condition for demouldability, two levels of 
visibility, complete and partial visibility, are defined. The viewing 
directions from which a surface is completely visible can be 
represented as a convex region on the unit sphere called the 
visibility map of the surface. Algorithms are given for dividing 
a given object into pockets, for which visibility and demould- 
ability can be determined independently, for constructing 
visibility maps, and for selecting an optimal pair of parting 
directions for a mould that minimizes the number of cores. An 
example illustrates the algorithms. 
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In die casting and injection moulding ~-4, a basic mould 
consists of two plates that form an impression into which 
molten material is injected. The surfaces on the two plates 
that meet to form a seal when the mould closes are the 
parting surfaces; the pair of opposite directions along 
which the two plates of the mould separate are the partino 
directions (see Figure 1). Recesses or projections on the 
moulded piece that prevent its removal from the mould 
along the parting directions are called undercuts. 
Depending on the types of undercut, different manu- 
facturing devices are used: external recesses and 
projections are formed by using side cores and side 
cavities; internal undercuts are formed by using mould 
pins or inserts. An example of an object requiring a side 
core for an external recess is shown in Figure 2. Here 
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and after, the general term core is used to refer to a side 
cavity, a side core, a mould pin, or an insert. 

The selection of the parting directions and parting 
surfaces is important, because it dictates the number and 
the shapes of cores, and affects all the subsequent steps 
in the design of a mould. Because the use of cores increases 
tooling costs, complicates the operation of the mould, 
and slows down the process, a general rule is emphasized 
in the literature 1'2'5 that parting directions should be 
selected so that the number of cores is kept to a minimum. 
However, the automation of this step has received little 
attention in the past. Of the few examinations reported, 
the parting surface is restricted to a plane by assuming 
that the parting direction is along one of the three 
principal axes 6-s, or selected from a set of randomly 
generated directions 9. A drawback of these approaches 
is the impossibility of knowing whether a feasible parting 
direction exists at all, and, if more than one exists, whether 
one is better than the others. Heuristically generated 
candidate parting directions that consist of the normals 
of planar faces and the axes of cylindrical surfaces of the 
given object are also reported 1°. The feasibility of a 
parting direction is verified by checking sample points 
on the object for obstruction in the candidate direction. 

In this paper, a deterministic method is developed for 
finding an optimal pair of parting directions. Given the 
geometry of an object, depending on the selection of the 
pair of parting directions, a different number of cores 

--, parting 
directions 

Figure 1 Example of mould and corresponding parting directions 
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Figure 2 Example of object requiring side core for external recess 

may be required. 'Optimal' denotes minimizing the 
number of required cores. 

Problem PPD (pair of parting directions): Given an 
object, find a pair of opposite parting directions that 
minimizes the number of cores. 

Basic to problem PPD is the condition for demouldability. 
A surface is demouldable along a certain direction if the 
entire surface does not contain any undercut. This 
condition is satisfied if the entire surface can be 
illuminated by parallel rays in the parting direction, i.e. 
if the entire surface is visible to parallel rays in the parting 
directions. Cores are required for the portions not 
illuminated by the parallel rays. The second section 
further defines the relation between demouldability and 
visibility, and discusses the domain of objects covered. 
With the development of visibility maps on the Gaussian 
sphere, the third section transforms problem PPD to the 
maximal covering of spherical polygons by a point, 
followed by an algorithm. The fourth section illustrates 
the algorithm with an example. 

V I S I B I L I T Y  A N D  D E M O U L D A B I L I T Y  

Given an object f~, a point p on the boundary of t) is 
visible to an exterior point q if no part of the line segment 
pq lies in the interior 11,12 of t). Extending the notion of 
point visibility, a surface S on Q is completely visible to 
an exterior point q if every point on S is visible to q; S 
is partially visible to q if at least one point on S is visible 
to q; S is not visible to q if no point on S is visible to q. 
The visibility of a surface in a viewing direction can then 
be defined through a limiting process. As the point q is 
moved away from S towards infinity, line segments 
connecting points on S and the point q approach being 
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parallel. Indeed, in projective geometry 13.t4, a viewing 
direction d is a point at infinity, and rays reaching points 
on S in the direction d are line segments connecting the 
point d at infinity and points on the surface. Thus, a 
surface has two levels of visibility with respect to a viewing 
direction. 

Definition 1 (complete visibility): A surface S on a 
polyhedral object t) is completely visible in a viewing 
direction d if, for every point p on S, the ray starting 
from infinity to p in the direction d does not intersect 
the interior of Q. 

Definition 2 (partial visibility): A surface S on a 
polyhedral object f2 is partially visible in a viewing 
direction d if there exists at least one point p on S such 
that the ray from infinity to p in the direction d does not 
intersect the interior of f~. 

