
Pergamon
Compur. Biol. Med. Vol. 26, No. I , pp. 41-52, 1996

Copyright 0 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0010-48251% $15.00+0.00

RANDOM SELECTION ALGORITHMS FOR SPATIAL
AND TEMPORAL SAMPLING

Department of Plant Protection, Swedish University of Agricultural Sciences, S-230 53
Alnarp, Sweden

(Received 6 March 1995; received in revised form 31 August 1995)

Abstract-Seven BASIC programs are presented that use algorithms for selection of treatments
and samples in spatial and temporal contexts. Program (1) takes a natural sequence of samples
(such as logs cut from a tree trunk) and divides them into groups (equal to the number of samples
divided by treatments), and then selects non-redundantly from each group a sample at random
for each treatment. Program (2) matches items from different categories equally to any number
of treatments in proportion to the numbers of items of each category. Program (3) selects
sampling times or segment lengths of specified interval and number from within a time period or
perimeter distance. These samples can be spaced apart by at least a specified amount of time or
distance but otherwise are chosen at random. In program (4), a series of sample coordinates
(x , y) are chosen at random from a rectangular area so that no points are closer than a specified
minimum distance to any other. For each of the sample points, the Cartesian and polar
coordinates are given. Program (5) generates any possible Latin square, while program (6)
generates Latin cubes, and program (7) makes Graeco-Latin cubes. Examples of program use
and output are presented for experiments with bark beetles (Coleoptera: Scolytidae) responding
to pheromone blends and colonizing host trees.

BASIC Algorithms Randomization Sampling Experimental design
Pheromone

I N T R O D U C T I O N

There are numerous software programs and statistical books to aid researchers in their
analysis of experimental data. However, relatively few of these textbooks and programs
offer practical methods for randomization of treatments and sampling during the data
gathering stages. Statistical analysis methods for experimental and natural observations
presume that the selections of samples and treatments are unbiased [I-91. The personal
computer is ideally suited for selection of random numbers and their application to
experimental design. Recently, five algorithms were implemented on the personal
computer for use in randomization of treatments and for sampling at random [lo]. The
computer-programmed algorithms in the BASIC language allow construction of Latin
squares (treatments represented only once in each row and column) and quasi-Latin
squares (equal numbers of replicated treatments for each row and column). In addition,
random placement of equal numbers of different treatments within a grid can be done in
such a way so that identical treatments are separated both horizontally and vertically
from one another by other treatments (spacing of treatments).

In a second paper [I l l , this algorithm was improved to include horizontal, vertical and
diagonal separation. Other algorithms can place treatments in grids using unequal
numbers of replicates of several treatment types (including no treatment), with or
without a spacing function. Algorithms for generation of Latin squares with randomized
non-repeated subscripts and Graeco-Latin squares were also presented. These algor-
ithms comprised methods to randomize integers in experimental designs where treat-
ments, positions, and time periods must be selected.

In this paper additional algorithms are presented for selection of treatments or samples
in spatial and temporal contexts. One objective is to devise algorithms that sample time

or perimeter distance with a random or variable degree of uniformity. Another objective
is to construct a method to sample areal plots with variable uniformity. Finally,
programmed algorithms are described that can randomly select any of all possible Latin
squares (not just a sub-set as earlier [lo]) as well as three-dimensional Latin cubes and
Graeco-Latin cubes.

M E T H O D S

The seven programs are coded in the QuickBASIC language (version 4.5, Microsoft
Corp.) and the output is based on the pseudo-random number generator command,
RND, which repeats its sequence every 16,777,214 steps [l l] . The BASIC language code
is also compatible with BASICA (older version of BASIC) and QBASIC (packaged with
DOS operating systems). A color monitor is recommended to take advantage of the
COLOR commands. Large Latin cubes and Graeco-Latin cubes, programs (6) and (7),
require two- and three-dimensional arrays that for 24 treatments require slightly less than
64K bytes of memory. QuickBASIC will allow arrays larger than 64K only by starting the
program with the QBIAH command (for Arrays Huge). This would allow up to about 38
treatments before running out of the 640K conventional memory, however, only 24
treatments will print on the screen. Also construction of squares or cubes with more than
24 treatments becomes prohibitively slow. Program output can be printed directly by
pressing the [Print Screen] key with a printer connected, or by adding LPRINT
commands, or by opening a sequential file in BASIC and using the PRINT #l command.
Sequential files can be imported into a word processor as a text file.

R E S U L T S A N D D I S C U S S I O N

Program 1: Match sequential samples evenly to treatments

The program (Fig. 1A) takes a sequence of numbers representing a series of samples
and divides them into contiguous groups each containing the same number of samples as

10 CLS : COLOR 15: PRlNT "MATCH SEQUENTIAL SAMPLES EVENLY TO TREATMENTS"
20 COLOR 11: INPUT "ENTER NUMBER OF SAMPLES IN SEQUENCE"; A
30 INPUT "ENTER NUMBER OF TREATMENTS TO MATCH SAMPLES WITH"; B
40 INPUT "ENTER NUMBER FOR RANDOM SEED"; RN: RN = RND(-RN)
50 IF A I B 1 2 o INT(A I B) 12 M E N PRlNT "NOT DIVISIBLE": GOT0 20
60 DIM S(B, A I B): COLOR 15
7 0 F O R W = O T O A I B - l : F O R Z = l T O B
80 R = INT(RND * B) + B * W + 1
9 0 F O R Q = l T O Z - l : I F S (Q , W + l) = R T H E N N G = l
100 NEXT Q: IF NG = 1 THEN NG = 0: GOT0 80
110S(Z, W + l) = R : NEXTZNEXTW
120 FOR W = 1 TO B: PRlNT "TREATMENT"; W; ":";
130 FOR Q = 1 TO A I B: PRlNT S(W, Q); : NEXT: PRlNT : NEXT

