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A tessellation algorithm for the
representation of trimmed NURBS
surfaces with arbitrary trimming

curves

Bernd Hamann and Po-Yu Tsai*

In most cap systems, a trimmed parpmetric surface s defined
by two things the control information of the mrface sl
and the comtrol information of it trimmming curves, wikich are
usaally defined as parameiric curves in the paramcter space
of the surface. Ofen, trimmed parameirsc surfaces cause
problems in the context of dota exchampge betwesn Cap sys-
fems, surface evaluation Srendenng, and grid /mesh genera-
tiom, This paper describes & new approach for representing o
trimmed surfsce. The spproach is based onm the iden of
decomposing the valid part of the parameter space of a
trimmed surface by n sst of planar, mled surfaces, which are
defmed m parameter space and whote wmion defines the
entire valld par. A peneralized Yoronol dingram B con-
structed for the set of [nmming curves in parameter space.
Muis diagram defines tles around cach inmmmng curve, which
are further tessellated by wtilizing o scam line techmigue for
slentilymg and filling the mderior of palygons. Here, the scan
line techmique is used 1o extroct non-horizentnl scgments of
thie given trimming curves. Pairs of these segmends are then
limeasly Interpolated in horizontal porameter doection, this
defming n set of planar, mbsd surfaces. The set of all these
planar, ruled surfaces defines the entire valid pant of a
trimmed surface exsctly. Published by Elsevier Science Lid

Keywerds: secior, NURBS, scun-line algerithm, trimmed sor-
face, Voromod dingram

INTRODUCTION

This paper & concerned with the conversion of para-
meiric surfaces containing trimming curves (o a sef of
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spproximating surfaces that do not contain any
trimming curves. Trimmed surfaces arise frequently in
real-world applications. Typically, they are the result of
surface —surface intersection (551). Complex geometries
are defined in terms of thousands of parametric sur-
Taces which might infersect ench other. The intersec-
tion curves are wsually defined in the parameler space
of the surfaces, c.g. by a sct of planar Bézier, B-spline,
of NURES (aon-uniform rational B-spling) curves,

Many CAD systems cannot represent a wrimmed par-
metric surface implicity, o, a5 a pammeinic surface
with the trimming curves defined in its parameter space.
This causes a problem when exchanging trimmed sur-
face data between Cap syslems. A solution to this
provlem i the representation of the valid part (.e. the
part that remains when disregarding all holes implied
by the trimming curves) by a set of basic parnmetric
purfaces, ie. parametnc surfaces withoul trmming
curves. Furthermore, the representation of a trimmed
surface by a sci of bastc surfaces simplifics grid /mesh
generation and surface rendering.

This paper introduces a new approach for the repre-
sentation of trimmed surfaces. The complement of the
part that is ‘cut out’ by the trimming curves i defined
by means of decomposing the valid part of the parame-
fer space into a set of four-sided regioms. In the fol-
lowing, only tensor product surfaces will be considered,
They are denoted by

sla, o) = {xlu, o) plu, o), 2{u, o))

=Y Td, &) giv),

f=0 j=10

w,oe01] (1)

where d, ; =[x, ;. ¥, Yand ¢ful and o) can be
Bcnwu::n pnfmmuh B-spline hH.'il-Ii. functions,
or even rational B-spline basis f‘I.II:IEﬂ:IDﬂH-"] It i= ms-
sumed that & is C7 continuous.
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The 2D closed trimming curves in parameter space
wre denoted by

oy
e ltd=(ule), ol =¥ 4 $(r),

=

tefD1], k=0,.... K (2}

where df = (], 0 ) i& one of the (n, + 1) control points
of trimming curve ¢, and e, (0) = e, (1} It is assumed
that the rotution number of all trimming curves is +1,
which implics that they have the same orientation
Each trimming curve must be at least C° continuous
but can contain tangeni discontinuitics, A trimming
curve must not intersect another irimming carve and
musi nol self-interséct, In most practical applications,
there is one trimming curve enclosing the region that
contaims all the other timming curves, which s ws-
sumed to be ey IF this enclosing trimming curve is not
explicitly defined, the boundary of the parameter space
is chosen 1o be ¢, (Le, ¢y 18 the piecewise linear curve
given by the four line segments o =0, o= 1, v =1, and
w = [0}, Figure | shows the trimming curves of a trimmed
surface in physical and parameter space.

The approach described im this paper is similar to
ihe construction of planar Voronoi and power dis-
grams in the sense that & tessellation of the valid part
of the parameter spoce of a inmmed surface is com-
puted. These diagrams are described in detail in Refer-
ences 3—6. This paper presents a new method for the
construction of the curved boundaries (hisecting curves)
defining the tiles associated with the trimming curves.
A computationally efficient technique is used for gen-
crating a finite set of points on each bisecting curve,
The technique is based on shorfest distance compuia-
thens for & finite set of points on & rectilinear grid in
parameter space

Much wm‘t has been done regarding the generaliza-
tion of Yoronol disgrams. Most of the generalizations
in 21 deal with the construction of Yoronod diagrams
for sets of points, line segments, polygons, circles, and
more peneral planar curves, The construction of
Voronol diagrams for sech sets is discussed in Refer-
ences 7-14. Some of these papers address the relation
between Yoronoi diagrams and the medial axis trans-
form (MAT). The effickent construction of & general-
ized Vioronoi diagram for o sel of tnimming curves
given in paramefer space is an intcgral pari of the
method described in this paper.

