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Abstract. A caterpillar is a tree which metamorphoses into a path when its cocoon of endpoInt\ 
is removed. The number of nonisomorphic caterpillars with n + 4 points is 2n + 2 [n/21 . This 
neat formula is proved in two ways: first, as a special caoe of an application of Pblya’s enumerra- 
tion theorem which counts graphs with integer-weightell points; secondly, 3y an appropriate la- 
beling of the lines of the caterpillar. 

1, Weighted graphs 

A graph witli weighted points is obtained from a given graph G by a+ 
signing a positive integer Iii to each point Ui of G. If H is such a graph 
with weighted points obtained from G, then H may be regarded as an 
ordinary (un Neighted) graph by taking each point vi of G and adding 
(ni - 1) new point:; and VZ, - 1) new lines joining them to vi. This prc- 
cess is shown in Fig. 1. 

Tlae next unary operation on graphs apparently was introduced in 
[5, p. 631 fort rees, but ca:l be defined for an arbitrary connected graph 
G with at least three points. The derivative G’ of G is obtained on delet- 
ing all the endpoints of G. Thus the underlying graph G of a graph with 
weighted points is the same as the derivative of its associated ordinary 
graph (illustrated in Fig. 1) if and only if the weight at each endpoint of 
G is at least ‘2, am.1 if G h.tppens to be K,, the weight at its pf)int is a” 
Beast 3. 

We need to define sozne concepts involving graphs and groups (see 
[ 1, Chapter 143). Thegroup ofcr graph G, written T’(G). is the permu-, 
tation group consisting of all its automorphisms, each being a permu- 

* Research sup lorted in part by a grant from the Air Force Office of Scientific Research. 
** Present addrtss: ,Ma*&ematical institute, University of Oxford, 24-29 St. Giles, 3xfor 

England. 



F. Harayy, A.J. Schwenk, 7lbe number of caterpillars 

Fig. 1. A graph with weighted points, and its associated ordinary graph. 

tation on the set of points of c- The cyck index of a permutation group 
A in which each permutation ar has jk(a) cycies of length k is the follow- 
ing polynomial in d variables y,, where d is the degree of A : 

(11 

The symbol Z(A ; f(x)) is the expression obtained from ( I ) when each 
variable yk is replaced by j(xk ). 

By an application of Polya’s classical enumeration the!Drem (see [ 2, 
Chapter 23 ), it follows that the coefficient of x’ in Z(I‘(G); 1 +x) gives 
the number of inequivalent v-subsets of points of G wj th respect to the 
group of G. This result can be viewed as the number of weighted graphs 
of weight P with underlying graph G where each point has weight 0 or 1. 
Once we realize this, it is e,:isy to see how to generalize this result by 
substituting a “bigger” series into Z(r(G)). 

Theorem 1.1. The number of weighttid graphs with under&ing graph G 
whose 3oin ts all havIe positive weight is given by 

(2) u(x) = q@,;- x/( 1 - x)) . 

Proof. !Since x/( 5 - .x) = x +x2 +x3 -t . . . . this is the appropriate series 
to provide possible point weights of 1, 2, 3, . . . . Thus Iwe may apply 
Polya’s theorem with x/( 1 - x) as the figure counting series and I’(G) 
as tke <:onfiguration group to obtain equation (2). 

C~rolky I .2, Let G hc a connected graph utith ai points of degree i 
f of i = 0 and 1. Let h(x) =: ZE3hi x’, where hi is the number of connected 
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graphs H with i poirzts sd-lch that H’ = G. Then 

(3) h(x) = xho -al Z(r(G); x/( 1 - x)) . 

Roof. As we observe above, the number of weighted graphs with G as 
the underlying graph rs the s2me as the number o graphs H having 
G = H' if and only if the weight at each endpoint of G is at least 2, but 
if G is KI, then the weight at its point is at least 3. Thus if we subtract 
1 from the weight of each endpoint, and if G = K, , we sub&act 2 from 
the weight of its point, then we obtain a weighted graph with arbitrary 
positive weights. We now apply Theorem 1.1 and include a factor of 
X2ao +a l to correct for the weights we have altered, and obtain equation 

(3) . 

2. Caterpillars 

We may now use this result to count a certain species of trees which 
we studied in [ 3,4 1, called caterpillars by A. Hobbs. These are the 
trees T with at least three points whose derived tree T’ is a path. Let 
c(x) = Z~=3cp .xp be the generating function for the number of cater- 
pillars. i 

‘Theorem 2.1. The number of caterpilAxs on p > 3 points is given bl 

(4) 
x3(1 

c(x)= - 
- 3x2) 

(1 - 2x)(1 - 2x2) ’ 

or equivalent&, writing p = n + 4, 

Proof. We wish to count those p-point caterpillars whose derived tree is 
the path Pk for each positive k. We observe that when k = I, we have 

“0 = 1 and CZ~ = 0, and when k > 1, we see that a0 = 0 and til = 2. Thus, 
In either case, we hate x~O+‘~ = x2, so applying Corollary 1.2, we have 
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/ \ ,) c(x) = fj .x2z(r(Pk);x/( 1 - .x)) l 

k=l 

We split this sum into even and odd krms and write 

(7) 

Now it follows from the definition of the cycle index that 

09 Z(I‘(P2i)) z z(S* [Ei] ) = #(yfi +J’i,) ) 

z(r(p2i+ 1)) =Z(El l S2[Ei!)=+yl(yT’+ya) . 