MATCH SEQUENTIAL SAMPLES EVENLY TO TREATMENTS
ENTER NUMBER OF SAMPLES IN SEQUENCE? 20
ENTER NUMBER OF TREATMENTS TO MATCH SAMPLES WITH? 4
ENTER NUMBER FOR RANDOM SEED? 1

TREATMENT1:l 6 11 15 19
TREATMENT2: 3 8 12 16 18
TREATMENT3: 2 7 9 13 17
TREATMENT 4 : 4 5 10 14 20

Fig. 1. (A) Listing of BASIC program used to randomly assign sequential samples evenly to
treatments. (B) Printed output of program on computer screen of an IBM PC or compatible

computer (output may differ due to BASIC version used).

Random selection algorithms 43

the desired number of different treatments. Then the samples of each group are matched
at random to each of the different treatments. For example, to see which of four bark
beetle species produce the most progeny in logs cut from a Norway spruce tree, one
would want to balance as much as possible the bark areas and thickness among the
species. Reducing this source of variation could be done by cutting 20 logs from along the
trunk (numbered 1 to 20) and dividing them into five contiguous groups of four logs each
and uniquely assigning at random each log within a group to one of the four species
treatments so that all treatments are represented within each group (i.e. each species
colonizes similar areas and regions of the tree).

One enters the number of samples (20), the number of different treatments (4), and a
number which serves as the random seed. The random seed number will determine the
starting point in the sequence of random numbers and thus it should not be the same if
the experiment is repeated. Otherwise, any number for the random seed is as likely to
give results as random as any other. For each group of samples (five groups) the program
picks at random a number representing a treatment and matches this to the samples in
sequence within the group. However, the program first checks to see that none of the
preceding samples within the group have the same treatment, if so, then another random
number is picked until a unique treatment is found. Output of the program for four
treatments and 20 sample positions (1-20) is shown in Fig. 1B. As can be seen, the four
bark beetle species would be fairly evenly distributed along the trunk in various logs of
similar areas.

Program 2: Select items from categories for treatments

This program divides sample items K from one or more populations J into N treatment
groups (Fig. 2A). For example, suppose that four species of bark beetle (J=4) with
K,= 35, 42, 18 and 29 individuals, respectively, are to be evenly divided at random
among four treatment groups (N=4) so that individuals within a treatment can be
injected with a different chemical dose in a known sequence (within groups or for all
groups, although sequential information can be ignored).

One enters the number of different kinds of items, or species in this case (4). Then the
number of items (or individuals) for each kind of item (35,42, 18 and 29) is entered. The
number of treatments (4) and a random seed is entered. A two-dimensional array holds
the sequences of numbers for each kind of item and the number of each item. The
program picks at random numbers from this array and places them non-redundantly into
the treatment groups. Output of the program for four treatment groups (1-4) with item
types (A-D) and the sequential numbers (which may or may not be used) is shown in
Fig. 2B.

Program 3: Time or perimeter sampling with uniformity

This program (Fig. 3A) will list a series of starting and stopping times (or distances)
chosen at random for observations of a specified length distributed over any period of
time (or perimeter distance). The number of samples and their duration or length are
specified by the user. The uniformity of the sampling distribution can be increased by
specifying a minimum time or distance allowed between samples. A check is made by the
program to see if the above parameters will allow the desired spacing of the samples.

To sample the behavior of an insect over a period of time at random but with varying
degrees of uniformity, one enters the number of time units (seconds or minutes) during
the period (120), the duration of a sampling (3 , the minimum number of time units
between any samples (5), and the total number of samples (8), as well as a random seed.
The user also is asked whether time or perimeter distance will be considered. In the case
of time, the starting time (e.g. 12) is specified to aid understanding. As can be seen in
Fig. 3B, the observation times are uniformly spaced throughout the duration of the
observation period and are sorted in ascending order for convenience. The same
procedure can be used to determine the places along a perimeter where sampling can be

done of specified length and minimum distance between samples. The advantage of
uniform random sampling compared to periodic sampling (the usual case in biological
experiments) is that there is less possibility of the sampling coinciding with behavioral
periodicities and thereby biasing results. Also, behavioral periodicities can more likely
be detected with a uniform random sampling than with a periodic sampling, in which the
latter might coincide only with peaks of activity.

Program 4: Spaced point sampling within rectangular area

This program (Fig. 4A) selects sample points of x , y coordinates at random within a
rectangular area of any size. The points can be increasingly uniformly distributed by not
allowing the selection of coordinates that are closer than a minimum distance to any
previously placed points. One enters the lengths of the X-axis (100) and Y-axis (100), the
number of points to select coordinates for (6), and the minimum spacing between sample
points (20). The maximum hexagonal spacing that a certain number of points N in an
area (AREA) can be spaced is given by ~ . o ~ ~ ~ / ~ N / A R E A [12], and is 43.9 units for the
parameters above. Usually, the minimum spacing distance used must be about 70% or

