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1 IntroductionMany applications involving CAD/CAM, virtual reality, animation and visualization use models de-scribed using NURBS (Non-Uniform Rational B-Spline) surfaces. Over the last few years, they havegained a lot of importance in industry and are used to represent shapes of automobiles, airplanes,ships, mechanical parts etc. Recent graphics standards like PHIGS+ and OpenGL have includedNURBS surfaces as graphics primitives. Interactive display of models consisting of thousands ofsuch surfaces on current graphics systems is a major challenge. In this paper we focus on trimmedsurface models, typically obtained after surface intersection or other boolean operations.The problem of rendering curved surfaces (both trimmed and untrimmed) has been extensivelystudied in the literature and main techniques include pixel level surface subdivision, ray tracing,scan-line display and polygonization [Cat74, Kaj82, NSK90, LCWB80]. Techniques based on raytracing, scan-line display and pixel level display do not make e�cient use of the hardware capabilitiesavailable on current architectures. In particular, the current graphics systems can render up tomillions of transformed, shaded and z-bu�ered polygons per second [Ake93, Fea89]. As a result,only algorithms based on polygonization come close to real time display. Many di�erent methodsof polygonization have been proposed in the literature [AES93, Dea89, LR81, SL87, Roc87, AES91,FMM86]. Broadly speaking they can be classi�ed into uniform and adaptive tessellation of NURBSsurfaces. Many of these algorithms focus on trimmed surface models [RHD89, Luk93, LC93, Che93,SC88, Vla90].We present a fast algorithm for rendering trimmed NURBS models. Our approach shares itsprinciple with the algorithm presented by Rockwood et. al. [RHD89]. This is in terms of convertingthe NURBS models into B�ezier surfaces, using uniform tessellation and computing the untrimmedregions of each cell and triangulating it. This is in contrast with direct rendering of trimmedNURBS surfaces using the B-spline representation [Luk93, LC93]. The rendering algorithm in-volves the computation of intersections of the trimming curve with the domain cells, visible regiondetermination and triangulation. These operations are relatively simpler and faster to perform ona B�ezier representation than on B-splines.The algorithm in [RHD89] partitions each trimming curve into monotonic segments. This mono-tonic subdivision followed by special triangulation at the patch boundaries sometimes becomes abottleneck for the [RHD89] algorithm. We overcome these problems with handling trimming curvesand present e�cient algorithms for trimmed cell computation and triangulation (Fig 1). We alsodevise better bounds for uniformly tessellating the surface domain into fewer cells and compute the2



(a) [RHD89]'s Triangulation (b) Our TriangulationFigure 1: Comparison of Patch Triangulation (on a patch from the Alpha 1 Rotor)trimming regions without partitioning them into monotonic regions. In particular, we computepiecewise linear representation of the trimming curves using view dependent bound computation,trace them over the domain cells, partition the cells into trimmed and untrimmed regions andtriangulate the trimmed regions. We compare the surface triangulation of the two algorithms inFig. 1. Fig. 1(a) corresponds to the SGI-GL implementation based on Rockwood et. al.'s algo-rithm [Nas93, GL]. Our algorithm makes use of coherence between successive frames and performsincremental computation at each frame. This has a signi�cant impact on the speed of the overallalgorithmThe rest of the paper is organized in the following manner. We present our notation and formu-late the problem in section 2. In Section 3, we review the algorithm for tessellating the domain intocells as a function of the viewing parameters. Section 4 handles trimming curves and triangulationof the untrimmed regions for each surface. In section 5 we make use of coherence between successiveframes and highlight the incremental algorithm. Finally, we discuss implementation in Section 6.In this paper we have demonstrated these techniques on tensor-product surface models only. Theycan be generalized to triangular patches as well. 3



