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Visibility maps and spherical 
algorithms 
Tony C Woo 

By the extraction of ideas from computer vision, geometrical 
design and complexity analysis, a structure called visibility 
emerges. The paper describes a way in which a 3D workpiece 
is mapped onto the unit sphere, and its visibility is determined. 
For applications, manufacturing machines are classified by their 
degrees of freedom into point, line and surface visible processes. 
Algorithms for optimal workpiece orientation are then 
formulated as simple intersections on the sphere. 
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Convexity is a notion that facilitates geometrical 
computation. An entity is said to be convex if the line 
segment pq that joins two arbitrary points p and q from 
a set lies entirely in the set. However, entities such as 
curves and surfaces are not always convex. The notion 
of visibility promises to extend beyond convexity. Take 
the art-gallery formulation 1, for example. Given a 
nonconvex polygon that resembles the floor plan of an 
art gallery, one asks how many guards are needed such 
that the entire interior is visible to the guards. Intuition 
suggests that the lines of sight, or point-to-point visibility, 
partition a nonconvex polygon into convex (visible) 
regions, hence bringing convexity to an entity that was 
nonconvex. This paper takes analytically complex 
entities, and maps them onto a unit sphere into 
analytically simple entities called visibility maps that turn 
out to be convex. Problems that are combinatorially 
complex are then addressed by a set of simple spherical 
algorithms that invoke the intersection between the 
visibility map and a point, a great circle or a spherical 
rectangle; these are also convex. 

The establishment of a line of sight between a point 
on a workpiece and a point on an effector can be quite 
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useful in manufacturing. In numerical-control (NC) 
machining, assembly with robots, or inspection by 
coordinate-measurement machines (CMM), the com- 
putation for a tool path often relies on an intersection-free 
line of sight. Though the geometries of the effector of 
the manufacturing processes differ, the question about 
visibility in its most basic form can be stated as follows. 

Basic enquiry about visibility." Given the geometries of the 
workpiece and the effector,find a number of orientations 
of the workpiece such that all the points of interest on 
the workpiece are visible to the effector. 

That a minimum of orientations is crucial to productivity 
in manufacturing is evident. In an automotive application 
of the laser inspection of cylinder heads, the scanning 
time is approximately 20 min at 70 point/line/s. The setup 
time for fixturing and calibrating the workpiece is about 
6 h. Since a reorientation requires the dismounting and 
setting up of the workpiece, the total number of 
orientations (to achieve complete visibility) should be 
minimized. 

To be sure, there are manufacturing operations in 
which only a single setup is affordable or permitted. The 
use of the stereolithography apparatus (SLA) in layered 
manufacturing is one such instance. (In layered 
manufacturing, a facsimile of a 3D computer representa- 
tion is fabricated layer by layer, stacking along the z axis. 
The material, which is a powder or a liquid, is selectively 
solidified by sintering or photocuring in the xy plane. 
For sheet material, a contour in the xy plane is created, 
and unwanted portions are discarded. However, 
regardless of the process, there is only one setup, and 
hence single implied orientation is permitted.) The choice 
of an orientation in layered manufacturing can make a 
difference. In an experiment in which the housing of a 
mobile phone was fabricated, two orientations showed 
a difference in fabrication time. In the orientation in 
which the antenna pointed upwards, it took over 22 h 
to fabricate the housing on an SLA 250. In the orientation 
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in which the antenna pointed sideways, the fabrication 
time was tess than 10 h. 

An intellectual curiosity emerges. If layered manu- 
facturing is viewed as a physical realization of a triple 
integral, why should the order of integration matter? A 
layer or a crosssection S can be thought of as a double 
integral: 

c 

where c is a closed curve in the xy plane. The integration 
of the layers S along the z direction yields a volume V: 

v=fSdz 
The same volume should result if, for instance, the 
crosssections are taken in the yz plane or any other plane. 
However, an examination of the SLA manual reveals an 
explanation for the apparent paradox: the physical 
integration rates (the optical scanning rate in the xy plane 
and the mechanical elevation rate in the z direction) differ. 
Therefore, the physical constraint of a machine may lead 
to a preference about the order of integration, and hence 
the orientation of the workpicce. 