10 CLS : COLOR 15: PRINT "SELECT ITEMS FROM CATEGORIES FOR TREATMENTS"
20 COLOR 11 : DEFINT A-2: INPUT "ENTER NUMBER OF DIFFERENT CATEGORIES"; J
30 DIM I(J, 200): DIM N(J): DIM NT(J)
4 0 F O R K = I T O J
50 PRINT "ENTER NUMBER OF ITEMS "; CHR$(64 + K); : INPUT N(K)
60 NT(K) = N(K): NEXT K
70 INPUT "ENTER NUMBER OF TREATMENT GROUPS TO PLACE ITEMS"; G
80 INPUT "ENTER NUMBER FOR RANDOM SEED"; RN: RN = FIND(-RN)
90 FOR H = 1 TO J: FOR K = 1 TO N(H): I(H, K) = K: NEXT: NEXT
100 FOR W = 1 TO G: COLOR 15: PRINT : PRINT "TREATMENT"; W; ":";
110 FOR ITEM = 1 TO J: COLOR ITEM MOD 7 + 1: FOR H = 1 TO NT(1TEM) \ G
120 X = INT(RND * N(1TEM) + 1): PRINT CHR$(64 + ITEM);
130 PRINT MID$(STR$(l(ITEM, X)), 2); " "; : N(1TEM) = N(1TEM) - 1
140 FOR K = X TO N(1TEM): I(ITEM, K) = I(ITEM, K + 1): NEXT K: NEXT H
150 NEXT ITEM: NEXT W

SELECT ITEMS FROM CATEGORIES FOR TREATMENTS
ENTER NUMBER OF DIFFERENT CATEGORIES? 4
ENTER NUMBER OF ITEMS A? 35
ENTER NUMBER OF ITEMS B? 42
ENTER NUMBER OF ITEMS C? 18
ENTER NUMBER OF ITEMS D? 29
ENTER NUMBER OF TREATMENT GROUPS TO PLACE ITEMS? 4
ENTER NUMBER FOR RANDOM SEED? 1

TREATMENT 1 :A2 A4 A8 A9 A22 A20 A1 A17 829 87 821 B4 635 819 639 814 B34 826 C
18 C8 C13 C7 02 020 024 027 025 D5 D29
TREATMENT 2 :A5 A24 A30 A13 A26 A29 A35 A28 B8 63 842 827 89 81 82 817 631 824 C
4 C10 C1 C12 D8 D l1 026 D l 0 D l 7 07 D l5
TREATMENT 3 :A10 A33 A21 A7 A12 A25 A23 A3 840 86 815 812 820 811 B10 636 838 B
13 C15 C14 C3 C5 D l 2 D l D l 6 D9 021 022 D23
TREATMENT 4 :A15 A32 A34 A6 A14 A31 A18 A16 822 823 637 816 825 833 030 632 85 B
18 C11 C9 C2 C16 D l3 028 D l 4 D6 D4 03 D l 8

Fig. 2. (A) Listing of BASIC program used to randomly assign samples from each of several
categories evenly to several treatments. (B) Printed output of program on computer screen of an

IBM PC or compatible computer (output may differ due to BASIC version used).

Random selection algorithms

10 CLS : COLOR 15: PRlNT "TIME OR PERIMETER SAMPLING WlTH UNIFORMITY"
20 COLOR 11: INPUT "ENTER TOTAL UNITS IN TlME PERIOD OR PERIMETER"; TU
30 INPUT "ENTER SAMPLE LENGTH IN UNITS"; SP
40 INPUT "ENTER MINIMUM NUMBER OF UNITS BETWEEN SAMPLES"; ML
50 INPUT "ENTER NUMBER OF SAMPLES"; N
60IFN*SP+(N- l) *ML>TU* .7THENGOTO50
70 INPUT "SAMPLING: ENTER 0 FOR TIME, 1 FOR PERIMETER"; TS
80 IF TS = 0 THEN INPUT "ENTER BEGINNING HOUR OR MINUTE"; BH
90 INPUT "ENTER NUMBER FOR RANDOM SEED"; S: S = RND(-S): DIM TM(N)
100 COLOR 15: IF TS = 0 THEN PRlNT "TIMES: "; ELSE PRlNT "DISTANCES: ";
l l O F O R W = l T O N
120 R = INT(RND * (TU - SP))
1 3 0 F O R Q = l T O W - 1
140 IF R > TM(Q) - SP - ML AND R < TM(Q) + SP + ML M E N NG = 1
150 NEXT: IF NG = 1 THEN NG = 0: GOT0 120
160TM(W)=R:NEXT:FORW=1TON:SM=W:FORJ=W+1TON
170 IF TM(J) < TM(SM) THEN SM = J
180 NEXT: IF SM > W THEN SWAP TM(W), TM(SM)
190 NEXT: FOR W = 1 TO N: IF TS = 0 THEN GOT0 210
200 PRlNT STR$(TM(W)); "-I1; MID$(STR$(TM(W) + SP), 2); " "; : GOT0 280
210 PRlNT CHR$(32); STR$((BH 60 + T M O) \ 60); ":";
220 J$ = MID$(STR$((BH * 60 + TM(W)) MOD 60), 2): GOSUB 260
230 PRlNT J$; "-"; MID$(STR$((BH * 60 + TM(W) + SP) \ 60), 2); ":";
240 J$ = MID$(STR$((BH * 60 + TM(W) + SP) MOD 60), 2): GOSUB 260
250 PRlNT J$; : GOT0 280
260 IF LEN(J$) = 0 THEN J$ = "00"
270 IF LEN(J$) = 1 THEN J$ = "0" + J$: RETURN ELSE RETURN
280 NEXT