2 Problem De�nitionGiven a trimmed NURBS surface model, we use knot insertion algorithms to decompose it intoa series of B�ezier patches [Far90]. We also subdivide the NURBS trimming curves at the patchboundaries and transform them into B�ezier curves. Piecewise linear trimming curve representationsare decomposed at the patch boundaries as well. All these steps are part of the preprocessingphase. Decomposing NURBS patches and trimming curves allow us to derive better bounds onderivatives and curvature using the B�ezier representation. The resulting algorithm for trimmedregion computation also becomes much simpler as well.2.1 NotationWe use the following notation for the rest of the paper. The 3D coordinate system in which theNURBS model is de�ned is referred to as the object space. Viewing transformations, like rotation,translation and perspective, map it onto a viewing plane known as the image space. Associatedwith this transformation are the viewing cone and clipping planes. Finally, screen space refers tothe 2D coordinate system de�ned by projecting the image space onto the plane of the screen. Inall our pictures of the (u; v) domain, the v axis is horizontal and the u axis is vertical.An m � n rational B�ezier surface is speci�ed by an (m + 1) � (n + 1) mesh of control points,f(rij; wij) = (xij; yij; zij; wij)g. The surface, also referred to as a patch, is represented as a tensorproduct parametric equation with parameters (u,v) 2 [0; 1]� [0; 1]:F(u; v) = (x(u; v); y(u; v);z(u; v); w(u; v)) =��mi=0�nj=0wijrijBmi (u)Bnj (v); �mi=0�nj=0wijBni (u)Bmj (v)� :Bmi (u); Bnj (v) are the Bernstein polynomials.Each surface also has a set of trimming curves (which may or may not be loops) associated withit. These can be either piecewise linear or B�ezier curves. A piecewise linear curve with k segmentsis speci�ed by a sequence of k+1 points Cpl = [p0 : : :pk] A B�ezier curve of degree n is speci�ed bya sequence of n+ 1 control points, f(pi; si) = (ui; vi; si)g. The parametric equation of the curve is:C(t) = (u(t); v(t); s(t)) = (�ni=0sipiBni (t);�ni=0siBni (t)) :4
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Figure 2: Trimming Rule2.2 Trimming ruleEvery trimming curve is an oriented curve, i.e. it has a starting point, p0, and an ending point,plast. For loops p0 = plast. A point P is on the right of the curve if the segment PQ makes 90�in the clockwise direction from the tangent to the curve at Q, where Q is the point on the curveclosest to P . A trimming curve is said to trim out the part of the patch that lies on its right. Thusa clockwise loop trims out the enclosed region. If two curves intersect, the region trimmed out isthe union of regions trimmed out by each of the curves.This is called the handedness rule of trimming. It does not allow self intersecting trimmingcurves but two di�erent trimming curves can intersect. Sometimes a winding rule is used to de�nedthe exterior of a curve. According to this rule, the region of a surface that is enclosed by an evennumber of loops is trimmed out. This means that trimming curves must explicitly be loops. Fig. 2shows a trimmed region, based on the handedness rule. However we would have to rede�ne thetrimming curve if we used the winding rule.2.3 Problem FormulationA patch is evaluated at a set of points on a rectangular grid made of nu equi-spaced lines isopara-metric in u and nv equi-spaced lines isoparametric in v. A curve is evaluated at nt equi-spaced5



points along its parameter t.Triangles are generated by taking adjacent points on this grid and the trimming curves, threeat a time, such that they do not overlap and they do not lie in the trimmed region of the patch.The problem is to �nd nu; nv and nt , and to �nd a method for generating these triangles suchthat:� The triangles form a reasonable approximation to the trimmed B�ezier surface: they shouldnot deviate from the surface more than a user speci�ed tolerance, TOLd, in screen space.� The triangles have a reasonable size: the edges of the triangles should be shorter than a userspeci�ed tolerance, TOLs, in screen space.� The triangle generation and rendering is done at interactive rates.The �rst criterion is known as the deviation criterion for polygonization. It is a function ofthe second derivative vector of the given surface representation. The second criterion is referred asthe size criterion. These two are used to obtain a good polygonization of the surface such that weobtain a smooth image after Gouraud or Phong shading of the polygons [KM94].3 Tessellation ComputationIn this section, we highlight the algorithm for tessellating the surface as a function of the viewingparameters. More details are given in [KM94]. In particular, we dynamically compute the polygo-nization of the surfaces as the viewing parameters are changing. Polygonization can be computedusing uniform or adaptive subdivision for each frame. Uniform tessellation involves choosing con-stant step sizes along each parameter. Adaptive tessellation uses a recursive approach to subdivisionwith a stopping condition (normally based on some \atness" and \surface area" criteria). For largescale models, uniform subdivision methods have been found to be faster in practice [FMM86, KM94].In practice, large scaled NURBS models typically consist of relatively at surfaces. This is indeedthe case after converting B-spline models into B�ezier surfaces. Adaptive subdivision performs wellon surfaces with highly varying curvatures and large areas. In such cases uniform tessellation mayoversample them. The performance of uniform tessellation algorithms is a direct function of the tes-sellation step sizes, and these need to be computed carefully. In the context of uniform tessellation,the evaluation of B�ezier polynomials can be optimized if we use points that lie on an isoparametric6