Now, given that there exists asymmetry in time for a 
certain family of manufacturing processes, it is reasonable 
to expect that problem formulations for optimal 
workpiece orientations can be induced. However, what 
about manufacturing processes that do not exhibit 
asymmetry? In particular, time and ordering are 
important if the process is sequential. (NC machining, 
CMM probing, robotic assembly, and layered manu- 
facturing with an SLA are all sequential, in the sense that 
physical realization is achieved point by point, layer by 
layer, or component by component.) Stamping, die 
sinking, metal casting and plastic mould injection, to 
name but a few, may be viewed as nonsequential or 
parallel in the sense that the entire workpiece is effected 
in one 'fell swoop'. For such manufacturing processes, 
does the same basic enquiry about optimal workpiece 
orientation still hold? The answer turns out to be yes. 
Consider the stamping operation as an example. The 
direction of travel for the die implies an orientation of 
the workpiece. The demoulding process is another: the 
parting plane in a 2-piece mould implies a direction for 
demoulding, and this is the same for decasting. This single 
degree of freedom dictates the visibility of the punch or 
the removability of the workpiece from the cast or the 
mould. Intuitively, there appears to be an inverse relation 
between the degrees of freedom of the mechanism of a 
machine and its visibility. 

This paper introduces a hierarchy that classifies the 
various manufacturing processes by their visibilities. The 
geometries are then mapped onto a unit sphere offering 
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a data structure called a visibility map. Algorithms for 
determining the optimal partitioning on the sphere are 
then developed, leading to answers to the basic enquiry 
about visibility. 

VISIBILITY HIERARCHY OF 
MANUFACTURING PROCESSES 

Visibility is meaningful when a pair consisting of a source 
and a target is considered. Geometrically, the target (or 
the workpiece) can be a point, a line segment, a curve 
segment, a planar polygon, or a surface patch. Similarly, 
the source (or the effector) can be modelled hierarchically 
by its topological dimensionalities: 0D points, 1D lines 
and curves, and 2D planes and surfaces, giving rise to a 
hierarchy, a summary of which is given in Figure 1. The 
geometries of the source are discussed in turn below. 

\ 

a 

b 

C 

d 

e 

Figure 1 Visibility hierarchy; (a) point visibility, (b) line visibility, (c) 
curve visibility, (d) plane visibility, (e) surface visibifity 
[(a) numerically controlled machining, 0a) wire-cutting electric- 
discharge machining, (d) stereolithography apparatus, (e) mould and 
die design.] 
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The probe of a CMM is spherical; the contact that it 
makes with a workpiece under inspection is often 
assumed to be a point on the sphere. In NC machining, 
because of the small stepping distance now made 
available by the machine-tool makers (of 1 0 - 5  10-6 m), 
the material-removal process can also be considered as 
a point process. NC and CMM are thus said to be 
processes that require point visibility (which is short for 
point-to-point visibility). 

For wire-cutting electric-discharge machining (EDM), 
the effector is a line. Because of the small radius of the 
cutting wire, fine features can be created on the 
workpiece. Also, because of the process of discharging, 
there must be line visibility between the effector and the 
workpiece such that all the points in a segment of the 
cutting wire are visible to the corresponding points in a 
line segment on the workpiece. A noncontact variation 
of the line-visibility process is laser scanning for 
inspection. Diffracting a point source by a cylindrical 
lens into a line source, the laser casts stripes of lines and 
curves onto the surface of a workpiece, giving rise to 
curve visibility. 

In layered manufacturing, there must be plane visibility 
for an entire layer. The energy source of a layered- 
manufacturing device can be conceptualized as a planar 
source, giving rise to a point-by-point correspondence 
between the source and the target. In the medical 
application of computer tomography, another noncontact 
variation, the slicing of the target can also be said to 
exhibit planar visibility. 

The simplest example of surface visibility is probably 
sheet-metal stamping, in which the points on the sheet 
metal to be formed (the target) must maintain visibility 
with the corresponding points on the die (the source). 
Die-sinking EDM exhibits a similar characteristic of 
surface visibility. Similarly, die casting and plastics mould 
injection also demand surface visibility. 

Degrees of freedom and number of setups 

Recall that the amount of sequentialism varies from 
process to process. From Figure 1, it can be noted that, 
as the hierarchy traverses from surface to point visibility, 
the degrees of freedom (DOF) of the corresponding 
machines increases. While a sheet-metal stamping 
machine (possessing surface visibility) has only one DOF,  
an SLA (with planar visibility) has three DOF. Moving 
along the hierarchy, an NC milling machine (with point 
visibility) has up to five DOF. 