An algorithm for rendering trimmed surfaces by us-

Flgure | Trimming cusves o phyalenl (lefl) and parmmetes (right)
Fpacs
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ing quadrilateral and triangular elements is described
in Reference 15, In Reference 16, & 21 mesh genera-
tion algorithm is described that sutomatically dis-
cretizes 2D regions containing trimming curves based
on the identification of certain geometrical features of
the trimming curves, g2 slope discontinuities. A tech-
nigue utilizing a combined ‘triangulation—quadrangula-
tion” stralegy of the valid part of the parameter space
of a trimmed surface i8 presented in Reference 17. A
method for representing a trimmed wURRS (non-uwni-
form rationsl B-spling) surface by a set of Bézier
patches is discussed in Reference 18 the problem of
dats exchange is addresed; trimmed rational surfaces
are approximated by non-rational surfaces.

Recently, an elegant algorithm for the polygonal
approximation of trimming curves und the approxima-
tion of the valid part of a inmmed surface by a set of
triangles has been introduced in Reference 19, The
algorithm determines the set of triangles — defining a
piccewise lincar surface approximation — based on a
user-specified tolerance e, which ensures that the ap-
proximation, in physical space, does not deviate by
more than ¢ from a given irimmed KURBS surface,

The algorithm discussed in Reference 19 must con-
sider ermors introduced by the piccewise lincar approxi-
mstion of a given trimmed surface, while the algorithm
presented in this paper exuctly represents the valid part
ol a trimmed surface a8 & union of so-called parnmeter
surfaces, i.e, analytical, planar suRes surfaces (ul £, o),
ol &, nil These parameter surfaces can be viewed as an
additional “layer” used for the indirect represcntation
of the valid part of a trimmed WURBS surface. Both
algorithms utilize o scan ling algorithm for the genera-
tion of dats inside the valid part of a trimmed surface
and the generation of the boundary curves of parame-
fer surfaces, respectively,

The underbving concepts of parametric curve and
surface design used in this paper are covered in Refer-
ences 1, 2 and X Various solutions to the 551 problem
arc described in Reference 21. A survey of 551 algo-
rithms is provided in Reference 22 Recent develop-
menis in surface and volume grid generation are sur-
veved in References I3 and 24, which also address the
problems that arise when having o generate grids for
trimmed surfaces.

PROBLEM STATEMENT AND
DEFINITIONS

The irimming curves deline o simply connecled region
in parameler space, The goal is io represent this region
by a sef of planar, four-sided surfaces whose union is
the valid part of the parameter space. In the following,
such a surface will be referred to as & ponermeter

sirface, 1t is denoted by

ul £.m) = (£, m), 040 £, 7))

My Ry

- L Ed BLEYR(n),

=il -

Emelni]

(3)
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where d! | =

{u} ;o0 ;) Thus, the part of a surface » that
iu mpl.mdlb].'rjm parameter surface w; s given by

sl ) = slu (£, p), o £, nl)

m n
=T T d, dlul &, n)dinl €N,

i={ =i
g.n=(01] (4}

Figure 2 shows a trimmed surface with one hole repre-
sented by four parameter surfaces that are shaded in
different grey scales.

The main problem to be solved is the generation of
the boundary curves of the parameler surfaces. This

roblem can be solved wsing a generalization of the
f’ﬂmmdwpnmtﬂimml#l When dealing with
trimmied surfaces, the trimming curves define the set
for which a fessellation, a generalized Voronoi diagram
must be ated. The tile boundaries in & planar
Voronoi diagram implied by a poinl set are obiained
from the ndicular bisectors of all g paoint
pairs**. Generalizations of this ‘standard” Voronoi din-
gram are obtained when the clements for which a
tessellation is to be constructed are points, line seg-
ments, circles, polygons, and more general curves. Fig-
wre 3 shows Vioronol diagrams for a set of points and o
set of circles™?,

Voronod diagrams introduce files around each ele-
ment (points, line segments, circles ete) according o
some distance measure. A tile is defined as the region
that contams all the points being closer to a particular
element than any other element. The tile boundary can
be wsed to subdivide a tile into & set of four-sided
plannr  surfaces whose undon represents: the area
hetween the clement and the element’s tile boundary.

Figmre 3 Vorondi dagrams for sel of podnis snd st of crcles

'\.‘.,1 'III‘”II \1

Figwre 4 Foursided parmmeter surfsces in tiles sround several
irimming curves

Each four-sided surface can be constructed by subdi-
viding the tile boundary curve into scgments and gener-
ating additional curves connecting end points of the tile
boundary segments and points on the element. This
principle i& shown o Figure 4,

The following definiticns are needed when using the
YVoronol diagram for the representation of trimmed
parametric surfaces.

