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Jin J. Chou * 
Computer Sciences Corporation 
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December 14, 1993 

Abstract 

Rational Bezier and B-spline representations of circles have been 
heavily publicized. However, all the literature assumes the rational 
Bezier segments in the homogeneous space are both planar and (equiv
alent to) quadratic. This creates the illusion that circles can only be 
achieved by planar and quadratic curves. 

In this paper we show circles that are formed by higher order ra
tional Bezier curves which are non planar in the homogeneous space. 
We also investigate the problem of whether it is possible to repre
sent a complete circle with one Bezier curve. In addition, some other 
interesting properties of cubic Bezier arcs are discussed. 

*This work was performed in part under NASA Contract NAS 2-12961 



1 Introduction 

One of the most (if not the most) important reasons to use rational Beziers 
and B-splines for shape representation is to represent circles exactly. Quadratic 
is the lowest degree necessary to represent a circle with rational B-spline 
curves, and indeed, is the best representation for most applications. How
ever, the requirement of multiple internal knots for the quadratic B-spline 
curves to represent a circle may create difficulties in some applications. 

An excellent review on B-spline circles can be found in [1]. Other more recent 
work on this subject can be found in [2, 3]. All the literature implicitly 
assumes that the curve segments are planar in the homogeneous space and 
are quadratic, or equivalent to quadratic. Some of the theorems stated in 
the papers are true only with this implicit assumption. In this paper we 
show that there are more circles/circular arcs in higher order curves and in 
nonplanar cases. 

2 Preliminaries 

A rational Bezier curve in 2D is a vector valued rational function obtained 
by a perspective projection of a nonrational Bezier curve in the homogeneous 
space (3D). We let H denote a perspective map from the origin, in 3D, onto 
the plane W = 1. We have, 

G(t) = (X(t), Yet)) = H {G(t)} = H {X(t), Yet), Wet)} 
= H {Ei=o Br(t)Pi} , 

- "':1 B!l(t). Pi - ,-,,=0, w'E;=oBj(t)w/ 

(1) 
(2) 

(3) 

where Pi = (Xi,Yi,Wi) = (WiXi,WiYi,Wi),i = O, .•. ,n, are the homogeneous 
control points, BrCt) are the n-th degree Bernstein functions, Wi are the 
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weights, and Pi = H {Pd = (Xi, Yi) are the 2D control points. 

It is easier to discuss the rational curves in the homogeneous space. For a 
circle, the nonrational homogeneous curves C(t) lie on a cone in the homo
geneous space (Figure 1). This can easily be seen from the circle equation: 

(4) 

(5) 

The above equations are those of a circle centered at the origin and with unit 
radius. The last equation is that of a curve on a cone. The perspective map 
H projects the curve onto the base circle of the cone, forming the circle C(t). 

B-spline circles can be constructed by piecing together Bezier curves going 
around the cone. To investigate B-spline circles of higher order, we need to 
study the possible Bezier curves on the cone. We assume our circles/circular 
arcs are centered at the origin and of unit radius. This confines the cone 
of our discussion to the one shown in Figure 1, but does not sacrifice the 
generality of our results. 

Given a circular arc, there are an infinite number of homogeneous curves 
C(t) that can be mapped to the arc. For example, given the Bezier control 
points Pi of an arc, all the homogeneous curves that have the same shape 
invariance [4] and that are from degree elevation/reduction [5] are mapped to 
the same arc. As an example, the shape invariance formula for cubic curves 
IS 

(6) 

Two cubic curves with the same CI and C2 are of the same shape and mapped 
to the same circular arc. Geometrically, the effect of adjusting the weights 
is to move the control points Pi along the line connecting Pi and the origin 
(Figure 1). Through the shape invariance, we can fix the weights of the 
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Figure 1: The Bezier curves for an arc lie on a cone in the homogeneous 
space. 
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control points at the two ends to unity. In 3D this means the end control 
points are on the base circle of the cone. Given a curv~, after we have 
fixed the end weights, the position of the control points Pi are fixed. We 
say all the curves obtained through degree elevation/reduction, from weight 
adjustment, and from affine transformation are equivalent. Our primary 
interest is in curves that are in different equivalent classes. Therefore, we 
assume the first and the last control points stay on the base circle of the 
cone. 