Because of the way in which the hierarchy is 
established, the greater the number of degrees of freedom 
that a machine has, the simpler its unit work is. The unit 
work for an NC milling machine is to remove a small 
amount of material modelled as a point. In contrast, the 
unit work for a 1-DOF machine is the creation of a 
multiple number of surfaces in one motion. To enable 
the unit work to be done, the workpiece has to be set up 

properly. It also may be interesting to examine the 
tradeoff between the number of setups and the degrees 
of freedom afforded by the machine. 

Consider a 3-axis NC milling machine and a 5-axis 
NC milling machine. Both are point-visible processes, 
with different degrees of freedom. Suppose, to avoid 
excessive gouging, a ball endmill is used in both NC 
machines. As shown in Figure 2, because of the fourth 
and the fifth axes which pivot the tool, a workpiece can 
be machined on a 5-axis machine with a smaller number 
of dismountings, recalibrations and startups. Given that 
there is a choice of the machine to be used, it is reasonable 
to choose the one that offers fewer setups. This is a 

Setup 
or ienta t ion 

Tool axi~ 
Tool ax is  

Tool axis 

Figure 2 3-axis machining compared with 5-axis machining 
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machine-selection problem that involves scheduling. 
However, given a fixed type of machine, say a 3-axis NC 
milling machine, it is also reasonable to ask whether the 
number of setups can be minimized. This leads to the 
following instance of the basic enquiry about visibility. 

Enquiry about visibility with a high number of DOF." Given 
the geometries of the workpiece and the kinematics of 
the machine, find the minimum number of setups which 
require a reorientation of the workpiece. 

Partial visibility and auxiliaries 

A variation of the basic enquiry arises in manufacturing 
processes with a low number of degrees of freedom. 
Consider a surface-visible process such as moulding or 
casting. Suppose that the workpiece shown in Figure 3a 
had been moulded. To remove the workpiece, the choice 
of the parting plane is crucial. The direction that is 
orthogonal to the parting plane yields the direction for 
the lines of sight, giving rise to the single degree of 
freedom in the demoulding process. Now, the limitations 
of a single parting plane (a 1-DO F surface-visible process) 
should be noted here. Regardless of the direction of 
'illumination', there can always be 'shadows' and hence 
partial visibility in a cavity, as shown in Figure 3b. 

Indeed, analogously to the number of setups for a 
process with a high number of DOF, there can be multiple 
pieces in the mould or die for a process with a low number 
of DOF. In place of the multiple pieces, auxiliaries (called 
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'cores' or 'pins') are used in practice. Figure 4 shows three 
kinds of auxiliaries in a 2-piece mould. To reduce the 
number of auxiliaries which incur expense, it is desirable 
to minimize them, leading to the second variation of the 
basic enquiry. 

Enquiry about visibility with a low number of DOF." Given 
the geometries of the workpiece and the kinematics of 
the machine,find the minimum number of auxiliaries that 
compensate for partial visibility. 

In the fourth section, the 'low' and 'high' numbers of 
DOF in these two enquiries are instantiated, and the two 
variations of the basic enquiry are once again generalized 
as intersections of spherical maps by a point, a great 
circle and a spherical rectangle. Before this is done, a 
discussion on the data structure of spherical maps is 
required. 

VISIBILITY MAP:  A DATA STRUCTURE 

Complete visibility 

Analogously to a hodograph 2, which is a map of tangents, 
a Gauss map (G map) is a map of normals on the unit 
sphere a'4. The G map has many applications. It provides 
cutting-tool orientations 5 and surface offsets 6'7 for NC 
machining, and it assists in computing the aspect graph a, 
and in shape reconstruction from imaging 9 in computer 
vision. In the following discussion, given a surface S in 
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Demoulding; (a) visibility, (b) partial visibility 
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Auxiliaries in mould; (a) side core, (b) side cavity, (c) form pin 
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a parametric form, it is assumed that its G map exists. 
Figure 5 gives examples of G maps that are regions on 
the unit sphere. Note that each point in a G map denotes 
a direction from which a point in the surface is visible. 