We proceed to substitute x/( 1 - X) into (8) and (9) and substitute the 
resulting expression into (7) to obtain 

Wi &)=x2 2 1 
i=l 2 (( &-)) 2i -~(~-G$))i) 

+x2g. x ((-q.+ (&--)i). 
i=. 31 -4 (1 ---XI 

This sknplifies routinely to equation (4). 
Now to verify equation (S), we use partial fractions to express this as 

(11) 
Ax3 

cwl b+ 
Bx3 + Cx4 

- 1-2x2 . 

This leads to the systc?rn of simultaneous equations A + R = 1, -2B + C 
=Oand-2A -2C=-3,whichwesolvetofindA=B=# andC= 1,so 
that 

(12) 
x3/2 

c(x) = - 
x3/2 +x4 

1-2.x+ l-=2$ l 

From ( I 2), it is easy to see that the coekficient of xp is given by C~ = 
c,+4 = 2n + 2[n1? f proving equation (5). 
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Fig. 2. The two labelings of a caterpillar. 

ternate proof 

The simplicity of this final result suggests that there may be a more 
natural and direct approach to obtain this formula, as occurs so often in 
combinatorial mathematic%, and in fact WE: have found one. 

We start by attempting tcs define a unique labeling for the lines of 
each caterpillar ;I: Let xl be an endline oz’ a longest path in T. We pro- 
ceed to label the remaining lines inducirvely. Assume i lines have been 
labeled x 1 , . . . . xi and assign xi+, to an endline adjacent to xi which has 
not !l et been labeled, provided one exists, but if there is no such endlinc, 
then by the structure of a caterpillar, there remains only one unlabeled 
line incident with xi, and it lies or. the path T’. We label it Xi+ 1 . Fig. 2 
displays two possible labelings of a particular caterpillar. 

In fact, since at each step in the labeling procedure all the unlabeled 
endlines adjacent to a given line are equivalent, it is clear that the only 
way we obtain different labelings of a caterpillar is by choosing as x 1 an 
endline incident with a different non-endpoint. Thus there are at most 
two labelings of a caterpillar, and these arise by starting at opposite ends 
of a longest path. Note, however, that these two labelings are identical 
if the caterpillar has an automorphis n ar interchanging the endpoints of 
a longest path. These caterpillars wh,ch have jist one labeling we call 
S~rPziYWt??C. 

Wz now examine the number of “caterpillar labelings” which can oc- 
cur on p points. Lines x 1 and x2 can be adjacent in just cne way, but 
for each of the p - 3 remaining lines, there are two ways for Xj_tl to be 
inciciient with Xi, namely, at either endpoint Of Xi. Thus we have 2’ 3 

labelings. 
Now most caterpillars are counted twice among these labelings, but 

the symkmctric ones are just counted once. In order to correct for t 
we must determine the number of symmetric caterpillars. If p = 2k +- 1 

is odd, then the automorphism a interchanging the ends of a longest 
has an even num 

lin z, v. must have even degree, so we may use half of t e lines in T t0 
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Fig. 3. A 13-point symmetric tree, its subtree, and the labeled subtree. 

induce a subtree whose structure determines that of the entire tree. We 
label this subtree which is also a caterpillar by the procedure given above. 
This i?rocess is depicted in Fig. 3. 

Now there are 2k-’ possible labeled subtrees since each line after the 

first has tw:) ways to be adjacent to its predecessor. Thus there are 
2k-1 = 2[ca_C2”/2i symme:ric caterpillars on p = 2k + 1 points. 

Wz find &similar resuk when p = 2k is even, except that two cases 

must be considlere:d. If 7” has an odd number of points, the central point 

uO must have odd degree, and we obtain a su’btree to label as depicted in 
F’ig. 4(a). There are 2k-2 such labelings. Finally, if T’ has an even num- 

--- 

Fig. 4. Two 12-point symmetric caterpihrs formed from the same labeled sukee. 
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ber of points, then T has a “symmetry line” (see [ 1, p. 1891) and again 

we &tam a subtree to label (Fig. 4(b)). Here ioo there are 2k-z labelings, 
so we add these two to get 2k-1 = 21@ -2)/21 , which happens to lx the 

same number as obtained in the case p odd. Thus in either case, we may 

correct our original count by adding 21@-2)/21 and dividing by 2 to’get 

equation (5). 

Observe that in Fig. 4, the same labeled subtree has been used in two 

different ways to produce two distinct symmetric caterpillars. In on= of 

these, 7” has even length, and in the other, it has odd length. In this 

way, 2k-2 labeled subtrees yield 2k-r symmetric caterpillars. 
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