curve: we can reuse one of the factors of the tensor product or use forward di�erencing [Roc87].Another major reason for the choice of uniform tessellation is the relative simplicity and e�ciencyof handling trimming curves (as compared to adaptive subdivision).3.1 Patch tessellationThere is considerable literature on computation of bounds on polynomials [LR81, FMM86, Roc87,AES91]. They are base upon the size or the deviation criteria. Sometimes a normal deviationcriterion is also used. This criterion bounds the deviation of the triangles' normals from the surfacenormal. While this bound can improve the image quality, it is relatively expensive to evaluate.We have chosen to use the size criterion to tessellate each patch. The deviation criterion is afunction of the second order derivative vector and becomes relatively expensive on rational surfaces.The size criterion by itself may not result in a good approximation on patches with small area andhighly varying curvature. A simple technique to account for such cases has been described in[KM94].The size criterion can be applied in two ways for step size computation:� Compute the bounds on the surface in the object space as a preprocessing step and map theseto the screen space. The step size is computed as a function of these bounds and viewingparameters [LR81, FMM86, AES91, KM94].� Transform the surface into screen space based on the transformation matrix. Use the trans-formed representation to compute the bounds and the step size is a function of these bounds[Roc87, RHD89].The advantage of the �rst method is that it reduces the on-line time for bounds computation.Little computation is required to calculate the desired step size for a patch given the viewingparameters (the transformation matrix). Though the bound calculated by the �rst method istighter than that by the second method, the mapping of bounds to screen space may not be exact.Hence the �rst method ends up using a smaller step size, and thus generating more triangles thanthe second one.For the B�ezier surface, F(u; v), the tessellation parameters satisfying the size criterion are com-puted in the object space as:nu = p2k �x(u;v)w(u;v)�u; �y(u;v)w(u;v)�u; �z(u;v)w(u;v)�u kTOLs ;7



Figure 3: Coving and Tilingwhere �x(u;v)w(u;v)�u is the maximum magnitude of the partial derivative of �x(u;v)w(u;v)� with respect to u inthe domain [0; 1]� [0; 1].The maximum magnitude of the second derivative is needed to calculate the stepsize satisfyingthe deviation criterion [AES91].nu steps need to be taken along the dimension u for the criterion to be satis�ed. nv for the patchis computed analogously. Computations of nt, the number of steps for a curve is also calculatedsimilarly. More details are given in [KM94].3.2 Boundary Curve TessellationThe number of steps that two adjacent patches are tessellated into, need not be the same. This canresult in cracks in the rendered image. To avoid these cracks we need to make sure that the numberof steps a boundary curve is tessellated into, is the same on patches on both sides of the boundary.This is easily achieved by generating triangle-strips (called coving triangles) at the boundaries (seeFig. 3) as described in [RHD89] for the boundaries of untrimmed patches. Since the trimming curvescan themselves be boundary curves (especially when they arise from intersection of surfaces), weneed an extension of the same concept here also. Given two surfaces F(u; v) and G(p; q) and acurve C, that lies on both F(u; v) and G(p; q), can have di�erent parametric representation in the(u; v) and (p; q) domains (Fig. 4). If C is not tessellated into the same number of points on both8
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uuFigure 4: Trim Curves: Di�ent representations in di�erent domainsF(u; v) and G(p; q), cracks may occur. This is not as straightforward as on the patch boundarycurves u = 0; u = 1; v = 0 and v = 1. The same trimming curve can be (and often is) representeddi�erently on di�erent patches. We need two steps to avoid cracks at trimming curves. First, wemust take a curve's representation from the (u; v) space of the corresponding patch to the object(X,Y,Z) space. This is done by substituting the curve equation into the patch equation as follows:For a trimming curve f(u(t); v(t); s(t))g1 on an m � n patch (x(u; v); y(u; v); z(u; v); w(u; v)), thecurve in the object space is(x(U(t); V (t)); y(U(t); V (t)); z(U(t); V (t)); w(U(t); V (t))) :where U(t) = u(t)=s(t), and V (t) = v(t)=s(t):The second step is to unify the representation of the curve on all adjacent patches. This is doneby �nding the common curves on di�erent patches and choosing one of the representations for alladjacent patches for the purpose of computing bounds: for each boundary curve we associate withit, one of the patches it lies on. For further details refer to [KM94]. Note that the both these stepsare preprocessing steps and are not done at the display time. If a patch abuts another patch, asin a T-junction, they do not have a common boundary; cracks still may appear. Such cracks can1If the trimming curve is speci�ed as a piecewise linear curve, we use the de�nition of the curve as a validtessellation and assume that the same set of points de�ne the curve for all patches that the curve trims.9
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Figure 5: Active v-linesalso be avoided by preprocessing the model, but this preprocessing is computationally expensive.Fortunately such cases rarely occur in practice.4 TessellationGiven nu and nv, it is straightforward to construct a grid in the (u; v) domain. The grid pointsdivide the domain into rectangles (we draw a diagonal to get the desired triangles). At the patchboundaries we construct coving triangles. We refer to these rectangles and triangles, cells. It is overthe canvas of these cells that we need to trace the trimming curves.The idea is to do special processing only for the partially trimmed cells, the cells that have aregion trimmed out. The points on the cells that are fully trimmed out need not be evaluated atall. Since no trimming curve passes through the fully untrimmed cells, they can be triangulated theold way by drawing a diagonal. For partially trimmed cell we need to make sure that all triangleshave vertices that are either grid points of the patch or the tessellation points (tessellants) on thetrimming curves.A grid line perpendicular to the v axis, the isocurve v = K, is called a v-line (Fig. 5), K beingthe v-value of the v-line. The side of a cell that lies on a v-line is called its v-edge and the side thatlies on a u-line is called its u-edge. The region of the patch lying between two adjacent v-lines is10
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Figure 6: Trimming Curve Intersectioncalled a v-strip. The terms u-line, u-strip and u-value are de�ned similarly.For simplicity, the tessellation algorithm is presented here for rectangular cells only; the extensionfor the triangular cells at the patch boundaries is straightforward. The main steps of the algorithmare enumerated below. They are elaborated in the subsequent subsections.1. Eliminate redundant and intersecting curves. This is a preprocessing step.2. Compute nu and nv for the patch and nt for each trimming curve, using the method introducedin section 3.3. Trace each trimming curve and �nd its intersection with u-lines and v-lines. Also prepare setof active v-line and cells. An active cell has at least one of its vertices on the untrimmed partof the patch. An active v-line is adjacent to at least one active cell.4. For each active stripFor each active cell in the stripTriangulate the cell. 11



4.1 IntersectionInitially we calculate all pairwise intersections between curves whose bounding boxes overlap. Weuse the recently developed algorithms for intersecting parametric and algebraic curves, which reducethe problem to an eigenvalue problem [MD94]. We merge two intersecting curves into one byeliminating sections of the curves. When a part of a curve lies in a region trimmed out by anothercurve, that part is redundant and can be discarded. Fig. 6 demonstrates how this is done. Thebasic idea is very simple. Let two curves c1 and c2 intersect at a point P. P divides each curve intotwo segments, one terminating at P and the other starting at P. Call these in and out segments,respectively. If a curve, say c1, is a loop, then there exists another point P0 where c2 intersectsit. (If there is more than one intersection, choose the point that comes immediately before P.)The two segments are determined by the two points P and P0 in that case. Draw the tangentvectors (remember that the curves are oriented) of the two curves at P, ~T1 and ~T2. If ~T2 makesan angle less than 180� from ~T1 (in the counter-clockwise direction) then the in-segment of ~T2 andthe out-segment of ~T1 are redundant. Otherwise the out-segment of ~T2 and the in-segment of ~T1are redundant. If two curves have coincident segments, we discard the coincident part from bothcurves. If the curves are tangent to each other, we cannot discard any segments. Such cases arerecorded as special cases. For multiple intersections, this process is repeated recursively.Once we process all the intersections, each resulting trimming curve is a