These two levels of visibility are illustrated in Figures 3 
and 4. By definition, if a surface is completely visible in 
a viewing direction, then it is also partially visible in the 
same direction. 

The condition for demouldability can now be formulated 
by examining the trajectory formed by a surface upon its 
removal from the mould. When a surface S is removed 
from the mould along a parting direction d, the trajectory 
of each point on S forms a ray from the point to infinity 
in the direction d. Let ~ denote the set of all rays formed 
by the trajectories of points on S. Then, S is removable 
from the mould if none of the rays in ~ intersects the 
mould. This condition for the demouldability of a surface 
S along a parting direction d coincides with the condition 
for the complete visibility of S in a viewing direction - d .  
Thus, given the surfaces on the object, and, for each 
surface, the corresponding set of viewing directions from 
which the surface is completely visible, problem PPD can 
be solved by selecting a pair of opposite directions that 

Figure 3 Complete visibility and demouldability 

Figure 4 Partial visibility and use of cores 
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maximizes the number of surfaces that are completely 
visible from the pair of viewing directions. 

The complete visibility of a surface can be destroyed 
owing to local interference, parts of the same surface, or 
global interference by other surfaces of the object. The 
set of viewing directions in which the visibility of a surface 
is free of any local interference can be computed and 
represented as a spherically convex region called the 
visibility map of the surface. 

Local interference and visibility map 

A surface can be mapped onto the unit sphere by 
translating the normal at every point of the surface to 
the origin, and then intersecting it with a unit sphere 
centred at the origin. This process, developed by Gauss, 
is called Gaussian mapping, and the spherical representation 
of the surface thus obtained is called the Gaussian map 
(or GMap) of the surface 15. The GMap of a polyhedron 
consists of a finite number of spherical points, whereas 
the GMap of a curved surface is, in general, a spherical 
region. 

Locally, a point on a surface is visible from more than 
a single viewing direction. Let n be the normal and T be 
the tangent plane at a point p on a surface S. The point 
p is visible from all the directions up to a hemisphere, 
with n being at the 'north pole' and T being the 
'equatorial' plane. As there are many points on the 
surface, the intersection of these hemispheres consists of 
all the directions from which the entire surface is locally 
visible. The resulting spherically convex region is called 
the visibility map (or VMap) of the surface. Any point in 
the VMap corresponds to a direction from which the 
entire surface is locally visible. Examples of surfaces and 
their corresponding GMaps and VMaps are shown in 
Figure 5. It is intuitive that the more 'complicated' the 
surface is, the larger the GMap is and the smaller the 
VMap is. This 'inverse' relation between the two maps 
is succinctly illustrated by the point-hemisphere duality 
shown in the first two rows of Figure 5. It may also be 
noted that the VMap may be empty, as shown in the last 
row of Figure 5. The VMap of a surface can be computed 
by using the O(n log n) time algorithm given in Reference 
16 for intersecting a set of n hemispheres corresponding 
to n sample points on a surface. 

Global interference and pockets 

It is self-evident that the surfaces of a convex object suffer 
no global interference. However, not all objects and, in 
particular, surfaces are convex. The notion of a pocket is 
useful for detecting global interference. Let CH(I]) denote 
the convex hull of an object Q. If a surface S of t~ also 
belongs to CH(fl), then S is completely visible. Let Pl ,  
P2 . . . . .  Pm be the set of polyhedra that result from taking 
the regularized difference 17 between CH(I)) and f~, 

Surface 

& 

Figure 5 
VMaps 

GMap VMap 

( / / )  

Examples of surfaces and their corresponding GMaps and 

denoted by CH(fl) - * f Z  Each polyhedron/~ is called a 
sealed pocket of fl, and consists of two types of surfaces: 
those that belong to CH(f~) but not to f~, and vice versa. 
The former are called the lid surfaces, as they form lids t 
that seal the pocket, which is formed by the latter type 
of surface, called pocket surfaces. Let Lid(/~) and 
Pocket(/~) denote the lid surfaces and the pocket surfaces 
of /~v An example of an object, its convex hull, the 
corresponding sealed pockets, and pockets are given, 
respectively, in Figures 6a-d. Effectively, a single object 
is decomposed into disjoint subsets, each of which is 
amenable to processing for visibility. The fact that the 
visibility of the points in a pocket can be considered 
independently of that of the other pockets is now 
considered. 

Lemma 1: If the visibility of a point p in a sealed pocket 
Pi in the viewing direction d is not interfered with by any 
surface in Pocket(P/), then the point p is visible in the 
viewing direction d. 

Proof." Let q be the first intersection point of the ray that 
is emitted from the point p in the direction - d  with 
surfaces of the sealed pockets PI, P2,.. . ,  Pro" The point 
q must lie on a surface of/~i, since, if q is on a face of 
/~j, j ~ i, then a line segment L can be constructed such 
that L is a subset of CH(I)) - * Q  and connects/~i and 
Pr  This contradicts the fact that Pi and/~j are disjoint. 