TlME OR PERIMETER SAMPLING WlTH UNIFORMITY
ENTER TOTAL UNITS IN TlME PERIOD OR PERIMETER? 180
ENTER SAMPLE LENGTH IN UNITS? 5
ENTER MINIMUM NUMBER OF UNITS BETWEEN SAMPLES? 10
ENTER NUMBER OF SAMPLES? 15
SAMPLING: ENTER 0 FOR TIME, 1 FOR PERIMETER? 0
ENTER BEGINNING HOUR OR MINUTE? 12
ENTER NUMBER FOR RANDOM SEED? 1

TIMES: 12:04-12:09 12:18-12:23 12:36-12:41 12:46-12:51 1305-13:lO 13:17-
l3:22 l3:32-13:37 l3:44-13:49

Fig. 3. (A) Listing of BASIC program used to uniformly sample at random over a time period a
set number of samples of specified duration and minimum time between samples beginning at a
specific time. Distance of a perimeter can replace time. (B) Printed output of program on
computer screen of an IBM PC or compatible computer (output may differ due to BASIC version

used).

less of the maximum spacing distance theoretically possible in order for the program to
finish spacing points [13]. In addition to the x, y coordinates, the polar coordinates are
given by a distance from the origin (lower left corner of the area) and an angle (fiom the
X-axis). The distance from the origin to each point is calculated with the Pythagorean
theorem and the angle is given from BASIC by ATN(Y/X))*180/3.1415926# (see Fig.
4B). The spacing of sample points may be desired if sampling disturbs the surrounding
area such that it is undesirable to sample nearby as could occur with a truly random
selection. Also, it is less likely that a clumped sampling distribution could occur by

chance and bias the conclusions. These ideas are embodied in stratified sampling
methods [14].

Program 5 : Any possible Latin square

A Latin square of five treatment numbers on a side has five rows and five columns of
numbers (1 to 5) in which each number occurs only once in each row and column and all
treatment numbers are represented in each row and column, yielding 25 cells with
numbers. Algorithms for rapid construction of Latin squares of any size are given in

10 CLS : COLOR 15: PRINT "SPACED POINT SAMPLING WITHIN RECTANGULAR AREA"
20 COLOR 11: INPUT "ENTER X-AXIS LENGTH"; XL
30 INPUT "ENTER Y-AXIS LENGTH"; YL: A = XL * YL
40 INPUT "ENTER NUMBER OF SAMPLE POINTS"; N
50 INPUT "ENTER MINIMUM SPACING BETWEEN SAMPLE POINTS"; MAD
60 MAX = 1.0746 1 SQR(N I A) * .7
70 IF MAD > MAX THEN PRINT "SPACING TOO LARGE": GOT0 40
80 INPUT "ENTER NUMBER FOR RANDOM SEED"; RN: RN = RND(-RN)
90 INPUT "ENTER A FILENAME FOR POINTS, OR <ENTER>"; A$
I00 IF LEN(A$) o 0 THEN OPEN A$ FOR OUTPUT AS #1
110 DIM X(N), Y(N), R(N), ANG(N): COLOR 15
120 FOR W = 1 TO N
130 X(W) = RND * XL: Y(W) = RND * YL
1 4 0 F O R Q = l T O W - 1
150 IF X(W) < X(Q) - MAD OR X(W) > X(Q) + MAD THEN GOT0 200
160 IF Y(W) < Y(Q) - MAD OR Y(W) > Y(Q) + MAD THEN GOT0 200
170 X = X(Q) - X(W): Y = Y(Q) - Y(W)
180 IF SQR(X * X + Y * Y) > MAD THEN GOT0 200
190 Z = 1: REM EXIT FOR 'EXIT FOR in QuickBASIC
200 NEXT Q: IF Z = 1 THEN Z = 0: GOT0 130
210 R(W) = SQR(X(W) * X(W) + Y(W) * Y(W))
220 ANG(W) = ATN(Y(W) I X(W)) * 180 1 3.1 41 5926#
230 PRINT W, "x="; X(W), "Y="; Y(W), %="; R(W), "ANG="; ANG(W)
240 IF LEN(A$) o 0 THEN GOT0 250 ELSE GOT0 260
250 PRIM #1, W, "X="; X(W), "Y="; Y O , "R="; R(W), "ANG="; A N G O
260 NEXT W: CLOSE

SPACED POINT SAMPLING WITHIN RECTANGULAR AREA
ENTER X-AXIS LENGTH? 100
ENTER Y-AXIS LENGTH? 100
ENTER NUMBER OF SAMPLE POINTS? 6
ENTER MINIMUM SPACING BETWEEN SAMPLE POINTS? 20
ENTER NUMBER FOR RANDOM SEED? 1
ENTER A FILENAME FOR POINTS, OR <ENTER>? PTS

Fig. 4. (A) Listing of BASIC program used to randomly select x, y coordinates of points for
sample centers within any rectangular area. The points can be spaced apart a minimum distance
from 0 (completely random) to about 70% of the maximum hexagonal spacing possible (see text
for details). The polar coordinates are also given. (B) Printed output of program on computer
screen of an IBM PC or compatible computer (output may differ due to BASIC version used).

Random selection algorithms

A.