piecewise sequence ofcurves and no trimming curves intersect except at the patch boundaries. Note that some redundantcurves that do not intersect any curve (curve D in Fig. 5) may still remain. This happens when aclockwise loop lies inside another (or is tangent to it)2. This containment is tested for each pair ofnon-intersecting curves whose bounding boxes overlap [NSK90].We tessellate each curve on-line and get a piecewise linear representation: a sequence of pointsp0 : : : pn. Note that the points of intersection must appear in this sequence. While the actual curvesdo not intersect, their piecewise approximations might. We keep TOLd smaller than the minimumdistance between two curves to avoid this. When two curves are tangential to each other (or comevery close), we choose the point of tangency as an extra tessellant on each curve. This allows us tochoose a TOLd greater than zero, but it still must be smaller than the closest distance between thecurves not in the � neighborhood of the point of tangency, where � is the tessellation step size.2The case of non-loops can be reduced to this by extending such curves along the patch boundaries and turningthem into loops. 12
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Figure 7: Active v-cells4.2 TracingFor each curve, we need to trace from p0 to pn marking any cell-crossings: the points where thecurve crosses a u-edge or a v-edge. If the curve coincides with a u-edge or a v-edge, we do not callthem crossings: we do not need to do any extra processing. Similarly if a curve tessellant lies on acell-edge, we do not call it a a cell-crossing. Two outputs are produced:1. The range of active v-lines, and for each active v-strip (the strip between two active v-lines),the active cells.2. The cell crossings and the pis that lie inside the cell, the in-points, and those that are outsidethe cell and are adjacent to that cell's in-points { the external points (Fig 7). The in-pointsthat are adjacent to an external point are called exit points of the cell. All cells that lie onthe segment between an external and exit point are called external cells. Further, if there isa curve that doesn't intersect any cell boundary, and lies completely within a cell, that cell ismarked as having a hole. While triangulating such cells, we should not triangulate the holes.The minimum valued v-line a curve crosses is called the left-end of the curve. If at left-end, thecurve moves from a higher u-value to a lower u-value, the left-end is called bounding left-end. Anactive range of v-lines always starts at the bounding left-end. We start at the �rst point p0 of thecurve, and take n tracing steps, each step processing [pi pi+1].13



If v-value(pi) > v-value(pi+1), the tracing step updates the current bounding left-end if v-value(pi+1) < v-value(the current bounding left-end). All bounding left ends are found at the endof tracing.The range of active cells (on active v-strips) are also found similarly. The minimumvalued u-linethat is crossed in a v-strip is the bottom-end of the curve on the strip. At the bounding bottom-end,the curve moves from a lower v-value to a higher one. All the bounding bottom-ends of a stripencountered by the tracing steps are also recorded.The cells that have a cell-crossing (and hence are active) are called prime-active cells (Fig. 7).While triangulating the cells, we always start at the lowest v-valued active v-strip, and the lowestu-valued active cell on the v-strip. On a v-strip, if we encounter a prime-active cell that has itsright v-edge trimmed out, that is the end of the current range. The next range of active cells startsat the next bounding bottom-end on the strip. Similarly if all cells on a strip have their top u-edgestrimmed out, we move on to the next range of active v-lines.Some active cells do not have any in-points and all its corners are trimmed out. These arepseudo-active and do not need any processing in the triangulation step. To triangulate the activecells that are neither prime nor pseudo active, we just draw one of its diagonals.Apart from updating the range of active v-lines and v-cells, the tracing step also marks the cellsthat the segment pipi+1 crosses. Further, it updates the current list of in-points of the cell andstores a pointer to the external points. The exit points are also marked.4.3 Cell TriangulationThis section describes the triangulation of prime-active cells. Once we know the distribution ofpoints within (and adjacent to) a cell we connect these points into a set of triangles. Even thoughthe rendered part of the cells can be potentially concave, most of them tend to be convex in practiceand have few edges. Therefore, we optimize our triangulation algorithm for the most general case(even if the worst case complexity is a little high).4.3.1 Cell PolygonsFor each cell we know the polygons that need to be shaded: these consist of its in-points and the cellcorners that are not trimmed out. To delineate these, we need the cell crossings sorted in counterclockwise order (starting at any crossing at which the curve enters the cell). Since most cells havefew crossing of an edge, this sorting step doesn't become a bottleneck. Also, the order of crossing14