Definition 1

Giiven o set of planar, closed, pairwise non-intersecting
curvies wilh rotathon number <+ 1 such that no curve lies
in the interior of any other curve, the locus of points
that have a smaller shortest (Euclidean) distance of
curve ¢; than to any other curve is called the sl T of
€5, denoted by Tic, b

If all curves e, have n continuous tangent, the
smallest shortest distance is equal to the perpendicular
n!.l.n'm Assuming that there are K such mﬂnj
is obtained as the intersection of K — 1 half-spaces, ie.

K

T{:* ] - n H{:*-:‘]'- {5}
ik
e

where Hie, ¢, ) is the half-space containing all points
that have a smaller shortest distance o e, than 1o e,

Definition 2

Given K curves as m Defimiton 1, Ih: K ules Me,)
define the genenlized Voronol

ruting the two half-spaces Hic,.e;) lnd Hig,, m]Pﬁ{u
called the bisector of e, and e, The intersection points
of hisectors are called Foronet perrices.

Figure 5 shows the generalized Yoronol diagram for
five arbitrary curves in the plane.

Omce the generalized \-’m'm“m;::sam (referred o
as Voronod diagram in the following) has been com-
puted for a set of timming curves all tles must be
represented by seis of four-sided parameter surfaces
The boundary curves of the parameter surfaces are line
sepments, segments of the bisectors, and segments of
the trimming curves. [t is also possible o use segments
of the curves deflining the mediel ey (or skeleion) of

463
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Figure 5 Generalized Voronoi diagram for five curves

the tiles as boundary curves of the parameter
surfaces?%, It is pointed out later why this can cause
problems for the general case. The MAT has been used
in computer vision and pattern recognition in the con-
text of thinning algorithm®~%,

Definition 3

Let R be a simply connected 2D region and B be its
boundary. A point p in R’s interior belongs to the
medial axis or skeleton of R if there are (at least) two
points on the boundary B having the same distance

from p and being boundary points with shortest dis-
tance from p.

The medial axis of a tile can be used for the con-
struction of parameter surfaces. Certain segments of
the medial axis can be used to define the boundary
curves of parameter surfaces that start on a bisector
and end on a trimming curve. Once the boundary
curves of each parameter surface are generated its
control points d} ; (see Equation 3) will be obtained by
interpolating its four boundary curves. The chosen in-
terpolation method must ensure that the parameter
surface lies completely inside the region enclosed by its
four boundary curves. Figure 6 shows the Voronoi
diagram for a set of arbitrary trimming curves and the
medial axes inside each tile.

COMPUTING THE VORONOI DIAGRAM
FOR A SET OF TRIMMING CURVES

An efficient algorithm is needed for the generation of
the tile boundaries around each trimming curve in
parameter space. First, tiles are constructed around the
trimming curves ¢,, ¢;, €3,..., and c. The final tiles
are obtained by intersecting the tile boundary curves in
the Voronoi diagram for ¢, c,, ¢5,..., and ¢, with the
enclosing trimming curve c,. This general configura-
tion of closed trimming curves is characteristic for all
real-world cases of practical relevance.

Initially, the trimming curve ¢, is not considered in
the construction of the Voronoi diagram. The genera-
tion of the Voronoi diagram is based on the computa-
tion of the intersections of bisectors with the edges in a
triangulation of the parameter space [0,1] X [0, 1]. The
vertices in this triangulation are labelled according to
the index of the closest trimming curve. The labels are
used to determine whether there is an intersection

Figure 6 Voronoi diagram (light) for set of trimming curves and medial axes (dark) in each tile

464
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between bisectors and edges in the triangulation. The
intersections between the edges and the bisectors are
computed and properly connected, thus defining an
imdtinl imation of the Voronoi diagram.

Multiple bisectors can intersect the same edge in the
triangulation, and multiple bisectors can intersect in
the interior of o triangle. These cases are addressed by
the algorithm described below. The algorithm does noe
consider the case of one bisector intersecting the same
edge multiple times. One does nod need to consider
this case due to the fact that only a discrete point (line
segment) approximation of the bisectors of the Yoronoi
diagram is to be computed, The approximation of the
Voronoi diagram requires these steps:

{1} Construction of a triangulation of the parameter
space [0, 1] = [0, 1],

(i) Extraction of all trian whose three vertices all
lie in the valid part of the parameter space,

liti) Labelling each vertex in the triangulation with the
index of the closest rimming curve,

{iv) Computation of inlersections between bisectors
and edges in the triangulation using a recursive
subdivision strategy,

i) Computation of intersections of hiseciomn,

vl Computation of intersection between hisectors and

CUTVE €5,

(wid} ﬂ:‘l}m:mn of piccewise linear and cubic B-spline
approgimiations of all tike boundaries in the
Vioronol diagram.

These steps are now described in greater detail. Denot-
ing the minimal distance of all possible pais of
trimming curves by o . the initial triangulation of the
parameter space only contains edges that are shorter
than d . /2 This is accomplished by subdividing the
parameter square [0, 1] = [, 1] into squares whose diag-
onal is shorter than o, /2 and splitting each square
into two triangles, Only triangles whose three vertices
all unhﬂmmﬁdﬂmnhh& porameler space are
conskdered for the following computations.