If q lies on a surface S in Pocket(/~i), then the visibility 
of p is blocked by the pocket surface S. Otherwise, if q 
lies on a surface in Lid(Pt), then, by construction, q is 

, It is noted that a pocket may require more than one lid to be sealed off. 
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(b) (c) 
Figure 6 Object; (a) object, (b) its convex hull, (c) corresponding sealed pockets, (d) pockets 

(d) 

visible in the viewing direction d. Thus, p is also visible 
in the viewing direction d. [] 

When Q is a polyhedral object with n faces, its convex 
hull CH(Q) can be computed in O(n log n) time 18'19, and 
the regularized difference between CH(Q) and Q can be 
determined in O(n log n) time 2°. Hence, the set of sealed 
pockets can be identified in O(n log n) time. The set of 
pockets can be identified in an additional O(n) time. The 
set of directions from which a pocket is completely visible 
and thus demouldable is the VMap of the surface, which 
can be computed as described in the section above on 
visibility maps. 

P A R T I N G  D I R E C T I O N S  

Problem PPD seeks a pair of opposite directions such 
that the number of cores is minimized. As described 
previously, a set of pockets ~ = PI, P2 . . . . .  P,, can be 
extracted from [2, where Pi = Pocket(P~). Let ~M¢ = 
{VM(PO, VM(P2) .... , VM(P,.)} denote the correspond- 
ing visibility maps, which are assumed to be nonempty. 

For a pair of opposite directions d and - d ,  ~ can be 
divided into three subsets, ~' +, ~ -  and ~0, which consist 
of those surfaces completely visible from d, those 
completely visible from - d ,  and those not completely 
visible from either d or - d ,  such that 

de N VM(Pi) 
Pl¢~ + 

and 

- d ~  ('] VM(P~) 
P i ~ -  

With d and - d as parting directions, surfaces in ~ ÷ and 
- can be incorporated into the mould, while surfaces 

in ~o  require cores. This suggests a way of determining 
the number of cores, by counting the number of surfaces 
in #o. 

Since the VMaps are spherically convex polygons, and 
a pair of opposite directions can be represented as 
antipodal points that are diagonally opposed*, problem 

*Two spherical points p and q are called antipodal if q = - p .  The 
point q is called the antipode of p, and vice versa. 

Figure 7 Spherical polygon covering by antipodal points 

PPD can be formulated as a spherical polygon covering 
the problem. Figure 7 shows five spherically convex 
polygons Vx . . . . .  V5 and a pair of antipodal points p and 
- p .  As any point p in the intersection of the spherical 
polygons (e.g. VI c~ V2 c~ 1/3) denotes a direction in which 
the corresponding surfaces (e.g. $1, $2 and $3) are 
completely visible, problem PPD becomes one of locating 
a pair of antipodal points such that they are contained 
in (or covered by) the maximal number of VMaps. The 
surfaces corresponding to VMaps not covered by the pair 
of points would then require cores. 

Problem (spherical polyoon coverin# by antipodes): Given 
a set of spherically convex polygons V 1, V2 . . . . .  Vm, find 
a pair of antipodal points p and - p  that maximize the 
number of V~ containing either p or - p .  

A pair of antipodes may be thought of as a single point 
if the polygons can somehow be 'mirrored' spherically. 
Let ~ denote the given set of spherically convex polygons. 
A duplicate set of spherically convex polygons - ~  
consisting of polygons opposite t to those in ~ is 
introduced. If a point p lies in the common intersection 
of the spherically convex polygons V~ and - V~, then the 

*Let V be a k-sided spherical polygon with vertices Pl, P2 . . . . .  Pk, in 
that  order. Then, the opposite of V is another  spherical polygon - V 
with vertices qx, q2 . . . . .  qk, in that  order, where ql is the antipode ofp~. 
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point p lies in V~, and its antipode - p  lies in Vj. This 
observation leads to an alternative formulation of 
problem PPD, as follows. 

Problem (spherical polygon covering by a point)." Given 
a set of spherically convex polygons V~, V 2 . . . . .  Vm, -- V1, 

- -  V 2 . . . . .  -- V m, find a point p that maximizes the number 
of polygons containing p. 

Thus, problem PPD can be solved by finding a maximally 
covered point, through a spherical partition induced by 
the given set of polygons. 