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Figure 8: Trimmed Celldoesn't change from one cell to the next, since trimming curves do not intersect any more. Onlynew crossings need to be inserted to, or deleted from, the sorted list. Furthermore, we do not needthe actual intersection point of curves and edges. Just looking at the external and exit points oftwo crossings, we can decide their order. The polygons are constructed in the following manner:1. Start at the �rst cell crossing, X0, by the curve c0.2. Add all in-points on the curve c0, till it crosses out of the cell at Xc.3. Add the crossing X1 next to Xc in the sorted order. If Xc and X1 lie on di�erent edges of thecell, add the intermediate corners of the cell before X1. (If no corners are added, and thereare no in-points in the cell, this is a pseudo active cell.)4. If X1 is the same as X0, one polygon is complete. Output the polygon, delete all its pointsfrom the sorted list. Start a new polygon with the crossing next to Xc as the new X0.In Fig. 8, if we start at the crossing a, we add D before moving to the crossings b-e in thatorder. Points R-V are added next before the crossing f is encountered. The cell corner P is addedbefore we move on to g since between f and g we switch edges as the curve went out of the cell atf. When we reach back to a thus, the polygon is complete. There are no more crossings to process,hence there are no more polygons to generate, and all generated polygons are simple.15
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Figure 9: Triangulation4.3.2 Triangulating simple polygonsWe can triangulate this polygon and send the triangles down for rendering3. There is one problem,though. The dark shaded polygon in Fig. 8 has vertices a-h that are not on the original tessellationof the curve. Such extra points can be at two di�erent parameter values of the curve for two di�erentsurface tessellations. While we can avoid cracks by generating a degenerate triangle between eachpair of corresponding external and exit points and the crossing, e.g. AbD in Fig. 8, the renderedimage isn't smooth near these skinny triangles.We use the following technique to avoid introducing these extra points: Let us consider theintersection point b. If we use the external pointA instead of b, we get a correct triangulation there.Similarly we can replace all crossings with the corresponding external points, and avoid creatingextra tessellants on the curve. This polygon can now be triangulated using any polygon triangulationalgorithms [PS85, CTV89, Sei91]. Our current implementation uses Fortune's algorithm and robustimplementation of Delaunay triangulation [For87].There are two new problems with this method of polygon generation, though:1. The external point of one cell is the exit point of another. If these points are included inpolygons for both the cells, some overlapping triangles can be created. e.g. Figs. 10(a) and3Note that if the capability to render general polygons is available, it will be faster to send these polygons directlydown the pipeline. 16
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(a) (b)Figure 10: Conicting Triangulation(b) show a part of the triangulation for cells C1 and C3 respectively. We cannot draw bothtriangles ADS and ADR.2. Since a cell doesn't keep any information about the triangles of other cells (the idea beingthat all cells could be processed in parallel on di�erent processors), it can end up drawingwrong triangles. This is clear from Fig. 10(a). The triangle ABS intersects a curve in cell C3and spans an untrimmed region.One way to avoid these problems is to test if the triangle edges to external points intersect anycurve. This is expensive, since even if there are no such intersections, this test must be made. Abetter way is to postpone drawing a triangle that has an external point for a vertex. Such leftoverregions are done at the end of the triangulation step, in a cleanup step.4.3.3 CleanupOnce the cell that contains an external point is triangulated (C3 in this example), that external pointbecomes ready for the �nal triangulation. Consider the external point A of cell C1 in Fig. 10(a).We generate a new polygon ARSD (Fig. 11) for triangulation. This polygon has all the points inC1 that A is adjacent to and those in C3 that its external point D is adjacent to. This does wastea part of the work done earlier, but only if there are too many concavities in the region, which is17