10 CLS : DEFINT A-2: COLOR 15: PRINT "ANY POSSIBLE LATIN SQUARE"
20 COLOR 11: INPUT "ENTER NUMBER OF TREATMENTS"; N
30 INPUT "ENTER NUMBER FOR RANDOM SEED"; RN: RN = RND(-RN)
40 COLOR 15: DIM C(N): DIM A(N, N)
50 FOR R = 1 TO N:
60 FOR C = 1 TO N: C(C) = C: NEXT C: J = N
7 0 F O R C = 1 TON:I=O
80 X = INT(RND * J + 1)
90 REM CHECK COLUMN IF OK (ROW IS INHERENTLY OK)
1 0 0 F O R H = l T O R - 1
110 IF I > 50 THEN 60: REM ROW NO GOOD
120 IF A(H, C) = C(X) THEN I = I + I : GOT0 80: REM COLUMN NO GOOD
130 NEXT H
140A(R, C) = C(X): J = J - 1
150 FOR K = X TO J: C(K) = C(K + 1): NEXT K: NEXT C
160 FOR CL = 1 TO N: PRINT USING "###"; A(R, CL); : NEXT: PRINT : NEXT

ANY POSSIBLE LATIN SQUARE
ENTER NUMBER OF TREATMENTS? 8
ENTER NUMBER FOR RANDOM SEED? 1

Fig. 5. (A) Listing of BASIC program used to randomly select any possible Latin square (each
treatment represented once in each column and row). (B) Printed output of program on
computer screen of an IBM PC or compatible computer (output may differ due to BASICversion

used).

Program 2 of Byers [lo]. This method uses a randomized column and row array (each
equal to the number of treatments) whose intersection sums give the value for each cell.
However, if the sum is larger than the number of different treatments then this number is
subtracted from the sum [lo, 15, 161. Although fast, this method is not capable of
generating all possible Latin squares since only N!(N- I)! squares can be obtained, or
2880 for a 5 x 5 square [9]. In fact, for 5 x 5 Latin squares there are 161,280 different
possible permutations [4, 81.

The program (Fig. 5A) used in a 486-type computer can make Latin squares of up to
about 20 cells on a side in a few seconds, and in theory any of the millions of possible
squares can be obtained. The algorithm picks at random a treatment number for a cell in
a row from a temporary row array such that this number is no longer available for
selection, but first cells in the same column from previously generated rows are checked
for redundancy, if such is found then the number is kept in the temporary array and
another number is tried until no redundancies are found, whereupon the program moves
to the next cell in the row, or a new row. It is possible that no number remaining in the
temporary array can satisfy the conditions so after 50 tries at random, the entire row is
erased and another random sequence is tried until satisfying the conditions of a Latin
square.

One enters the number of treatments (8) and a random seed. The progress of the
calculations are shown row by row, the first rows are of course generated rapidly, while

for larger squares of 15 or more cells per side, the last rows take increasingly longer times
to find solutions. Output of the program is shown in Fig. 5B. One could imagine a test in
which the unequal effects of area and time on attraction of bark beetles to eight chemical
baits are evened by testing each bait once for a day in each of eight areas (columns) for a
period of 8 days (rows).

Program 6: Latin cube

A Latin cube is similar to a Latin square, but a cube of cells exists in which each
treatment occurs only once in each horizontal row (x) and column (z) and as well as in
each vertical column (y), and all treatments (equal to the number of cells along any edge)
occur in each of the three dimensions (x, y, z) connecting any cells. Computers probably
can not generate a Latin cube purely at random unless they are incredibly lucky since
thousands of constraints are imposed. However, my program (Fig. 6A) can generate
many different Latin cubes at random starting from a well-randomized Latin square.
After the first Latin square is made as in program 5 above, the remaining levels forming
the cube (consisting of Latin squares) are made by adding 1 to each cell number in the
Latin square immediately beneath. However, if the sum is larger than the number of
treatments (N), then N is subtracted from this sum. In this way Latin squares are made in
sequence from the bottom one and at the same time a Latin cube of stacked Latin
squares is made. So far, this Latin cube does not appear random, but by randomizing the
initial order of the levels of Latin squares, the conditions of a Latin cube are maintained
(since any vertical order of treatment numbers is allowed).

There are 120 different ways to order five levels of Latin squares in a 5 x 5 x 5 Latin
cube (permutations of N things taken N at a time = N!). Thus, for a 5 x 5 Latin square
there are 161,280 permutations [9] which multiplied by 120 ways to order 5 squares yields
over 19 million possible Latin cubes with the algorithm here. The number of ways to
order 20 (20 x 20) Latin squares in a cube is 2.43 x lo1', and there are innumerable
possibilities for a Latin square of 20 treatments. For these larger Latin cubes, the
numbers of possibilities are clearly phenomenal.

One enters the number of treatments (6) and a random seed. Output of the program is
shown in Fig. 5B with each level representing Latin squares in the cube. One could
imagine a test in which a species of bark beetle would be allowed to colonize logs of six
species of tree (rows) at six different temperatures (columns) at six different densities per
log (treatment numbers). Each of the factors: tree species, colonization density, and
temperature would occur once for all possible combinations to reduce sources of
variation and determine the reproductive rates under all these conditions.

Program 7: Graeco-Latin cube

Before one can envision a Graeco-Latin cube, a definition of a Graeco-Latin square
is needed. This type of square is one in which every Latin letter and every Greek letter
occurs once in each row and once in each column. In addition, each Latin letter and
Greek letter (represented here by numbers) occur only once together in the square.
Thus, for a Graeco-Latin square of 5 x 5 there are 25 combinations of Latin letters and
numbers which can be placed in 25 positions. This means that there are 25! (about lP5)
permutations not all of which are Graeco-Latin squares. Graeco-Latin squares of a side
of 4 or odd numbers can be made with program 6 in Byers [I l l , while it appears
impossible to make such squares with even numbered sides larger than 4 [9, 111.