3 A Bezier Curve as A Full Circle 

The fact that a rational quadratic Bezier curve can not represent a full cir
cle (even with negative weights) is evident from previous literature. The 
following is a simple proof, included for completeness. 

All nonrational quadratic Bezier curves are parabolae, and all the parabolae 
on a cone are made by cutting the cone with planes parallel to the rulings. In 
Figure 2, we can push the cutting plane as close to the ruling (R in the figure) 
as possible, and hence make C(t) as close to a full circle as possible; but the 
cutting plane can not contain the ruling. When that happens, O(t) becomes 
a double line and C(t) is a point. All the quadratic Bezier arcs have the 
following control points: Po = (cos(19), -sin(19), 1), PI = (1,0, cos(19)), P2 = 
( cos ( 19), si n ( 19), 1), where 19 is one-half of the sweeping angle of the arc. If 
no negative weights are allowed (cos(19) > 0), C(t) is less than 180 degrees. 
When the middle weight is zero (19 = 90 degrees), C(t) is exactly 180 degrees. 

The next natural question is: how about cubic curves? If quadratic curves 
can not represent a full circle, can cubic curves do it? Unfortunately, the 
answer is negative. We provide the following simple proof. 

For the cubic H(O(t)) to be a circle, Pa must be on the line PoO, and we 
can assume both Po and Pa are at the same point in 3D. Since O(t) is on 
the cone, both the tangents of O(t) at Po and at Pa must lie on the tangent 

4 



w R 

x 

Figure 2: A single quadratic Bezier curve can not be a full circle. 
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plane of the cone at Po. By the tangent property of Bezier curves, PI is 
on the tangent line of the curve at Po and P2 is on the tangent line of the 
curve at P3. From above, we have that all the four control points are on the 
tangent plane of the cone at Po; hence by the convex hull property of Bezier 
curves, the curve C( t) is on the tangent plane. We know that the tangent 
plane only intersects the cone at a line. C(t) is a point. 

How about quartic curves? What are the quartic curves that are circles? To 
find all the quartic circles, we substitute the equation for the homogeneous 
Bezier curves into the equation of the cone (Equation 5). After equating the 
coefficients of B?( t), i = 0, ... ,8, to zero, we obtain nine equations. 

Without loss of generality, we assume Po = P 4 = (1,0,1). Since PI and P3 

are on the tangent plane at Po, we also have XI = WI and X3 = W3. With 
these known conditions, the nine equations reduce to five. With some simple 
algebraic manipulation, we have the following equations: 

iiJ = -iiI 
X3 = -XI 

3X2 + 4:ih 2 
- 3W2 = ° 

XI X2 + fhth - XIW2 = ° 
9X22 - 8yl 2 + 9Y22 - 9w~ = ° 

The last three equations have two sets of nontrivial solutions: 

_ _ 3W2 - 4XI2 + 2 _ 4 _ 
YI = a,x2 = - 3 ,Y2 = 3"xl a; 

_ _ 3W2 - 4XI2 + 2 _ 4 _ 
YI = -a,X2 = - 3 ,Y2 = -'3xla, 

(7) 
(8) 
(9) 

(10) 
(11) 

(12) 

(13) 

where a = J~ - XI 2 + l· We have the following control points for the 
quartic circles: 

Po = (1,0,1) 

PI = (XI, ±a, XI) 
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P
- (3W2 - 4Xl2 + 2 ± 4 _ ) 

2 = - 3 ' '3XI a, W2 

P3 = (-Xl, =Fa, -Xl) 

P4 =(l,O,1) 

In order for a to be a real number, we must have 
1 

W2> -- and 3' 

/3W2 + 1 _ /3W2 + 1 
- 2 < Xl < 2· 

Note that when W2 = -~ or Xl = ±J3'1±I, C(t) is not a circle. 

(16) 

(17) 
(18) 

(19) 

(2D) 

With this set of control points, it is easy to check that W(t) > 0, for t E 
[0,1]. That is, points on the circle can be computed safely. However, from 
Equations 15 and 17, WI = -W3; it is impossible to have a quartic Bezier 
circle with positive weights. 

