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Abstract

Boolean operations between solids can be efficiently performed by oper-
ating their respective octree encodings. Among the variety of octree-based
representation models, face octrees are approximate representations that
give a good compromise between the need of storage saving and the simplic-
ity of the involved algorithms. They are also a valuable model for represent-
ing smooth free-form surfaces. Constructing face otrees from voxel-based
volumes representations will be useful in order to obtain a more compact,
smoother and further operable encoding.

A method to perform such a conversion is presented. The method
consists of two steps. First, a network of points that represents the volume
data is extracted. The extraction is based on the Geometrically Deformed
Models technique. Then the network of points is transformed into a face
octree. In the transformation process, face octree nodes are compacted as
much as possible while preserving the volume data precision.




Contents

1 Introduction 3
2 Face Octrees 4
3 Geometrically Deformed Models 5
4 Face Octree Construction 5
4.1 Definitions. . . .. ... . i e e e e 5
4.2 The Deformed Model and the Constraints Used . . . . . ... .. 5
4.2.1 Topology Maintenance . . . .. ... ............ 6

4.2.2 Energy Minimization . . . . .. ... ... ... ... .. 6

4.3 The Algorithm . . ... ... ... ... 0. eeee... 7

5 Results 12
6 Conclusion and Work in Progress 15
7 Acknowledgements . 15




1 Introduction

Voxel-based volume models are widely used in scientific visualization, [11], [16].
This is mainly due to the fact that voxels are the most simple way of represent-
ing spatial data stored in 3D arrays as well as because this kind of data is what
remote sensing and scanning technology generates from nondestructive exami-
nation of the internal estructure of objects. Unfortunately, voxel-based volume
schemes have some disadvantages. The most important is the lack of concission
leading to huge storage requirements to encode even simple solids. Moreover,
rendering algorithms are time-consuming specially when realistic images should
be generated.

Hierarchical spatial encodings such as classical octrees [17], [27], [26] and
extended octrees [2], [5], [8] have been proposed to reduce storage requeriments,
providing as well simple algorithms to perform boolean operations between
solids. Face octrees are an intermediate scheme between classical octrees and
extended octrees, they are more concise than classical octrees and are particu-
larly well suited to approximate representations of objects with complex surface
boundaries [3], [4]. ’

Devising an efficient algorithm to convert huge voxel data representations
into face octrees is of interest because of several reasons. First, the conversion
will allow to reduce the amount of storage needed for the representation. Second,
rendering of solids represented as face octrees will be faster than rendering
classical octrees as well as the quality of the generated images will be improved.
Third, to perform boolean operations between solids represented as face octrees
still is a very easy issue.

In this paper a algorithm to perform the conversion of a voxel-based volume
representation into a face octree scheme is presented. The voxel-based repre-
sentation consist of a binary three-dimensional univaluated array. The array
encodes in each cell either the presence or the absence of solid.

The algorithm consists of two steps. First, a network of points that repre-
sents the volume data is extracted. The extraction is based on the Geometrically
Deformed Models technique, [18]. The model is a network of points each of them
representing a boundary voxel. A cost function is associated with every point of
the network that gives a cost to local deformations. The model evolves by min-
imijzing the function cost while restricting each point to stay inside the limits of
the represented voxel. Then the deformed network ofpoints is transformed into
a face octree. In the transformation process, face octree nodes are compacted as
much as possible while preserving the volume data precision given by the voxel
edge length. The compactation is performed by trying to fit a plane that both
is interior to all the boundary voxels belonging to the current face octree octant
and does not intersect any other voxel in it.



Figure 1: A face node and the associated band

2 Face Octrees

Octrees are one of the classical approximate decomposition schemes [24], [17].
They are trees that represent solids by encoding the recursive subdivision of a
cubic finit universe where the solids are placed. The nodes allowed in classical
octrees are either terminal or non-terminal nodes. Terminal nodes are labeled
as black or white depending on whether they are fully inside or fully outside
the solid boundary. The solid boundary is approximated by a layer of cubes of
a minimum specified size; they are also labeled as black or white depending on
some criterion [17], [27]. Non-terminal nodes are labeled as grey nodes.

In order to avoid the verbosity and the approximate character of the classical
octree scheme, several proposals of new octree encodings have appeared in the
literature. Polytrees where presentred in [5] and extended octrees in [2]. Besides
the white and black nodes, these octrees also represent face, edge and vertex
nodes. These new types of nodes are terminal nodes and allow to represent
exactly the solid boundary of polyhedra while reducing verbosity and keeping a
reasonable complexity for the boolean operations.