A visibility map (or V map) is an enhanced G map in 
the following sense. Like a G map, a V map is a spherical 
region. However, unlike a G map, any point in a V map 
denotes a direction such that the entire surface S is visible 
to its exterior. The idea of this powerful notion is simple. 
The normal at a point on a surface gives the direction 
in which the point is visible from infinity if the ray admits 
no intersection. However, the same point can be visible 
from many other directions, up to a hemisphere of 
directions bounded by the tangent plane at that point. 
This observation leads to a (rudimentary) procedure for 
computing a V map from a given G map. (The variable 
names are now joined by an underscore, to distinguish 
them from the procedure names.) 

Procedure V map (G_map) 

(0) V_Map ~ entire sphere 

(1) For  each point Pi on G_map 

V_map ~ V_Mapc~ hemi (Pi) 

End V map 

Figure 6 shows the V-map procedure in graphical form. 
In Step 1, two calls are made: n for computing the 

intersection of two sets on a sphere, and hem/ (p~) for 
providing a hemisphere whose 'pole' is at point p~. The 
following observations can be made about these two calls 
in relation to the efficiency of computing a V_map. First, 
an intersection can be computed quickly if the two sets 
are convex. A hemisphere is a convex set. (This can be 
verified easily through central projection. The great circle 
bounding a hemisphere maps into a line in the plane of 
projection, and the hemisphere maps into a half plane.) 
Since the intersection of convex sets is always convex, 
the V_map generated by successive intersections of 
hemispheres at p~ must also be convex. Second, revisiting 
Step 1 of the V-map procedure, it is noted that the number 
of iterations is not specified. In particular, if a G_map is 

I 
Figure 6 Construction of visibility maps 
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to be sampled at p~, should its entire interior be included? 
(Recall that a G_map is not necessarily convex, unlike a 
V_map. To ensure that a sample p~ falls into a G_map, 
it has to be tested by counting the even/odd number of 
intersections between a ray emanating from Pl and the 
boundary of the G_map, all adding to the time 
complexity.) Two steps are crucial to achieving savings 
in computation time. First, if only the boundary of a 
G_map is sampled, then there is no need for ray testing. 
(This sufficiency condition is shown below.) Second, the 
boundary of a G_map can be quite arbitrary, as it is, in 
general, nonconvex. If only the convex portion of the 
boundary of a G_map is sampled, there can be further 
savings. (The necessity is also established below.) 

Suppose that pi is any point in the interior of a G_map. 
Let C be a circle passing through it. C must make at 
least two intersections qj and qk with the boundary of 
the G_map that lie on either side of p~. Construct three 
hemispheres whose poles are at the three points p~, qj 
and qk on C. If hem/(q  j) intersects hem/ (qk), and they 
must, unless qj and qk are exactly 180 ° apart, it is seen 
that hem/ (p~) is redundant in its contribution to the 
V_map. This establishes the sufficiency of sampling the 
boundary of a G_map. Now, the necessity of sampling 
the convex portion of the boundary follows a similar 
reasoning. Let p~ be any point on the nonconvex portion 
of the boundary, and the other two points qj and qk be 
on the convex portion. (The three points must coexist 
on any great circle c passing through p~). It is seen that, 
again, hem/ (pl) is redundant, hence establishing the 
necessity criterion. 

Enjoying convexity, the V-map procedure can be 
implemented in time O(n log n), where n is the number 
of samples on the spherical convex hull of a G_map. (For 
further details on the intersection of hemispheres, the 
construction of a spherical convex hull, and the 
determination of whether a given set of points lies in a 
hemisphere, the reader is referred to Reference 10.) A 
V_map can now be computed quickly. Further, its 
representation can be compacted. An incircle, a spherical 
circle inscribed in a V_map, gives a conservative 
approximation, and is much more compact in its 
representation. However, unlike circumscription, in- 
scription is very difficult, because of the lack of 'extreme 
points'. In Reference 11, a 2-step procedure for finding 
the incircle of a V_map is described. The first step is to 
take the farthest point Voronoi diagram of a G_map to 
obtain the circumcircle for a G_map. Next, it is shown 
that its 180 ° complement yields the desired incircle of a 
V_map. In Reference 11, implementations of the G-map 
procedure and the V-map procedure are also given. 