If we require the curve to be symmetric with respect to the plane y = D, we 
have Po = P4 = (I,D, 1) and 

PI = (0, ±/3, D) (21) 
- 2 
P2 = (-'3 - W2, 0, W2) (22) 

P3 = (0, =F/3, D) (23) 

where /3 = J! + ~W2. In particular, when W2 = ~, we have 

- - - 1 
Po = (I,D,I),PI = (D,I,0),P2 = (-1,0,'3)' 

P3 = (D,-1,0),P4 = (I,D, 1). 

(24) 

(25) 

(26) 

Figure 3 shows this curve. This curve can also be obtained by squaring the 
quadratic semicircle with control pointsl 

Po = (1, D, 1), PI = (D, 1, D), P2 = (-1, D, 1). (27) 

IThis fact was first pointed out to the author by Tim Strotman at SDRC. 
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Now we have a Bezier curve (a rational polynomial piece) as a circle. Un
fortunately, all the quartic Bezier circles are with zero or negative weights. 
This is highly undesirable in many applications. The next natural question 
is: is it possible to have a quintic Bezier circle with positive weights? 

This question can be answered easily by elevating the degree of the curves 
in Equations 14-18. The conditions for the degree-elevated curves to have 
positive weights can be easily determined. For example, the curve in Equa
tions 25-26 satisfies the condition, and all the weights of the degree-elevated 
curve are positive. 

4 Cubic Semicircles 

From the previous section we know that quadratic Bezier curves can not 
represent a semicircle with positive weights. In this section we study cubic 
Bezier curves as a semicircle. 

We begin by substituting the homogeneous cubic Bezier curve equation into 
the equation of the cone (Equation 5). After equating the coefficients of 
Bf(t), i = 0, ... ,6, to zero, we obtain seven equations. 

Again we assume Po = (1,0, 1),Pa = (cos(O),sin(O), 1), where 0 is the angle 
of the circular arc, and 0 = 7r for a semicircle. Since PI and P2 must lie on 
the tangent plane at Po, we have 

(28) 

and 

W2 = cos ( O)X2 + sin( O)fi2. (29) 
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Figure 3: A quartic Bezier curve as a circle. 
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With these conditions and some algebraic manipulation, the seven equations 
become three: 

2(1 - cos( fJ) )X2 + 3Yl2 
- 2sin( fJ)Y2 = ° (30) 

9(1 - COS(fJ))XIX2 + 9YIY2 - 9sin(fJ)XIY2 + COS(fJ) - 1 = ° (31) 
3sin2(fJ)x22 - 2(1 - cOS(fJ))XI + 3cos2(fJ)Y22 + 2sin(fJ)fh 

-6cos( fJ)sin( fJ)X2Y2 = ° (32) 

Note that all the cubic Bezier arcs with angles fJ and (27r - fJ) satisfy the 
above equations. 

By substituting fJ = 7r into the above equations, we obtain the following set 
of solution: 

- - 1 2a 1 
Po = (I,O,I),Pl = (3a2'3' 3a2)' (33) 

- a 2 2 a 2 _ 

P2 = (-"3' 3a' "3),P3 = (-1,0,1) (34) 

where a = 3yt!2. The 2D control points are Po = (1,0), PI = (1, 2a3 ), P2 = 
(-1, 2/a3

), P3 = (-1,0). Several interesting properties of the curves are 
discussed below. 

First we provide a geometric method for constructing an arbitrary rational 
cubic Bezier curve forming a semicircle. As shown in Figure 4, we draw two 
lines x = 1 and x = -1. After that, we draw an arbitrary tangent line, L, to 
the semicircle. Let the tangent point be q. L intersects the vertical lines at 
Yr and Yl. We find the points, (1,2Yr) and (-1,2Yl), on the lines. These two 
points, along with (1,0) and (-1,0), are the 2D control points of the cubic 
semicircle. The weights are 

1 1 
WI = 3(Yr )2/3' W2 = 3(Yl )2/3· (35) 

To prove the correctness of the construction, we observe that YIY2 = 4 (from 
Equations 33 and 34). The fact that Y1Yr = 1 for any line tangent to the 
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semicircle can be proved by simple algebra. The rest of the construction 
follows directly from Equations 33 and 34. The angle </> (Figure 4) at the 
tangent point is related to 0: by tan{</» = (20:3 )/{1 - 0:6 ). 