A face octree [3], [4] is an octree with white, black, face and grey nodes
together with a tolerance £ that controls the degree of approximation of the
representation. White, black and grey nodes are defined as in classical octrees.
Face nodes contain a connected part of the object boundary and each of them
has associated the equation of a plane, w, that approximates the boundary
within the node with a given tolerance £. See Figure 1. Grey nodes are those
that can not be labeled as white, black or face nodes. They represent regions
of the object surface that are not flat enough. When the recursive subdivision
reaches the minimum predefined node size, grey nodes are terminal grey nodes.
Face octrees are halfway between classical and extended octrees; they are more
concise than classical octrees and are well suited to approximate representations
of objects with complex surface boundaries [21], [22], [23].



3 Geometrically Deformed Models

Basically, there are three methods of displaying and analyzing three-dimensional
scalar field data generated by nondestructive examination methods of solids [18].
One method processes the volume data in its original form [28], [29], [7]. The
second transforms the initial data into something that is more compact, such
as a surface, and therefore is more readily handled [1], [13], [9], [14], [6]. The
third method generates geometric models that approximate the original solid
[12], [30], [19]). This is the most powerful approach because all the knowledge
from solid modelling applies to the recovered model.

As our work is mainly related with solid modelling, we will focus in the
methods belonging to the third type. Among them, Geometrically Deformed
Model (GDM) is the one that best fits our needs. GDM’s allow to extract a
topologically closed geometric model from a volume data set [18]. The technique
starts with a simple polyhedron that is a coarse approximation of the object.
A cost function is associated with every vertex of the polyhedron and a set of
constraints are set up. By minimizing the cost function while the constraints
are satisfied, the polyhedron is deformed to fit the object within the volume.

4 Face Octree Construction

4.1 Definitions

We denote by V' the set of voxels given in the voxel-based volume representation.
It is assumed that all the voxels in V are labeled as either black or white; they
represent space regions that are, respectively, inside or outside the original solid.
Two voxels in V' are neighbours if they share a face, a edge or a vertex. We will
refer to either a vertez neighbour, a edge neighbour or a face neighbour whenever
we want make explicit the neighbourhood relation between two given voxels.
For each voxel v in V' we define two neighbourhood sets: the neighbourhood,
N(v), which contains the subset of voxelsin V that are neighbours of v and the
face neighbourhood, F N (v), that is defined as the set of face neighbours of v. A
voxel such that at least has a white voxel in its neighbourhood is said to be a
boundary vozel; BV denotes the set of all the boundary voxels in V. With each
boundary voxel v; in BV we associate a point p; that we call the representative
point of the boundary voxel.

4.2 The Deformed Model and the Constraints Used

The deformed model we use is not a closed polyhedral model as in [18], it rather
may be thought of as an elastic network shaped by the representative points
as follows. For each vertex v; in BV, a representative point p; is placed in the
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Figure 2: Interconnecting representative points.

voxel centre and a link betweeen the point p; and each representative point of
v; in {BV N FN(v;)} is defined. See Figure 2.

A general constraint imposed on the model is that the representative points
should always stay inside the limits of the associated boundary voxel. Two
different cost functions, namely, topology maintenance and potencial spring
energy have been studied.

4.2.1 Topology Maintenance

We would like to extract a simple and topologically coherent set of points from
the volume data set. On the other hand, the nodes in the face octree model
we want to extract should represent boundary regions that are flat enough.
Therefore, a cost function that both maintains the local simple nature of the
initial model and allows to extract smooth boundary pieces is highly desirable.

A cost function that captures these properties is the topology maintenance
constraint, [18]. For each voxel v; in BV, the cost is defined as the ratio of the
distance from the considered model point p; to the centroid of the points p; in
its face neigbourhood, FN(v;), and the maximum distance between the points
in FN(v;).

_ lpi— 2 ¥t pil

max; ;(||p; - pil))
This function constraints the local curvature of the model by directing the point
pi towards the centroid of the points in its face neighbourhood, [18]. See Fig-
ure 3.

%

4.2.2 Energy Minimization

The second const function we have studied is a potencial energy function. Link-
ing each boundary voxel to the boundary voxels in its neigbourhood can be
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Figure 3: Topology maintenance. An estimation of the local curvature.

cast in the form of a potencial energy function that can be used to drive the
evolution of the GDM, [31].

For each boundary voxel, v;, the cost function is defined as an spring energy
term E; = kY, |lpi — p;l|>. Hence the cost function for the whole model is,

E=k3> llpi - pill®
i

As each representative point should stay inside the volume defined by the
voxel, the problem of finding the final location of each representative point in
the deformed model is reduced to minimizing a cost function subject to a set of
linear inequality comstraints, [10], [15].