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Figure 12: Triangulation: Common Behavior5 CoherenceIn an interactive session there usually is only a small change in the viewing parameters or the scenebetween successive frames. As a result, nu; nv and nt do not change much between frames. Thismeans that the number of tessellation steps needed on the patch and the trimming curves do notchange much and we can reuse many, if not all, triangles from the previous frame.Whenever we evaluate points (and normals) of the surface we store them and their triangulationin memory. If the bounds for the next frame are higher, we evaluate some additional points andif they are lower we discard some points (see below). When memory is not at a premium, wecan retain these extra points. It turns out that, triangle rendering takes more time than trianglegeneration (and can easily become a bottleneck) [KM94]. So while extra points may be retained,the triangulation must be redone using only the correct set of points. In our experience, we hardlyever need to store more than 60�70 thousand triangles, needing about 3�4 megabytes of memory.Thus the memory requirement is not stringent for today's graphics systems.5.1 Incremental evaluationWhen the tessellation bound for a patch increases, we always add complete v-lines or u-lines in themiddle of a v-strip or u-strip respectively. This lets us retain the advantages of uniform tessellation,19



even though the tessellants are not uniformly placed in the parameter space. For each trim curve,we introduce points between two existing points and split that tessellation step. The followingdiscussion talks only about the curve, but updating the tessellation of patch is similar.Let the tessellation bounds for the previous and current frames be nt and nt respectively. If wechoose K nt steps for the current frame, where K is the smallest integer such that K nt > nt, wewill need to evaluate (K � 1) nt new points. In each interval K � 1 equi-spaced points are added.Thus we still maintain uniform tessellation. But in this manner we use K nt � nt more steps thanneeded. For large values of nt, this could generate too many triangles unnecessarily.Instead, we introduce only max(K�2; 0) extra tessellant per interval. To decide where the next�t = nt� (K�1)nt tessellants are, consider the intervals that do not satisfy the tolerances. If thereare fewer intervals than �t, we get fewer than nt tessellations but all criteria are still satis�ed. Incase there are more, we have two options:1. Criterion intensive option: Split all intervals that fail the criteria.2. Rendering intensive option: Split the �rst �t intervals that fail the criteria.The �rst option assures that all criteria are always satis�ed. It take more running time. Whiletesting whether an interval satis�es the size criterion is simple, it is not so for the deviation criterion.It remains an open problem to test the deviation criterion reliably and fast.The second option compromises the criteria declaredly: our bounds are based on the assumptionthat tessellants are uniformly spaced. Of course, we must choose which of the o�ending intervals tosplit. This is done cyclically so that an interval gets split twice only after all others have been split atleast once. In other words a larger (in the parametric domain) interval is always split before a smallerone. The rendered image may look less smooth due to imprecise tessellation. While the deteriorationin image quality has a tendency to smooth out over frames, it can becomes noticeable sometimes.Hence, after every few frames (or while the user pauses), all the stored points are ushed out and auniform tessellation is recomputed. This resynchronization for di�erent patches is staggered acrossframes so the glitch doesn't become noticeable. To prevent cracks on patch boundary (including thetrim curves), this recomputation must be done together for all patches adjacent to the boundary.Each boundary has an associated patch. A boundary curve is retessellated on all adjacent patcheswhen its associated patch is resynchronized. 20
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(a) (b)Figure 13: Coherent Tracing5.2 Incremental TriangulationWhen most of the points are old, there is no need to retrace all trim curves and retriangulate everyregion. We can reuse some of the earlier e�ort. There are two parts to this: adding (deleting) av-line or a u-line and adding (deleting) a point on the trim curve. While these updates can behandled together, it is easier to talk about them separately.5.2.1 TracingThe tracing of trim curve lends itself to coherence very well. We need to make small changes to thecell crossings without tracing through an entire curve.If we introduce the point P between P1 and P2 (Fig. 13(a)), only the crossings of segment P1P2change. In a sense we need to trace only the part P1PP2 of the curve. Similarly if we delete thepoint P between P1 and P2, we just need to retrace P1P2. The sorted order of crossings of most cellsremain mostly unchanged. We occasionally need to insert or delete a few crossings in the sortedlist.If we add a new v-line (Fig. 13(b)), only the curves crossing the adjacent v-lines (and thosecontained completely within them) potentially cross this new v-line. Again we need to trace only apart of the curve: the sections within the external points of the cells on this v-strip, P1P2, need tobe traced. Addition of u-lines is processed similarly.21