Each vertex in the triangulation is lnbelled according
o the closest trimming curve. The square of the dis-
tance o between a vertex with coordinate vector (x, v)
and a trimming curve ¢, (1) is given by d*(f=(x-
ui{:‘.ﬂ: +ly— u,lfl.r"l]l:". t€ [0,1]. The critical points of
d (1) are identified, ond the associated distances are
compuied. In addition, one computes the distances to
those points on ¢; where slope discontinuities oocur.
The index of the tnmming curve that has minimal
distance to (x, ) & used a4 the label for this vertex Tt
tums out that the case of multiple trimming curves all
having minimal distance to (x, ) does not require a
special case treatment,

The labels at each vertex in the trinngulation are
used to identify edges which are intersected by at least
onc bisector. It is possible that the three labels at a
irinngle’s wvertices are the same, that there are two
different labels, or that they are all different. In the
first case, it is assumed that no bisector intersects the
inangle. In the second case, it is assumed that there
arg hisectors inlersecting the two edpes whose end
points have differemt labels. In the third ease, it is

assumed thal there are bisectors intersecting all three
cdges.

Points lying on bisectors in the Voronod dingram are
computed based on Algorithm 1 for the recursive sub-
division of the parameter space trianguiation:

Algorithm 1 { Computation of poiniy on bizectors in
Voronat diagram)
Input: e trimming curves ¢, €,, €4,...,C4.
= triangulation of parameter space [0, 1]
x[0, 1],
wlabel = {1, 2 3,..., K] at each
veriex in triangulation referring to
closest trimming curve ¢,
» lolerance &:

Ouipui: & sei of points on bisectors in Voronol
diggram;,
FoR all triangles in the pprameter space triangu-
lation [

IF there are ai least two different labels among
Iy, Iy and [, nssociated with the triangle’s
vertices v, v, and w,

/= at least one bisector intersects this triangle;

compute points on bsector(s) « 7
{ = compute the midpoints m, ;. m, ,, and
m'l_l UIE three 'Ed,g{:"_l-'hj =WV
£sp =Wy, And gy = vgws
FOR the two (or three) edges among &, o,

€y 3, and ey, whose end points have
different labels po

/ * determine whether these edges are inter-
sected by one or mone biseglons = ¢

| & compuie, for éach of these two (or
three) edges, the points p, ; on ¢,
having the same distance to the rim-
ming curves indicated by the labels;

IF there i no trimming curve that is closer to

P, ; than either of the two trimming
curves indicated by the labels

/* p,; 15 a point on a bisector « /

e stofe p, , &8 & point on the bisector of the
two irimming curves indicated by the dif-
ferent labels;

ELSE
/% Py is not a point on a bisector; many
bisectors intersect this edge « /
= replace the value of m, | by the value of
Wi
|

IF one has found at least one edge whose
midpoint is closer 10 a trimming curve that is
different from cither of the two trimming
curves indicated by its labels

[ /= subdivision of triangle necessary + /
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» splil the trangle into the four subtriangles
given by TJ::'Pcl'nl triples {v,, m; 5, m, ), Iy,
ﬂ:‘:ihﬂh}]. LETHL LERT tl.u]',ﬂl'!“llll-‘, ﬂ;l:“
m:.. ]

» recursively compute intersections of bisectors
with edges of subtriangles;

J/* a triangle is no longer subdivided when
each of its edges s intersected by at maost
one bisector or when ils longest cdge is
shorier than e; if & triangle is obtained
whose longest edge is shorter than e, then
the triangle's centroid i viewed as the
intersection of isectors = /

Figure 7 shows the results of Algorithm 1 when
ppplied 1o two different configurations of trimming
CUTVES,

A piccewise linear approsimation of the Voronod
diagram i obtained by connecting the points resulting
from Algorithm 1. If exactly two edges of a triangle
each contain one point on a bisector, denoted by p,
and p,, then p, and p, are connected. If all thres
edges of o triangle each contain ane point on a bisec-
tor, denoted by py, p; and py, then py, py, and p, are
assumed to be lying on three different bisectors. In the
second case, each of the three points is connected with
the point g that is the intersection of three hisectors.
An iterative method is used to approximate the coordi-
nates of q.

The centrodd of p,, p;, and p,. dentoed by q", is used
as the imitial approximation of q. Subsequent approxi-
mations g' are obtained in the following way: Given an
approximation ', one computes its closest point x; on
€. closest point x, 0N ¢, and closest point X, on £,
assuming that the curves ¢, ¢;, and ¢, are the ones
closest to py, py. and ps, by, e compuics
the critical points of the squared Euclidean distance
between q' and the three trimming curves {using New-
tom’s method) and identifics the three closest pomts x;,
X,, and x,. Considering o single trimming curve, there
might be multiple points on it having minimal distance
i g’ It i not important which point & chosen, I the
centre of the circle passing through x,, x,. and x; lics
in the interior (or on one of the edges) of the triangle
(P, Pys Py} the centre is chosen as the value of g'* ' If
the centre of this circle lies outside the triangle (p,. p..