We check the parametrization of the semicircles by examining the points at 
t = 1/2. It is easy to calculate that C{1/2) = (20:)/{1 - 0:2). The point is 
shown in Figure 4 (as an '*'), along with the line tangent to the semicircle 
at this point. This tangent line intersects x = 1 and x = -1 at y = 0: 
and y = 1/0: respectively. From the construction we have that for 0: < 1, 
C{1/2) lies between point (0,1) and q. As q moves toward (1,0) (with de
creasing 0:), C{1/2) follows, producing increasingly skewed parametrization. 
An interesting case is when q is at (0,1). In this case 0: = 1, and the curve 
is symmetric with respect to the x = ° line. The control points of this 
curve are Po = (I, 0, 1), PI = (1/3" 2/3,1/3), P2 = (-1/3" 2/3,1/3), P3 = 
(-I, 0,1), which can also be obtained by elevating the degree of the quadratic 
semicircle [1]. 

5 General Bezier Cubic Arcs 

In this section we discuss some properties of cubic Bczier arcs. In particular 
we ask the question: what is the largest angle achievable by a cubic Bczier 
curve without negative weights? 

For an arc of angle 2fJ we can write the control points of the cubic Bczier curve 
as: Po = {cos{fJ),-sin{fJ),1),PI = {xt,ih,WI),P2 = {x2,ih,W2),P3 = 
(cos{ fJ), sin{ t?), 1). There is one and only one curve whose control points are 
symmetric with respect to the plane y = 0, i.e., a curve with Xl = X2, YI = 
-Y2, and WI = W2. The cubic curve with this property arises from the degree 
elevation of the quadratic Bczier arc with the same angle. The correctness 
of the statement is obvious, and its proof is omitted here. 

Curves with positive weights are particularly useful in computer applica
tions. As pointed out previously, the largest angle of an arc achievable by a 
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Figure 4: Geometric construction of a cubic Bezier semicircle. 
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quadratic Bezier curve without negative weights is 180 degrees. A natural 
question to ask is: what is the largest angle achievable by a cubic Bezier 
curve without negative weights? 

From the proof in Section 3, we know that a cubic Bezier curve can not form 
a full circle. In the following we prove that a cubic Bezier curve can form 
an arc near 360 degrees only if some of its weights are negative. We start 
by assuming Po = (1,0, 1),P3 = (cos(O),sin(O), 1). When 0 approaches 360 
degrees, we have 

cos(O) ~ (1 - 62
), sin(O) ~ -6, (36) 

where 6 = (21r - 0) is an arbitrarily small number. From Equations 28, 29, 
and 30, we have Xo = 1, Xl = WI, X2 = W2-~YI2, X3 ~ 1-62/2 (see Appendix). 
In the Appendix we prove that Yl is linearly proportional to 6 and that when 
W2 is less than one, WI is negative. If all the weights are positive, i.e., WI > ° 
and W2 > 1, then, all the xi's are positive when 6 is small. By the convex 
hull property of Bezier curves, a curve lies on the x > ° half-space if the 
x-components of all its control points are positive. Therefore, the curve can 
not be mapped to an arc greater than 180 degrees. We conclude that a cubic 
Bezier curve forming an arc near 360 degrees must have negative weights. 

The largest angle achievable by a cubic Bezier curve with non-negative weights 
and symmetric control points is 240 degrees. It is achieved by elevating the 
degree of a quadratic Bezier arc with the same angle. The author has not 
been able to prove that 240-degree is the largest angle achievable by all cubic 
Bezier curves; however the author conjectures that this is true. 

6 Conclusion 

We investigated some interesting properties of Bezier curves as circles/circular 
arcs. Most of the properties are derived from the fact that all the rational 
curves forming an arc lie on a cone in the homogeneous space. Given an 
angle, Equations 30-32 define all the possible cubic Bezier curves mapping 
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to the arc with that angle (with the assumption on the positions of Po and 
Pa). 