The Graeco-Latin algorithm (lines 10-230) [l l] is used to make the bottom square,
which then forms the basis for making upper-story squares in a way similar to the Latin
cube in program 6 above. However, the levels (each a Graeco-Latin square) are
constructed and their order randomized in the same step (lines 300-330) to avoid storage
in 3-D string arrays that may not be possible due to memory constraints. Actually, while
each horizontal row and column, and each vertical column in the Graeco-Latin cube
have each letter and number, and each horizontal square has all unique letter-number

Random selection algorithms

10 CLS : COLOR 15: DEFINT A-Z: PRINT "LATIN CUBE"
20 COLOR 11: INPUT "ENTER NUMBER OF TREATMENTS"; N: IF N > 24 THEN 20
30 INPUT "ENTER NUMBER FOR RANDOM SEED"; RN: RN = RND(-RN)
40 COLOR 31: DIM C(N): DIM Q(N, N, N): PRINT "WORKING...": COLOR 15
5 0 F O R R = l T O N
60 FOR C = 1 TO N: C(C) = C: NEXT C: J = N
7 0 F O R C = 1 TON: I=O
80 X = INT(RND * J + 1): REM CHECK IF COLUMN OK (ROW IS INHERENTLY OK)
90 FOR H = 1 TO R - 1: REM CHECK COLUMN (ROW IS OK)
100 IF I > 50 THEN 60: REM ROW NO GOOD
110 IF Q(1, H, C) = C(X) THEN I = I + 1: GOT0 80: REM COLUMN NO GOOD
120NEXTH: Q(1, R,C)=C(X): J = J - 1
130 FOR K = X TO J: C(K) = C(K + 1): NEXT K: NEXT C
140 NEXT R: REM MAKE OTHER LATIN SQUARE LEVELS OF CUBE
150FORV=2TON:FORR=1 TON:FORC=1 TON
1 6 0 Q (V , R , C) = Q (l , R , C) + V - 1
170 IF Q(V, R, C) > N THEN Q(V, R, C) = Q(V, R, C) - N
180 NEXT C: NEXT R: NEXT V: REM NOW RANDOMIZE LEVELS
190 FORT= 1 TON
200 X = INT(RND * N + 1): Y = INT(RND * N + 1): IF X = Y THEN 200
210 FOR R = 1 TO N: FOR C = 1 TO N
220 SWAP Q(X, R, C), Q(Y, R, C): NEXT: NEXT: NEXT: CLS
230 Z = INT(70 1 (N * 3)): IF Z = 0 THEN Z = 1
240 FOR V = 1 TO N: COLOR V MOD 7 + 9
250 FOR R = 1 TO N: FOR C = 1 TO N
2 6 0 L O C A T E R + E , G * N * 3 + (C - 1) * 3 + 1 + G * 2
270 PRlNT USING "###"; Q(V, R, C); : NEXT C: NEXT R
2 8 0 L O C A T E R + E , G * N * 3 + 2 + G * 2
290 PRINT "LEVEL" V; : INPUT ; Q$: IF V >= N THEN 310 ELSE G = G + 1
300 IFG=ZTHENG=O:E=E+N+l : IFE>24-NTHENE=O:CLS
310 NEXT V

LATIN CUBE
ENTER NUMBER OF TREATMENTS? 6
ENTER NUMBER FOR RANDOM SEED? 1

6 1 2 3 5 4 3 4 5 6 2 1 1 2 3 4 6 5
2 4 6 1 3 5 5 1 3 4 6 2 3 5 1 2 4 6
1 5 3 4 6 2 4 2 6 1 3 5 2 6 4 5 1 3
4 6 5 2 1 3 1 3 2 5 4 6 5 1 6 3 2 4
5 3 4 6 2 1 2 6 1 3 5 4 6 4 5 1 3 2
3 2 1 5 4 6 6 5 4 2 1 3 4 3 2 6 5 1

LEVEL 1 ? LEVEL 2 ? LEVEL 3 ?
5 6 1 2 4 3 4 5 6 1 3 2 2 3 4 , 5 1 6
1 3 5 6 2 4 6 2 4 5 1 3 4 6 2 3 5 1
6 4 2 3 5 1 5 3 1 2 4 6 3 1 5 6 2 4
3 5 4 1 6 2 2 4 3 6 5 1 6 2 1 4 3 5
4 2 3 5 1 6 3 1 2 4 6 5 1 5 6 2 4 3
2 1 6 4 3 5 1 6 5 3 2 4 5 4 3 1 6 2

LEVEL 4 ? LEVEL 5 ? LEVEL 6 ?

Fig. 6. (A) Listing of BASIC program used to randomly select Latin cubes (each treatment
represented once in each horizontal column, horizontal row, and vertical column). (B) Printed
output of program on computer screen of an IBM PC or compatible computer (output may differ

due to BASIC version used).

combinations, as does each vertical-row square, the vertical-column squares do not have
all the unique combinations in each square. Thus, a Graeco-Latin cube is not as
"symmetrical" as a Latin cube.

A second kind of Graeco-Latin cube (type 11) can be made by inserting the following
line into the program in Fig. 7A: 295 X =C + (V- 1): IF X > N THEN X= X- 1 as
indicated and replacing C in lines 300-330 with X. The cube constructed after these
program changes is similar to type I except that each vertical column does not necessarily
have each letter or number and vertical-row squares are not Graeco-Latin, however,
each vertical-row or vertical-column square has all the letter-number combinations even
though they are not Graeco-Latin squares.