. al _ AN
. I-_,--"' r.-_,.-"" ; .. 5 - ; ii{ - -
o VR V| / |
=2y I s
( & \/
i AR h
L |£ \

Figure 7 Reocunive sebelivison of pammetss space trisngulations
for generation af poists on biseciors i Yorsal dagram
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p.), the unique point on the triangle's edges having
minimal distance to the circle’s centre is chosen as the
value of q' "', Due to the fact that there must be an
intersection point of three biseciors in the triangle, the
method will comverge. The method terminates when
the Euclidean distance between q' and ' "' s smaller
than e.

Whenever Algorithm 1 leads to & iriangle whose
longest edge s shorter than € (one of the termination
criterin of the algorithm) the centroid of such a triangle
is considered to be the intersection of biseclors. Even-
tually, one obtains a plecewise linear approximation of
all bsectors i the Yoronod diagram. Figure 8 shows
the piccewise linear approximation of the Yoronol dis-
gram for a set of rimming curves. This example has an
enclosing trimming curve €,. The piecewise linear ap-
proximation of the Voronoi diagram is intersected with
the enclosing trimming curve ¢, and the resulting
curve segments on ¢, are u=ed for the definition of the
tile boundary curves around e, €4, €4,..., 204 £

Based on the piccewise linear approximation of the
YVoronol disgram and the curve segments of ¢, 8 cubic
B-spline approximation i construcied for all tile
boundary curves, In the following, the bile boundary
curve associabed with the trimming curve ¢, & denoted
by &, The cubic B-spline representation of €, is based
on a chord length parametrization defined by the
lengthe of the line segments in the piccewise lincar
approximation’. Figere 9 shows the cubic B-spline
curves approximating the tile boundaries for the exam-
ple shown in Figure 8,

Remark |, In practical applications, one is often
concerned with intenor trimming curves that are not
closed pnd Intersect the puter trimming curve €. 1 this
is the case, the intersections between those trimming
curves and ¢, are computed, and the resulting curve
segments on ¢, — in combination with the trimming
curves that are not closed — define 4 new enclosing
trienming corve ¢, Once this new curve ¢, has been

l--l-__.-""
/ L

Figure &8 Ficowise lincar appeoaimation of Voronod diagram for
circular, nin-tosves, snd slope-discomtinmous irmming cures
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Figure 8 Cubic B-spline approxisatios of Veronoi disgram for ciroaler, non-convea, asd slope-discontsinuous irmming cunves

computed, the construction of the Voronol disgram
follows the same principle as discussed above, Figune [0
shows a4 configuration in which the trimming curve ¢, is
intersected by four trimming curves. Trimmed periodic
surfaces (i.e, surfaces for which s(0, o) = (g1, v) and /or
EI{H.UJ = glu, 11} do pol require an additional case dis-
binetion,

Once the Voronoi disgram is known, cach tile can
independently be into parnmeter surfaces.
Thus, all tiles can be processed in parallel, and only
two curves (e, and &) have to be considered for the
construction of the parameter surfaces inside a particu-
Lar tile,

COMPUTING THE BOUNDARY CURVES
FOR PARAMETER SURFACES

The next siep 18 the decomposition of the tiles in the
Voronol dingram (bounded by the oiiter trimming curve
¢y} im0 parameter surfoces. The union of all parame-
ter surfaces defines the valid part of the tmmmed
surface. The computation of an approximation of the
medial axis of a nle can be extremely nsive. Fur-
thermore, even if one knows the medial axis of a tile, it
is not quite clear how to extract segments from it (o be
used for the construction of the boundary curves of

Figwre 18 Trimming curves intersecting enclosing trimeming curve

parameter surfaces and how o interpolate the boundary
CUMVES.

Therefore, the algorithm used for the construction of
the parameter surfaces is based on decomposing a tile
inio a set of surfaces that have two horizontal boundary
curves. The algorithm s similar to the scan fne {or
scaen conversion) algorithm used for filling the interior
of 2D polygons™ and to the construction of the Reeb
graph representing the topology ‘skeleton’ of manifolds
with holes™,

The basic en for the construction of the parameter
surfaces inside the file assockted with a particular
trimming curve ¢ is as follows: The valid part of the
parameter space, ¢, the region between the irmming
curve ¢ and the tile boundary curve € is represented by
aa set of ruled parameter surfaces. They are obtained by
identifying local extrema in p-direction (and horizontal
line segments) on ¢ and & computing the infersections
between horizontal lines passing through these local
extrema (and the horizontal line scgments) and ¢ and £
and constructing ruled parameter surfaces from the
resulting horizontal line scgments inside the tile amd
non-horizontal curve segments on e and E

Assuming that the trimming curves are C" continu-
ous, the generation of the boundary curves of the
parameter surfaces inside the tile associsted with
trimming curve ¢ (having tile boundary curve © re-
quires these steps:

e Determining extrema in p-direction and end points
of horizontal line segments on ¢ and &

(1) Computing all points p={(u,v) on ¢ and © repre-
senili extrema in p-direction.