Each point p on the sphere can be assigned an 
ownership vector u(p), where 

u(P)=(ul(P),  ue(P) . . . .  , Um(P)) 

and 

1 peV~ 

u~(p)= - 1  p e - V ~  

0 otherwise 

The vector u(p) thus keeps track of the polygons covering 
p. Define two points p and q to be equivalent if u(p) = u(q). 
Then, a cell in the partition is the largest 2D connected 
subset of equivalent points. Let the ownership vector of 
a cell K be the same as that of any point in K, i.e. 

u ( K ) = u ( p )  

for any p e K. 
Two adjacent cells and their ownership vectors are 

shown in Figure 8. It is observed that the ownership 
vectors of two adjacent cells differ by exactly one element: 
the polygon whose edges separate the two cells. Thus, 
given the ownership vector of a cell, the ownership vector 
of the other cells can be obtained through propagation 
by using the adjacency relations among them. 

Since the polygons covering a cell are recorded by its 
ownership vector, a maximally covered point can be 

\ 

Figure 8 Two adjacent cells and their ownership vectors 

(0, O, 1, O, O) 

(0, 1, 1, O, O) 

found by traversing the cells in the partition and selecting 
a point in a cell K that maximizes the value [u(K)[, where 

lu(K)l : ~ lu~(K)l 
i = 1 

This leads to the following algorithm: 

Algorithm (spherical polygon covering by a point) 

Input: A set of polygons :~ = { V 1 . . . . .  Vm, - I/~ . . . . .  - Vm} 

Output: A point p that maximizes the number of 
polygons containing it 

(1) Compute the spherical partition induced by the 
polygons in ~ .  

(2) Select a maximally covered point p: 
Compute the ownership vector u(Ko) for an 
arbitrary cell K o. 
max_vector ~- u(Ko), max_covered_cell *- K o 
K ,-- Ko, u(K) ~- u(Ko) 
Perform a del~th-first search of the partition. 
for each cell K ~ Ko do 

Compute u(g) by updating u(K). 
if [max_vectorl < ]u(/~)[ then 

max_vector ,-- u(g),  
max_covered_cell ~ 

K ~ K, u(K) ~ u(K.) 
p ~ a point in max_covered_cell 
Output p. 

Let n i denote the number of vertices of the spherically 
convex polygon V~ and let n = Z. ~ ,= 1 nv Then, Steps 1 and 
2 require O(nm log m) time and O(nm) time, respectively. 
Thus, the time complexity of the spherical polygon cover 
by a point algorithm is O(nm log m). 

EXAMPLE 

The selection of parting directions using the spherical 
polygon covering by a point algorithm is shown with the 
object in Figure 6. Figure 9 shows the four pockets $1, 
$2, $3 and $4 of the object and their corresponding 
VMaps V1, V2, V 3 and V 4, where V I and V 2 are quadrants 
of the Gaussian sphere, I/3 is a spherical rectangle, and 
V4 consists of a single point at the south pole. The 
spherical partition induced by the polygons I/1, V2, V3, 
V4, --V1, -V2, -V3, and - V  4 is shown in Figure 10, 
where d is a maximally covered point that lies in Vx, V 2 
and -1/4. Choosing d and its opposite - d  as parting 
directions, Sx and $2 are completely visible from d, and 
$4 is completely visible from - d .  Thus, S~, $2 and $4 
can be incorporated into the mould, while $3 requires 
the use of a core. In Figure 10, another maximally covered 
point is d', which lies in - V x, - V 2 and V 3. By choosing 
d' and its oppos i te -d '  as parting directions, the surfaces 
S1, S 2 and $3 can be incorporated into the mould, whereas 
the surface $4 requires the use of a core. The spherical 
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Figure 9 Pockets of object in Figure 6 and their corresponding VMaps 

d--* weighted sum 

Figure 10 
opposites 

: iiiiiii!!ii ii iiiiiiii!iiiiiiiiiiiiii i!ii 

::::::::::::::::::::: :.:.:~;~;~!~i;!~:~:~.? :+:+:':" 

................... 

Spherical partition induced by VMaps in Figure 9 and their 

polygon covering by a point algorithm reports the first 
maximally covered point that it encounters during the 
traversal of the spherical partition. 

CONCLUSIONS 

An O(nm log m) time algorithm has been developed for 
determining optimal parting directions for an object with 
m pockets and n vertices. 

During the development of the algorithm, it is assumed 
that all the cores are equally undesirable. Not explicitly 
stated is the assignment of a weight w~ to a pocket Si on 
the basis of its geometric complexity or an estimate of 
its manufacturing cost. The algorithm can be modified 
such that, instead of minimizing, over all possible 
directions d, the value lu(d)l which is equal to the sum of 
the individual ul(d), the objective is to minimize the 

~., Ui(d)Wi 
i= 1,...,n 

The time complexity is not affected by this modification. 
It is also assumed that a core is used for a pocket that 

has an empty VMap, and is thus not completely visible 
from any direction. However, by subdividing a pocket, 
the use of cores can sometimes be completely eliminated. 
Algorithms that consider the subdivisions of a pocket by 
invoking the notion of partial visibility are currently being 
developed. 
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