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(a) (b)Figure 14: Coherent Triangulation5.2.2 TriangulationOnce we have the new set of crossings we can update the triangulation also. When P is added inFig. 14, We only need to update the triangles in the cells that P1P and PP2 cross. Two cases canoccur:1. We need to trim out some region from the triangulated section. In the �rst case, P liesinside the triangulated region, and segments P1P and PP2 intersect some of the triangles.We need to replace all these triangles. P1P2 must be an edge of a triangle since it was atessellation step of the trim curve. If P lied inside that triangle (P1BP2), we would justneed to retriangulate (P1BP2) and connect each of its vertices to P and replace it with threetriangles. If P intersects one of the edges of (P1BP2), as in the �gure, we need to retriangulateall triangles whose edges P1P intersects.2. We need to add some more region to the triangulated section. Fig. 14(b), we can just add thetriangle PP1P2. If a new crossing adds a cell corner to the untrimmed region, that corner isadded to the triangulation.When a point is removed, we need to do the reverse of what is done when one is added.When a v-line is added in or removed from a v-strip, we need to retriangulate the region in theneighborhood of the v-strip. Most of the work is limited to partially trimmed cells. When a v-line22



is added, some new crossings are created and some new corners are added to the rendered region.These corners are connected to the closest external and exit points. The triangles lying totallyinside the new cell can be left alone. The cleanup step needs to be performed on the rest. Thefully untrimmed cells are just divided into half and new diagonals drawn. When a v-line is deletedtwo corners of each cell on the strip get removed. We simply retriangulate the region. u-lines arehandled similarly.6 Implementation & PerformanceOur algorithm performs well in practice and coving is no longer the bottleneck. The polygonizationproduced by our algorithm is compared to that of the implementation in SGI-GL library based on[RHD89] in Figs. 1 and 15.We implemented this algorithm on two platforms { SGI-Onyx and the Pixelplanes 5 system atUNC. The Onyx was used with a single processors. The Pixelplanes 5 con�guration included 30graphic processors (though one of them is a master processor and does not perform the computa-tions) and 14 renderers [Fea89]. The algorithm achieves load balancing by distributing neighboringpatches onto di�erent processors statically. No inter-processor communication is required. As aresult it can be easily ported to any other multiple processor machine.The performance of the algorithm on the SGI has been shown in Table 6. The SGI-GL imple-mentation [Nas93] is based on the algorithm presented in [RHD89] and has a microcoded geometryengine implementation for surface evaluations. This implementation works in immediate mode.So, even though we had turned o� all usage of coherence in our algorithm, we did not have todo any monotonic decomposition, while the GL implementation needlessly did it for every frame.The comparison should be looked at with that in mind. The PixelPlanes implementation includescoherence.Although we have improved on earlier algorithms for bound computations, the algorithm at timesproduces dense tessellation for some models. Due to this the polygon rendering phase becomes abottleneck. In terms of the overall performance it is worthwhile to use more sophisticated algorithmsfor bounds computation so that lesser time is spent in the polygon rendering phase.23



(a) [RHD89]'s Triangulation (b) Our TriangulationFigure 15: Patch Triangulation (on a patch from the Trimmed Teapot)7 AcknowledgementsWe thank Henry Fuchs, Elaine Cohen, Anselmo Lastra, Russ Fish and David Johnson for manyhelpful discussions. We are grateful to Elaine Cohen and Richard Riesenfeld for the Alpha 1 modelsused to test the performance of our algorithms.Model SGI-GL Our basic SGI Our SGI Impl. Our PixelPlanesImplementation Implementation with coherence ImplementationUNC Trimmed 4 4 10 25Utah TeapotUtah Brake Assembly 0.33 .46 4 17Table 1: Performance: Number of frames rendered per second24
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