(i) Computing all end points q = (uy, 0} and r = (5, v),
by iy, of all horizontal line segments gr on ¢ and
£,
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» Computing intersection points between horizontal
semi-infinite lines (passing through the local ex-
trema on ¢ and €} and ¢ and & computing intersee-
tion paoinis berween horizontal semi-infinite lines
(defined by the horizontal line segments on ¢ and £
il € and &

(i} Computing all intersection points between the
wo semi-infinite lines Litd=p+{—t—0) and
Rit)=p+ (1,00 r = [0,=], and ¢ and &

{iv) Computing all intersection points between the two
semi-infinite lines Lir}=gq + (—r,0) and Rir)=r
4 (e, 0), r & [0,=)], and ¢ and &

# Sclecting those intersection points (o be used as
corner vertices of the ruled parameter surfaces:

vl D:ln:mumng the intersection point x on Lir) clos-
est p and the intersection point ¥ on R!l}
v:lm:ar m (x wnd ¥ being different from all
B qudﬁ provided that both Lir) and Ris alirl
ol n local extremum; discarding all other intersec-
tion points x om L) and ¥ on Rit),

{vi} Determining the intersection point x on L{f) clos-
esl to q and the intersection point ¥ on Rir)
closest 1o r (x and ¥ being different from all points
p. q, and r), provided that L{r) staris ot the left
and Rir} starts at the right end point of a horizon-
tal line sepment; discarding oll other intersection
points x on L) and ¥ on Rirl,

(vil} Determining those points x(y} for which the hori-
eontal line segments xp and xq (py and ry, respec-
tively) lie in the interior (including the boundary
curves) of the tile mssociated with ¢ discarding all
other intersection points x and y.

e Constructing s graph (vertices and edges) for the
set of local extrema, end poins of horzontal line
segments, and the sclecied interscction points, as-
suming there are L scan lines and N, poinis {con-
slelering local extrema, end points of horizontal line
scgmients, and sclected inlersection points) on the
kth scan line:

(viil) Ordering the points p, g, r, % and y resulting
from Steps (i—{vii) according to their a- and
p-corebinates {Le. ordering them according (o the
scan lines lic on and from left o right on
each scan line) by constructing the ordered vertex
s {':It {uﬂj H*}:Ht-l hl'-'l-.f-'ll H{jl
where the point ¥, , pr:::d::s the point 1.-” pro-
vided that v, ,'s r.l-m-ur:hml: is smaller than v, s
v-coondinate ar provided that v, ;s v-conrdinate
is equal 10 v, 's p-coordinate bul v, ,'s w-coordi-
nate is smaller than v, s u-mﬂrdm e v, <

Voo, <o, ]"u"L‘Iu gAMby <u, )

(ix) Constructing a g;m]:h ‘ m:h *-tr:in:l- -' .y and
M‘H.I:J:I'I'II-HJ l:d,!;#ﬂ J*I*"J. Fope = Loy L.,
=1 MN=1, J IJ{ua:

"J i+
are stored that II.|! in Thn: interior of the tle
associated with e (the boundary curves are cofi-

sidered part of the interior).

{(x) Ordering the points v, , on the curve ¢ = ot} (and
mm:mm:-a'f}mlhmwﬂmmaﬂmg
parameter value I (1, respectively) and — accord-
ing to this order — adding an edge ¢, , , o & for
each pair of successive points v, , amfr ; on ¢ {ond
on &), where v, , and ¥, unutunlh::ndpumls-ul'
a horizontal ling ugm:ntfrn ¢ (o €,

s Ordering the horizontal edges ¢, , , of G from left
to right on cach scan line and generating ruled
parameter surfaces by applving linear interpolation
fo pairs of associated non-horizontal curve seg-
ments on ¢ and €

(xi) Considering all edges s“ ear Ak, k=1,
L —1, with end points ¥ all lying on one scan
line and end points ¥, .afllh'in;:mmnth:racan
ling, ordering these edges in  w-direction
lf.EJ brr Sl S An, <ug IV

I.{HJ.\ J".H'.._li 5“] "}}

dnuﬂd:rmg the sct of edges in e, kirer b

Ll s S e Sy o Imnl the  even

number of non-hofizontal boundary curves of

ruled purameter surfaces having onc end point on
the kth scan line and the other end point on the
sth scan line, generating and storing the B-spline
control information for each ruled parameter suar-
face defined by the two horisontal line segments

Vo iV and ¥, ,'i,”mdthnlcﬂud right

Ary CUrves, are the exactly extracted

CLTVE SEgments hntwu:n o u.ud ‘i’“ . Bnd

between ¥, , and ¥, f

The local extrema in the p-direction on ¢ and & com-
puted in Step (), are not always characterized by a
horizontal curve tangent. They can coincide with poinis
where langenl disconlinuities occur, Step (i) actually
considers all *nearly horizontal’ line scgments on ¢ and
£, ie. line sepmeniz whose albsolute dope B smaller
than some tolerance e, Figure 17 shows the local ex-
trema in p-direction (sodid poimts) and the end points of
horizontal line segments (circles) on two simple curves
¢ and € defining a Voronod tile.