4.3 The Algorithm

Several ways of constructing a face octree from voxel data can be devised. An
intuitive approach led us to approximate the volume data by means of a set of
planes computed as regression planes of a set of points each point being in the
center of a boundary voxel. Unfortunately, although simple, this method yielded
strongly unconnected, flaky-looking face octrees. Figure 4 shows the BV set
(dotted voxels) associated with a circumference, and the face nodes generated.
In some cases, unnecessary subdivision was generated because of the poor fitting
of the computed planes. Figure 5 a) shows the computed regression plane that,
as we shall see later, can not be accepted as a face because intersects voxels which
are inside the tree node and that are not boundary data voxels. Therefore, face
tree subdivision should go further. Figure 5 b) shows an alternative plane that
would allow to define a face node but it can not be generated by this technique.
The problems found when using the naive method above, led us to devise an
algorithm that allowed to take into account local neighbourhood considerations.
This algorithm consists of two main steps.



Figure 4: Regressor planes fitting. Strongly unconnected octree.

In the first step two tasks are performed. One task is extracting from the
volume data a network of points that represents it. The extraction is based on
the Geometrically Deformed Models technique, [18]. The other task associates
a plane with each boundary voxel in the voxel-based representation. This plane
is called the GDM plane and is computed as follows. First, for each boundary
voxel v, the representative points in FN (v) are sorted circularly with p, the
representative point of v, as centre. Then for each triangle defined by p and the
representative points of two consecutive vertices in FN(v) a normal is computed.
Finally, a normal defined as the average of the normals to the triangles weighted
with the triangle areas is associated with the voxel v. The plane defined by the
average normal and the representative point is the GDM plane.

Figure 5: Regressor planes fitting. Unnecessary subdivision.



The second step transforms the deformed network of points and the asso-
ciated GDM planes into a face octree. The transformation process compacts
face octree nodes as much as possible while preserving the volume data preci-
sion given by the voxel edge length. The compactation is performed by trying
to fit a plane that both is interior to all the boundary voxels inside the region
bounded by the current face octree node and does not intersect any other voxel
in the node.

Let us assume that the face octree is stored linearly by a depth method
[20], [26], and that the face octree, a pointer to the next free position in the
face octree and the GDM model are stored in the static variables fo, po, and
gdm respectively. Furthermore, assume that V stores de initial volume-based
representation. Then the algorithm can be stated as follows

procedure Face.octree_construction (V)
var
real size
point v, origin
plane 7
static gdm gdm
fivar

Compute-gdm (V, gdm)
for each v; € BV do
Compute_gdm_planes (v;, gdm, 7)

endfor

Volume_data_embedding (V, origin, size)

Generate_void-octree ()

Tree_construction (origin, size)
endprocedure

Procedure Compute_gdm (V, gdm) extracts the GDM from the volume data and
procedure Compute.gdm_planes (v;, gdm, w;) computes the planes associated
with the GDM.

Procedure Volume data_embedding (V, origin, size) is trivial: it com-
putes the origin and size of a cubic universe where the voxel data is located
and from which the uniform, recursive subdivision will start. The planes that
defines the octree subdivision will be coincident with planes belonging to the
data voxel discretization; that is, the planes that define the octree subdivision
never intersect the interior of a data voxel. Let nv be the number of voxels
along the volume data matrix axis. The cubic universe edge length where the
voxel data will be embedded should be 2™ with

n = min{m : 2™ > nv}
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Figure 6: Voxel discretization and tree subdivision.

then

__ lognv
n=| log 2 1
Figure 6 shows a 2D exemple where nv = 5 and n = 3. .

Let us now concentrate in the tree construction. We will denote by OV the
subset of voxels of V' that are in the space region bounded by the current octree
node which is defined by its origin and size. When all the data voxels in OV are
black we will say that it is a black set. If all the data voxels are white we will
say that OV is a white set. Finally, if some of the voxels in OV are boundary
voxels, the set OV wil be called a boundary set.