Partial visibility 

A V_map obtained from a G_map which in turn is 
computed from a given surface S has the following 
property. Any point in a V_map yields a direction such 
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that the entire S is potentially visible to the exterior. For 
n surfaces to be visible, their corresponding V_maps must 
overlap. Sometimes, the overlap is empty. As shown in 
Figure 7, the planar surfaces yield single points as their 
G_maps; their V_maps are hemispheres, the intersections 
of which are empty. Indeed, there is not a single direction 
from which the interior of the entire cavity is visible from 
the exterior. 

Given that the visibility is partial, there will be 'shaded' 
regions for a given direction of illumination. (In the 
context of manufacturing, the shaded regions correspond 
to the auxiliaries, and the direction of illumination to the 
single degree of freedom, as in demoulding.) Figure 8 
shows two configurations. It can be seen that the 
geometry and the topology of the auxiliaries differ in 
these two instances. In the viewing direction of Figure 
8a, the geometry of the auxiliary changes, but its topology 
remains invariant, as the viewing direction is changed 
slightly. The transition from Figure 8a to Figure 8b is 
termed the critical viewing direction (CVD). Once a CVD 
has been determined, the augmented visibility maps 
(A_V_maps) can be constructed, in which hemispheres 
corresponding to the (planar) surfaces are intersected. 
(Note that, unlike a V_map, an A_ V_map is valid only 
with respect to a CVD.) The (shaded) auxiliaries can be 
computed by taking the regularized set difference between 
the cavity in question and the (unshaded) visibility 
polyhedron 12. Because the visibility polyhedron is a 
proper subset of the cavity, an O(n logn)  time 
algorithm 13 can be used in computing for their 
intersection. 

Gaussian Map 

Figure 7 Empty visibility map 

Visibility Map 

(Empty) 

a 

b 

Figure 8 Augmented visibility maps 

S P H E R I C A L  A L G O R I T H M  

The workpiece geometry having been transformed onto 
the unit sphere as V_maps, it is time to see how the 
mechanisms of the machines are related to the geometry 
of the workpiece. The basic idea is as follows. Suppose 
that the degrees of freedom of the mechanism of a 
machine can be represented, in terms of visibility, on a 
unit sphere. Then, given the V_maps which are also on 
a unit sphere, the problem of setting up a workpiece on 
a machine becomes that of rotating the sphere with the 
V_maps against that with the machine, according to some 
criteria. A criterion is maximal intersection. Rotate one of 
the two nested unit spheres such that their maps intersect 
maximally. (This corresponds to a setup in which the 
greatest number of workpiece surfaces are visible to the 
machine.) Delete those intersected V_maps, and continue 
until all the V_maps of interest are deleted. Relating the 
visibility hierarchy to the degrees of freedom is now 
appropriate. A summary is given in Figure 9. The entities 
on the sphere, a point, a segment of a great circle, and 
a spherical rectangle, denote the varying D O F  of the 
machines. For  clarity, the V_maps representing the 
workpiece geometry are omitted from the figure. 

First, consider a 3-axis NC milling machine. Let the 
three DOF of the machine be denoted by x, y, z, meaning 
that they are the translations in the x, y and z directions. 
The tool axis of such a machine can be represented by a 
point p on the unit sphere. In other words, the visibility 
of the 3-DOF NC machine is in the direction that is 
opposite to the vector p represented as a point on the 
unit sphere. To machine a workpiece, the V_maps of the 
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Figure 9 Spherical algorithms 

workpiece must be oriented by rotating the maps and 
keeping the point p fixed in such a way that the V_maps 
contain p. The rotation of the V_maps therefore 
corresponds to a setup. It is obvious that the point p 
may not lie in all the maps. Dismounting the workpiece, 
reorienting, and reclamping the workpiece (another 
setup) permits other maps to contain the point p, and 
hence the visibility and machining of other portions of 
the workpiece. This corresponds to three DOF and point 
visibility, as shown in Figure 9. 

Next, consider a 4-axis NC milling machine with a 
rotary table. Let the fourth axis be denoted by 0. Figure 
10 shows an example of such a 4-axis NC machine. 
Intuitively, the additional axis offers greater visibility 
than a 3-axis machine. Indeed, the additional degree of 
freedom from the rotary table can be represented by a 
great circle C on the unit sphere, if the table rotates 
through 360 °. (In Figure 9, a segment of a great circle is 
shown.) To ensure the visibility of the workpiece on a 
four-DOF point-visible machine, the V_maps must be 
rotated in such a way that they are maximally intersected 
by C. 