When ing the intersections between semi-in-
fimite horizontal lines and ¢ and € (Steps (i) and (v,

(i}

m"

ey

Figure 11 Local extrema in e~lirection snd emd points of hosizontal
line sepmemis on ¢ and &
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,r""r'l.n _""--._‘_ =

A e

Lyf— R, ¥ 3

——

Figwre 12  Solected miersection points berwsen semd-infinne  hon-
wontal lmss and ¢ and £

one must consider the existence of “nearly honzontal’
curve segments on ¢ and € that lie inside an e-strip 1©
both sides of one of the semi-infinite homzontal lines.
If such ‘neardy horizontal® curve segments are found,
they are not considered for the computation of inter-
sections, The intersection points. defermined in Steps
{w)-{vii) compictely define all ruled parameter surfaces.
These points lie on the boundary curves of ruled
parameter surfaces. Figure 12 shows the inlersection
points (stars) remaining after Step (vii) (same example
as shown in Figure 1),

Steps (vii)-{x) define a set of (non-intersecting)
edpges Meegments connecting local extrema, end points
of horizontal curve segments, and selected intersection
points. These edges/scgments are horizontal line scg-
ments inside the tile, horizontal line segments on ¢ and
€, and non-horzontal curve segments on ¢ and ¢, By
ordering the non-horizontal edges ¢, ; , , in u-direction
{Step (xi)) one generaies the mpc:i'nﬁnﬂ information
necessary (o define the four boundary curves of each
muled parameter surface. The four boundary curves of &
riled parameter surface are two horizonial line seg-
menl=, given by successive horzontal line segments on
two different hortzontal lines and two non-horizontal
curve segments on ¢ and £ 13 indicates the
single horizontal line segments (solid lines) and non-

[
il D

FLaan
[ H i

T__ : Ll

Figmre 13 Horeontsl lise segmenis and son-horinonial cumve seg-
ments defining boandary carves of ruled parnmeter surfaces

horizontal curve sepments (doshed curves) for the ex-
am_'l_:hh: shown in Flgure 1.

g final boundary curves for each parameter sur-
face are assembled in Step (xii). Since the fwo non-
horizontal boundary curves of each ruled parameter
surface are curve segments on e and & one must
represent these curve segments as single curves, &g as
wirkas curves. If one chooses to use a NURRS represen-
tatbon, il 15 necessary fo represent the two non-horizon-
tal boundary curves using the same degree and the
same knots, This is achieved by clevating the degree of
the lower-degree boundary curve to the degree of the
higher-degree boundary curve and by “merging’ the
knots of the two curves™ ™. Bvenmually, the ruled
parameter surface u,( £, ) is given by

wlé,m)=Aulé n)oilE, n))

-'{1 = E 'f..,t_.-,-t'ﬂ‘} * E'EJ.*.F.J{“]

LT} nj ‘.ﬁl
=(1- £} L djln) + £ L di(n),
{=1l

E.ne [0,1]

where d)=(u',¢/), d!=(a.5') and € An) and
e i i) are the analyvtical representations (e the
WURBS representations) of its two  non-horkeontal
boundary curves (see Equation 3), The curves €, , . ,(n)
and e, ; » () have the same degree and knots,

Figure 14 illustrates some of the curvilinear grids
obtained when evaluating parnmeler surfaces u; uni-
formly (same example as shown in Figure /7).

Remark 2. There are two main reasons why ruled sur-
fuces are being used for the definition of the parameter
surfaces w,{ £, ). First, the scan lme algorithm used to
define the upper and fower boundary curves of cach
parameter surface leads, in 8 natural way, to & ruled
surface defined by the left and night boundary curves.
Higher-order interpolation schemes would only lesd to
redundant control information. Second, the construc-
tion of the left and rght boundary curves of each
paramecter surface leads to curves that do aot contain
any local extrema in v-direction nor any horizontal line
segments; therefore, performing lnear interpolation in
w=direction lewds to o parameter surface that is a one-
to-one mapping from (£, pl 0 (4, 0kspoce. This

Figure 14 Curdlinest grids of petameter surfsces resulting from
wniforrm evaluniiim
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Figore 1§ Trenmed surifsce with oee immming curve

property is important in order to more casily pﬁmrnte
grids that do not contuin intersecting grid lines

Rermark 3. The union of all purameter surfaces inside a
particular tile locally represents the valid part of the

ameter | without error. This is dug to the Fact
that the INmMmIng curves are Eiven Bs NURBS
curves—defined in parameter space—and that the left
and right boundary curves of each parameter surface
are obtained by extracting segmenis from the given
trimeming curves. Using knot msertion and degree cle-
vation algorithms allows the cxact representation of
these segpments. This, i turn, implies that the valid part
of the parumeier space is represented exsctly.