What we want now is to properly label the face octree nodes while keeping
as much as possible from going deeper in the recursion. Let OV be the set of
voxels in the current octree node. When OV is either a black set or a white
set, the current node can be labeled as black or white respectively. If OV is a
boundary set, we would like to label the octree node as a face node. But this
means to have a plane that fulfills the constraints already mentioned: the plane
should intersect all the boundary voxels and only the boundary voxels inside
the boundary set. In order to find out such a plane, first a candidate plane
is computed as an average of the GDM planes belonging to the current octree
node. Then the validity of the candidate plane is checked. If the test succeeds,
the node can be labeled as face node and the computed plane is the face plane.
Otherwise the set OV is split in eight subsets, each subset being defined by the
corresponding octant of the current octree node. Now, each of these subsets can
be recursively labeled. The algorithm can then be stated as follows

procedure Tree_construction (origin, size)
if Black-set (origin, size) then
poltype := black
po:=po+1
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else if White set (origin, size) then
poTtype := white
po:=po+1
else if Boundary_set (origin, size) then
Compute.face_plane_candidate (origin, size, )
if Valid_candidate (origin, size, 7) then
poTtype := face
poTplane := «
po:=po+1
else
fori€0,1,...,7do
Tree_construction (origin;, size/2)
endfor
endif
endif
endprocedure

This algorithm always terminates and each boundary voxel contributes to
compute some face plane in the octree. Let us first prove that the algorithm
terminates. To prove that, we need to show that the recursion terminates.
Assume that we are at an arbitrary level of recursion such that the edge of the
current octree node is larger than the voxel edge and assume that OV is the set
of voxels in the current octree node. If OV is either a black set or a white set,
the octree node is labeled accordingly and the recursion terminates. IfOVisa
boundary set and a face plane has been found then the node is labeled as face
node and the recursion terminates. If such a plane is not found, OV is split in
eight subsets. Each subset contains those voxels from OV that are in the Tegion
bounded by an octant of the node. Conversely, each voxel in OV belongs to
only one of the eight sets. The algorithm is then recursively applied to each of
these sets. Now assume that the edge of the current tree node and the voxel
edge have the same size. Obviously, if the voxel is black or white the recursion
terminates. If the voxel is a boundary voxel the GDM plane is a valid face plane
and the recursion terminates. Hence, the recursion always terminates.

Let us now prove that each boundary voxel contributes to compute some
face plane in the octree. Assume that we are at the first call to the algorithm.
All the data voxels are in OV and obviously it is a boundary set. Assume that
OV is a boundary set. Then either a face plane has or has not been found.
In the first case, by definition, all the boundary voxels have been involved in
computing the face plane. In the second case, OV is split in eight subsets with
each voxel from OV belonging to one and only one of these subsets. Then the
algorithm is recursively applied to each of these subsets. As before, assume now
that the edge of the current tree node and the voxel edge have the same size.

11
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Figure 7: Case study: Sphere.

Obviously, if the voxel is black or white it does not contribute to any face plane.
If the voxel is a boundary voxel the GDM plane is the face plane. Hence, all
the boundary voxels contributes to some of the face planes in the face octree.

5 Results

The ideas presented in this article have been implemented on a HP9000-835
workstation. Figures 7 to 9 show three examples of face octree construction
from voxel data using the proposed algorithm. The original solids are respec-
tively a sphere, a set of tori, and a CSG-generated complex object. In the three
figures, a) depicts the set of data voxels, b) depicts the GDM planes; and c)
represents the final face octree. The cubic universe edge length where the voxel
data has been embedded has been 26 in all the cases. Minimization process has
been carried out with a standard optimization routine from the NAG library,
[25].

The results obtained with the topology maintenance constraint are summa-
rized in Table 1. The second column gives the number of voxels in the volume
data representation; the third column gives the number of nodes in the face
octree constructed; the fourth gives the ratio face-octree-nodes/voxels, and the
last column gives the cpu time process.

Compression rates, though being reasonably good, would increase when deal-
ing with more precise input data, it is, when the solids are embedded in the 28
usual cubic universe.

The average difference between the locations of the representative point of a
voxel data computed by topology maintenance and by spring potencial energy
is of about 3% of the data voxel diagonal length. The standard deviation is
0.2%.
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Figure 8: Case study: Tori.

Case # voxels | # fo nodes | ratio (%) | cpu time (sec)
Sphere 37455 2513 6.71 17.83
Tori 39793 18929 47.56 42.81
Complex solid 179373 6937 3.87 67.94

Table 1: Face octrees generation. Case study
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Complex solid.
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6 Conclusion and Work in Progress

The GDM technique for extracting solid closed models from data generated by
sensing and scanning technology was introduced in [18]. It has been used as
the foundation for our face octree construction method. Given a voxel-based
model, the algorithm presented generates a face octree with a high degree of
compactation while preserving the degree of approximation of the initial data.
We demonstrated the use of this algorithm in several practical exemples.

Even with the most efficient algorithms, extracting surfaces from large sets
of volume data is always a time-consuming problem. In order to reduce the
computation time, a parallel version of the presentred algorithm is now being
programmed on a CM-2 SIMD machine. This is part of a larger project com-
prising parallelization of boolean operations between solids and surfaces both
represented as face octrees.
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