A 5-axis NC machine has an additional degree of 
freedom, denoted by ~. This rotary DOF is again a 
segment of another great circle C' on the unit sphere. (It 
is customary that the fifth axis does not rotate through 
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360 ° to prevent the fixtures and the table from tool 
collision and damage.) The combination of the fourth 
and the fifth axes forms a band, or just a spherical 
rectangle R on the sphere. To ensure visibility, the maps 
must again be rotated such that they are intersected by R. 

The enquiries about visibility for machines with low 
and high numbers of degrees of freedom posed in the 
second section can now be succinctly stated in terms of 
the relation between the maps (which represent the 
workpiece geometry and the effector geometry) and three 
entities: a point, a great circle, and a spherical rectangle 
(which represent the increasing number of degrees of 
freedom in the mechanism of the machine), all on a unit 
sphere. 

Visibility problem: Given the geometries of the workpiece 
and the effector, and the kinematics of the machine, find 
an orientation of the maps such that they are intersected 
by a point, a great circle or a spherical rectangle. 

Returning to Figure 9, it can be seen that the visibility 
problem covers all the manufacturing processes that 
possess point visibility, line visibility, or surface visibility. 
Take the 1-DOF surface-visible process as an example, 
one instance of which is stamping. The relative 
orientation of the punch and the sheet metal on the die 
must be such that the direction of travel offers visibility 
to all the points on the workpiece, so as to result in the 
desired shape in the sheet metal bound on the die. The 
removal of a casting from a 2-piece cast is another 
example. The parting plane must be such that the casting 
can be removed in the direction normal to the parting 
plane. The direction of the punch and the direction of 
the casting can both be represented by a point on the 
unit sphere; the single DOF is denoted by z, without loss 
of generality. 

Finally, the line-visible processes in the middle column 
of Figure 9 show the formulation of the visibility problem. 
Consider a 2-DOF line-visible process such as the 
wire-cutting EDM. Let the direction of the cutting wire 
be in the z axis, represented by a point p on the unit 
sphere. There are two degrees of freedom x and y for the 
cutting wire to travel. As shown in Figure 11, such a 
configuration of a wire-cutting EDM can create planar 
surfaces whose normals are in the x or y direction. 
Consider the surface facing in the x direction. Its G_map 
is a point gl on the unit sphere. Now, the same surface 
can be cut in many directions, some of which are shown 
by the crosshatching on the surface in Figure 11. In fact, 
the cutting wire can assume any of the directions for all 
the lines lying in the plane facing in the x direction; they 
form a V_map which is a great circle 1/1 on the unit 
sphere. Similarly, all the possible cutting directions for 
the surface facing in the y direction yield a V_map of 
another great circle V 2. To cut both surfaces, their 
V_maps must intersect, and they do, at the 'north pole'. 
Hence, the cutting wire must be oriented along the z axis, 
coinciding with the pole. No other orientation would 
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Figure 10 Machines; (a) 4-axis machine and great circle, (b) 5-axis machine and spherical band 
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Wire-cutting EDM and line visibility 

suffice, as the intersection of the V_maps is a single point 
in this case. To accommodate more complex geometries 
of the workpiece, in wire-cutting EDM, the cutting wire 
needs additional degrees of freedom in rotation, giving 
rise to the 3-DOF and 4-DOF configurations in the 
middle of Figure 9, all of which have the generic form of 
the visibility problem. 

The basic algorithms that enable the visibility problem 
to be solved are now easy to describe. 

Intersection for constructing V_maps: For point-visible 
processes, the F_maps are constructed by intersecting 
hemispheres whose poles are points in the convex hull 

of the G_maps of the workpiece surfaces. For line-visible 
processes, the V_maps are obtained by intersecting great 
circles whose duals are points in the G_maps. For 
surface-visible processes, the V_maps are the G_maps. 

Intersection for orienting the workpiece: As in Figure 9, 
visibility is computed by intersecting a point, a great 
circle or a spherical rectangle with the V_maps, depending 
on the degrees of freedom that are available in the 
mechanism of the manufacturing machine. 