One uses the program by entering the number of desired cells per side (5) and a
random seed (output shown in Fig. 7B). The number of different possible Graeco-Latin
cubes (type I or 11) can be determined by the number of Graeco-Latin squares possible.
For example, for 5 cells per side there are 101 possible squares [ll] and 120 ways to layer
the squares (discussed in program 6) to form a cube, or a total of 12,120 different
5 x 5 x 5 Graeco-Latin cubes. For 7 cells/side there are 442 squares [ll] and 5040 ways
to layer 7 squares, making a possible total of 2,227,680 different cubes of each type.
Again, the number of possibilities for larger cubes becomes enormous.

It can be supposed that here one wanted to test the attraction of bark beetles to
volatiles from logs cut from five (A-E) host tree species in 2-way combinations with five
(1-5) release rates of ethanol (making 25 baits) in five positions (columns) at five forest
regions (rows) on each of 5 days (levels). Many bark beetle species are attracted to host
volatiles (mainly monoterpenes) and ethanol (indicating microbial decay and a suscept-
ible host tree) [17,18]. As seen in Fig. 7B, each region on a particular day has each of the
(A-E) host species logs combined with each of ethanol release rates (1-5), and all 25
baits are tested each day. Over the 5 day period, each region tests all 25 baits only once,
furthermore, each position (25 physical locations) never tests the same (A-E) host
species logs or (1-5) ethanol release rates on successive days. This might be important to
ensure that natural variation in flight activities between areas does not bias the catches on
baits less evenly distributed, as might occur in a randomized block design.

Several texts discuss the advantages and drawbacks of using Latin and Graeco-Latin
squares as well as the statistical analysis of variance [I , 3, 4, 6, 8, 91. Latin squares are
significantly more efficient or powerful than randomized block designs when using the
same number of samples [3,6,9]. The experimental designs presented here that employ
a degree of uniform spacing among treatments are more appropriate for use than
traditional statistical analyses only when there are logical or pragmatic reasons, as in the
examples above. Thus it seems advisable to consult a statistician when considering these
specialized designs. A compiled program version is available from the author (send a
formatted disk and return mailer or $5 for shipping).

S U M M A R Y

Seven algorithms implemented in the BASIC computer language are presented for use
in randomizing treatments and/or sampling during the design and implementation of
experiments. Two programs place ordered items of various numbers into groups for
treatments in a uniform or balanced way. The third program designates sample time
periods of specific durations over a given period with a minimum time between samples
possible. This program can also determine sample distances along a perimeter. The
fourth program specifies sample points (x , y coordinates) with or without a degree of
separation between sample centers. A Latin square algorithm can generate all possible
permutations for Latin squares of less than about 24 treatments per side. Latin cubes are
built from this algorithm to generate a Latin square from which all upper story squares
are made after which these levels are randomized. Graeco-Latin cubes are generated
with a previous algorithm in combination with the randomization of layered squares,
although not all possible cubes of this type can be made. However, a sufficiently large
number are generated so that no experimental bias should result.

Random selection algorithms
A.
10 CLS : COLOR 15: PRINT "GRAECO-LATIN CUBE": DEFINT A-Z: COLOR 11
20 INPUT "ENTER 4 OR AN ODD NUMBER OF TREATMENTS"; N: R = N
30 IF N < 3 OR (N o 4 AND INT(N 12) = N 12) OR N > 19 THEN 20
40 PRINT "ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM";
50 INPUT " SEQUENCE"; RN: RN = RND(-RN)
60 REM FIND ONE SOLUTION TO A GRAECO-LATIN SQUARE OF SIDE N
70 DIM A(N, N): DIM B(N, N): IF N = 4 THEN 120
8 0 F O R R = l T O N : F O R C = 1 TON:P=P+ l :A(R,C)=P
90B(R,N+I - C) = P : I F C = N T H E N P = P - 1
IOOIFP=NTHENP=O
110 NEXT C: NEXT R: GOT0 160: REM DATA FOR SIDE OF 4
120 DATA 1,1,2,2,3,3,4,4,2,4,1,3,4,2,3,1
130 DATA 3,2,4,1,1,4,2,3,4,3,3,4,2,1,1,2
140 FOR R = 1 TO N: FOR C = 1 TO N: READ A(R, C), B(R, C)
150 NEXT C: NEXT R
160 FOR W = 1 TO N: REM RANDOMIZE ROWS & COLUMNS N TIMES
170 RN = INT(RND * N) + 1: K = INT(RND * N) + 1
180 FOR C = 1 TO N: SWAP A(RN, C), A(K, C)
190 SWAP B(RN, C), B(K, C): NEXT C: REM ROWS SWAPPED
200 RN = INT(RND * N) + 1: K = INT(RND * N) + 1
210 FOR R = 1 TO N: SWAP A(R, RN), A(R, K)
220 SWAP B(R, RN), B(R, K): NEXT R: REM COLUMNS SWAPPED
230 NEXT W: REM END OF RANDOMIZATION OF ROWS AND COLUMNS
240 COLOR 15: DIM Z(N), C(N): J = N: REM RANDOMIZE Z(I) ARRAY
250 FOR K = 1 TO N: C(K) = K: NEXT
260 FOR I = 1 TO N: X = INT(RND * J + 1): Z(1) = C(X): J = J - 1
270 FOR K = X TO J: C(K) = C(K + 1): NEXT K: NEXT I
280 CLS : Z = INT(86 I (N * 4)): IF Z = 0 THEN Z = 1
290FORV=1TON:COLORVMOD7+9:FORR=lTON:FORC=1TON
300 IF A(R, C) + Z(V) > N THEN T = A(R, C) + Z(V) - N
310 IF A(R, C) + Z(V) <= N THEN T = A(R, C) + Z(V)
320 IF B(R, C) + Z(V) > N THEN T I = B(R, C) + Z(V) - N
330 IF B(R, C) + Z(V) <= N THEN T I = B(R, C) + Z(V)
340 Q$ = CHR$(T + 64) + MID$(STR$(Tl), 2)
350 Q$ = Q$ + STRINGS(4 - LEN@$), 32)
3 6 0 L O C A T E R + E , G * N * 3 + (C - l) * 3 + 1 + G * 2 + l N T (N l l O) * C
370PRlNTQ$; :NEXTC:NEXTR:LOCATER+E,G*N*3+2+G*2
380 PRINT "LEVEL"; V; : INPUT ; Q$: IF V >= N THEN 400 ELSE G = G + 1
390IFG=ZTHENG=O:E=E+N+l : IFE>24-NTHENE=O:CLS
400 NEXT V
B.
GRAECO-LATIN CUBE
ENTER 4 OR AN ODD NUMBER OF TREATMENTS? 5
ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE? 1