There is one degree of freedom in Equations 30-32. In the Appendix, we show 
a way to simplify the equations. However, in order to solve the equations, 
a complex cubic equation (Equation 45) has to be solved. In Equation 45, 
the degree of freedom is chosen to be W2. For each value of W2, there may be 
up to three solutions to Equations 30-32, depending on the determinant of 
Equation 45. Methods like Cardan's Solution or Trigonometric Solution [6] 
can be employed to solve the equation. However, to find an explicit solution 
as a function of the angle (like the one for quadratic curves) is difficult; espe
cially, some of the solutions may represent degenerated cases or solutions for 
the complementary arc. Even when the solutions are obtained, the geomet
ric interpretation of the solutions is quite illusive, except for certain special 
cases. 

In this paper we show that cubic Bezier arcs are much richer in variety than 
the quadratic ones. How to take advantage of this variety to create cubic 
B-spline circular arcs or circles with better properties, e.g., higher continuity, 
better parametrizaton, should be a topic of future research. 

Appendix 

In this appendix, we show that when the angle () of a cubic arc is near 271", 
YI is linearly proportional to 8 = (271" - ()). In the latter half we prove that 
when W2 < 1, WI < o. 

We start by substituting Equation 29 into Equations 30-32. From Equa
tion 30, we have 

(37) 

14 



From Equation 32, we have 
_ 1 
Xl = 

2{1 - cos{O)) 

[ ( 
3 _ 2)2 (3COS(0) _ 2 (1 - COS(0)))2 2] 

3 W2 - '2Yl + 3 2sin(lJ) Yl + sin( 0) W2 - 3w2 . (38) 

Substituting X2 into Equation 37, we obtain 

_ 3cos(0) _ 2 (1 - cos(O)) 
Y2 = 2sin(0)Yl + sin{O) W2' (39) 

After eliminating xt, X2 and Y2 from Equation 31 (with Equations 37-39), we 
obtain 

27-1 2 [27 fit· + 9(COS(0)-1) - 2 + 3(1-COS(0)2 2 + 2 . (n)-] 
4(1-COS 0) 4 sin{ ot sin( 0)2 Yl W2 sin( 0)2 W2 sm u Yl 

27COS 0 - 3 9(1-COS 0 ) - ({O) 1) - 0 (40) - 2sin 0 Yl - sin 0 YlW2 - cos - -

==> ( "e 1) (~_ 3(1-COS 0 ) UIl) 
8sin( O)(l-COS( 0» + 2sin( 0) sin 0 

_~ (~_ 31(1-~OS () )UIl) _ (cos(O) -1) = 0 (41) 
4sznlOJ 2sin(0) szn 0 

==> p.(p. + 4(1 - cos(O))) + 4(cos(0) - 1)2 = 0 (42) 

==> P. = 2(cos(0) - 1) (43) 

where I = 3Yl, 

;3 3;(1-COS(0))W2 
P. = 2sin( 0) - sin{ 0) (44) 

From Equations 43 and 44 we obtain a cubic equation for I, 

;3 _ 6(1 - cos(0))W21 + 4sin(0)(1 - cos(O)) = O. (45) 
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The equation of Xl (Equation 38) can be simplified with Equation 45: 

_ 9 _ 2 (1 + 2cos( (})) _ 3 2 

Xl = - 4sin((})2W2YI + 2sin((}) YI + 2(1 + COS((})) w2· (46) 

When (} is near 211" and 0 is small, sin((}) ~ -0 and cos((}) ~ (1 - 02/2). The 
equation for Xl becomes: 

(47) 

The cubic equation for 'Y becomes: 

(48) 

The determinant of this cubic equation is -108Q, where 

Q = ot'(1 - w~). (49) 

Equation 48 has one real root, multiple roots (real), or three different real 
roots, if W2 < 1, W2 = 1, or W2 > 1, respectively. For each of the cases, 
the solutions for 'Y can be calculated with either Cardan's Solution, when 
W2 ~ 1, or Trigonometric Solution, when W2 > 1. In all the cases, 'Y is 
linearly proportional to 0, and so is fh. In the following, we demonstrate the 
case for W2 < 1. 

When W2 < 1, the only real root in the equation is 

(50) 
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With this solution for YI(= ,/3), Xl in Equation 47 becomes 

(51) 

With some algebra, it can be proved that Xl < 0 for 0 < W2 < 1. Since 
WI = Xll we have WI < 0 for 0 < W2 < 1. 
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