Since there can be many surfaces, and hence many 
V_maps, it is desirable to intersect them optimally. A 
globally optimal solution to the problem of finding the 
minimum number of points (great circles or spherical 
rectangles) that intersect all the maps of interest is 
difficult. This has been proven 12 to be equivalent to the 
set-covering problem, which is strongly NP-hard 14. 
However, a locally optimal solution to the problem of 
finding one point (or a great circle or a spherical 
rectangle) that intersects the maximal number of maps 
is in hand. In particular, intersecting a point with the 
greatest number of maps is equivalent to finding the 
densest hemisphere. An O(nv log n) time algorithm, where 
n is the number of maps and v is the total number of 
vertices in them, has recently emerged~5. Now, 
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intersecting a great circle with the greatest number of 
maps on the sphere is equivalent to sandwich cutting. It 
can also be achieved in O(nv log n) time a 5 by exploiting a 
novel partitioning scheme which reduces infinitely many 
possible solutions to a finite number of equivalent ones 
in O(nv) time 16. 

E X A M P L E  

The machining of an object with 12 surfaces (represented 
as planar, ruled, Coons and B6zier surfaces (the mixture 
was intentional)) on a 4-axis milling machine is shown 17. 
The geometry of these surfaces is shown in Figure 12. 

The G_map for the top surface (there are ten on the 
side and one at the bottom) is shown as the dark region 
on a unit sphere, which has been 'opened up' for clarity 
(see Figure 13). This surface will be referred to as 'surface 
number 12'. The V_maps for all 12 surfaces are given in 
Figure 14, as incircle approximations to the convex 
V_maps. 

These 12 (circular) maps are seen to overlap each other. 
Map 12, for example, overlaps map 2, which, in turn, 
overlaps maps 6 and 7. However, there is no overlap 
between maps 12 and 6. A way of sorting out this 
intransitive relation is to use clustering. Table 1 shows, 
for example, that map M2 is in cluster x2 with map M12. 
It is also in cluster x~, with maps M6, M 7 and M 3 (whose 
intersection is degenerated by the limiting view of Figure 

l 
Figure 12 Object with 12 surfaces 

Figure 13 GAnap for one surface 
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12 2 

Figure 14 V~nap for all 12 surfaces 

Figure 15 Intersecting the maps  

Table 1 Clustering of maps  

M a p  Cluster 

xl x2 xa x4 x5 x6 

M 1 1 1 
M 2 l 1 1 
M 3 l 1 1 
Mg 1 
M 5 1 1 
M 6 1 
M 7 l 
M s 1 1 
M9 1 
Mlo  1 1 
Ml l  1 1 1 
M12 1 

14. Table 1 reveals that map M 2 is also in cluster x6, which 
contains a collection of maps, as shown on the right-hand 
side of Figure 14. 

If a 3-axis machine is to be used, then five clusters xl ,  
x2, x3, x4 and x 6 are needed, corresponding to five setups. 
If a 4-axis machine is to be used, only two setups are 
necessary. This is shown by the great circle shown by the 
broken line in Figure 15. This corresponds to the fourth 
axis, the rotating table. The broken line intersects all the 
maps, except for map M12. Thus, the first setup on the 
4-axis machine entails lining the cutter up (using three 
axes) with the great circle, and rotating the table (using 
the fourth axis). The second setup cleans up the remaining 
M 1 2 .  
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C O N C L U D I N G  REMARKS 

The purpose of presenting visibility maps as data 
structures that support spherical algorithms is to enable 
toolpaths to be automatically generated, in a context that 
lies beyond the traditional NC machining of sculptured 
surfaces. Elsewhere, researchers have begun to analyse 
'accessibility 'is for CMMs on the basis of the notion of 
a visibility 'cone'. Recently, 'global accessibility '19 has 
been considered to account for the partial visibility 
discussed in the third section. 

In this paper, a wide range of manufacturing processes 
are categorized by their point, line and surface visibilities. 
Further, the various degrees of freedom in the 
mechanisms of the machines gives a computational 
structure in terms of the maximal intersection of a point, 
a great circle and a spherical rectangle with the maps. 

The above formulation has been made possible by 
taking into account the scientific foundations laid down 
by researchers in three seemingly disparate areas: 
computer vision z°, geometric design 5, and computational 
complexity z~. Curiously, these three areas were all given 
the same name, computational geometry, a term coined 
independently by Minsky and Papert, Robin Forrest 22 
and Michael Shamos 23. Perhaps this paper serves to unify 
these three connotations of computational geometry by 
offering a structure called visibility, from which efficient 
solutions to many classes of problem in design and 
manufacturing can now be systematically derived. 
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