81 A2 C5 E3 D4 E4 D5 A3 C1 02 D3 C4 E2 85 A1 C2 B3 D l A4 E5
D3 C4 E2 05 A1 01 A2 C5 E3 D4 A5 E l B4 D2 C3 E4 D5 A3 C1 02
A5 E l B4 D2 C3 03 C4 E2 05 A1 C2 B3 D l A4 E5 01 A2 C5 E3 D4
C2 B3 D l A4 E5 A5 E l B4 D2 C3 E4 D5 A3 C1 02 D3 C4 E2 B5 A1
E4 D5 A3 C1 02 C2 B3 D l A4 E5 01 A2 C5 E3 D4 A5 E l B4 D2 C3
LEVEL 1 ? LEVEL 2 ? LEVEL 3 ? LEVEL 4 ?

A5 E l B4 02 C3
C2 B3 D l A4 E5
E4 05 A3 C1 82
81 A2 C5 E3 04
03 C4 E2 85 A1
LEVEL 5 ?

Fig. 7. (A) Listing of BASIC program used to randomly select Graeco-Latin cubes (each letter
and number represented once in each horizontal column, horizontal row, and vertical column;
and all combinations present in each horizontal square and each vertical-row square, but not in
each vertical-column square). (B) Printed output of program on computer screen of an IBM PC

or compatible computer (output may differ due to BASIC version used).

Acknowledgement-This work was supported by a research grant from the Swedish Agricultural and Forest
Research Council, SJFR.

REFERENCES
1. V. L. Anderson and R. A. McLean, Design of Experiments. Marcel Dekker, New York (1974).
2. W. G. Cochran, Sampling Techniques. Wiley, New York (1963).
3. W. G. Cochran and G. M. Cox, Experimental Designs. Wiley, New York (1957).
4. B. E. Cooper, Statistics for Experimentalists. Pergamon Press, London (1969).
5. D. R. Cox, Planning of Experiments. John Wiley, New York (1958).
6. M. N. Das and N. C. Gin, Design and Analysis of Experiments. Wiley, New Delhi (1979).
7. W. E. Deming, Some Theory of Sampling. Dover, New York (1950).
8. W. T . Federer, Experimental Design. MacMillan, New York (1955).
9. 0. Kempthorne, The Design and Analysis of Experiments. Wiley, New York (1952).

10. J. A. Byers, Basic algorithms for random sampling and treatment randomization, Comput. Biol. Med. 21,
69 (1991).

11. J. A. Byers, Randomization algorithms in BASIC for experimental design, Comput. Biol. Med. 23, 167
(1993).

12. P. J. Clark and F. C. Evans, Distance to nearest neighbor as a measure of spatial relationships in
populations, Ecology 35,445 (1954).

13. J. A. Byers, Dirichlet tessellation of bark beetle spatial attack points, J. Anim. Ecol. 61, 759 (1992).
14. B. D. Ripley, Spatial Statistics. Wiley, New York (1981).
15. W. L. Stevens, The completely orthogonalised square, Ann. Eug. 9, 82 (1938).
16. R. C. Bose, On the application of Galois fields to the problem of the construction of Hyper-Graew-Latin

squares, Sankhya 3,323 (1938).
17. J. A. Byers, Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron

domesticum and other insects to short-chain alcohols and monoterpenes, J. Chem. Ecol. 18,2385 (1992).
18. J. A. Byers, Host tree chemistry affecting colonization in bark beetles. In Chemical Ecology of Insects 2 ,

R. T . Card6 and W. J. Bell (Eds), pp. 154-213. Chapman & Hall, New York (1995).

About the Author-JOHN A. BYERS received degrees in Entomology from Colorado State
University (B.Sc. 1971 and M.Sc. 1973) and the University of California at Berkeley (Ph.D.
1978). He was awarded a Docent title (1989) at the Department of Ecology, Lund University,
Sweden. He is currently a Hogskolelektor (Associate Professor) at the Swedish University of
Agricultural Sciences, Alnarp, Sweden. His research interests include insect behavior, chemical
ecology, and computer simulation models.