Remark 4. Figore 14 clearty illustrates that o wniform
evaluation of the parameter surfaces in their respects
parameter spaces ([£, nlspaces) does not lead (0 a
uniform grid point distribution in Cu, & through-
oul w tle nor o grids whose constituting grid lines
match in a continuous fashion along the shared
boundary curves of two parameter surfaces. Thiv i nof
the goal of the described method. The method presented
here is purely wsed to define the valid part of a frimmed
surface in an analytical, indirect manner. The conmec-
tivity information of all parameter surfaces and so-
called point distribution fonctions are used in & later
grid peneration step to obtain & certain point distribu-
tion and continuous grid lines™ ™. Grid generation
methods have to take care of those parameter surfaces
having edges that degenerate o poinis.

EXAMPLES

The described method has been tested for various
cases, imcheding warkous real-world configurations. The
method is robust and 8 completely automatic, Finees
1518 show four examples of trimmed surfaces (left:
shaded version of tnmmed surfaces; right: parameter

Figure §6  Trsamed susfecs will maliple triemming cunaes

470

Figure 17 Trmmed sarface {fuselspe ) with one trimmeing carve

space configuration). The trimming curves, the tile
bmmdat}' curves of the generalized Voronoi disgrams,
und the resulting curvilinear grids in parameter space
are shown, The parameler spaces ahm in Figeres I7
and 78 (on the right side in each figure) correspond 1o
the fuselage, and the trimming curves indicate the
fuselage-wing interscctionds).

Figures 15 and 16 show the same cubic B-spline
defined by 4 x4 control points. The two trimming
curves in Figuee 15, one of them being an outer enclos-
img trimming curve, are two cubic B-spline curves de-
fined by 11 linner trimming curve) and 9 control points
{outer trimming curve). The three trimming curves in
Figure 16 ure cubic B-spling curves defined by 9, %, and
1l control points. Figures I7 and 5 show the same
cubic Bespline surfoce defined by 133 % 445 control
points {fuselage), The one trimming curve in Figuere 17
t5 o fubic B-spline curve defined by 631 control points.
The three trimming curves in Figuee /8 are cubic
B-spling curves defined by 631, 9, and 9 control points,

Remark 5, The method has been implemenied in ¢ on
an SG1 Indignl Extreme graphics workstation, The
examples shown in Figwrey 15-08 require approxi-
mately 3 & 35 5 1 & and 5 5 respectively, for the
generation of the control information of all parameter
surfaces. Due to the fact that the example shown in
Figwre 15 contains an ouber enclosing trimming curve,
the times required for the examples shown in Figures
I5 and 186 are nearly the same. For gnd generation
purposes, the sdditional Layer ided by the parame-
ter surfices & stored and later for the pencration
of grids for the valid part of a trimmed surface. In
general, this tessellation method & notl meant o be
used for interactive applications bul meant to be used
purely for the conversion of given trimmed parametric
surfaces (o a set of surfaces without trimming curves by
means of the additional parameter surface layer.

Rernark 6. For each moled parameter surface, one muosi
store only one knod wvector, which is the kool vector
shared by the loft and right boundary curve, and the
wuRrEs control points of the lefi and right boundary
curve. Provided that all irimming curves are originally
defined as cubic B-spline curves, which is usu the
case, one does notl need 1o perform degree elevation,
Assuming that the original knot vectors of the left and
right boundary curves (= segments of cubic B-spline
curves) of each parameter surface are entirely differ-
ent, the number of control poinis  required [0 repre-
send the left and right boundary curves of all parameter
surfaces i approximately twice the number of control
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Figers |8 Trimmed senince (feselage) with multiple trimsing
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points defining the original trimming curves. This fact
is independent of the number of paramecter surfsces
needed 1o represent the valid part of a trimmed sur-
face,

CONCLUSIONS

A method for representing the region betwecn the
frimming curves in the parnmeter spece of & rmmed
surface has becn . A generalized Voronod
diagram s compited for the sel of rimming curves,
and the resulting tiles associated with each trimming
curve are then further subdivided inte mled parameter
surfaces whose boundary curves are defined by hori-
zontal line segments and non-horizontal corve seg-
ments of the trimming curves and tile boundary curves,
Alternatively, one might want to interpolate between
segments on the tile boundary curves and segments on
the trimming curves ooce the generalized YVoronol dia-
gram has been computed. If one decides to do this, one
must ensure that the chosen interpolation method
4 one-to-one mapping between the (£, :ﬂi
ace (the purameter space of a paramcter surface
:I:ul the (u, v)-space (the parameter space of a trimmed
surface). It will be imvestigated in which cases a tile can
directly and easily be decomposed into parameter sur-
faces using transfinite interpolation’ or conformal
mappings". o
The strategy used for representing a single tile by a
sel of ruled parameter surfaces can also be viewed as a
strategy for genersting the block boundaries (vertices
und } of a multi-block decomposition of a 2D
region™ . It is planned to extend this strategy for gener-
ating the block boundarics (vertices, edges, and faces)
of & multi-block decomposition of a 3D region. Most
likely, many of the blocks resulting from the strategy
will lead o unacceptable prids, Therefore, ome must
subdivide the blocks further, This aspect will be investi-
gated in the future.
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