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Abstract. A caterpillas is a tree which metamorphoses into a path when its cocoon of endpoints
is removed. The number of nonisomorphic caterpillars with n + 4 points is 27 + 2[7/2) _ This
neat formula is proved in two ways: first, as a special ca‘e of an application of Pdlya’s enumera-
tion theorem which counts grarhs with integer-weighted points; secondly, 2y an appropriate la-
beling of the lines of the caterpillar.

1. Weighted 3raphs

A graph with weighted points is obtained from a given graph G by as-
signing a pos:tive integer n; to each point v; of G. If H is such a graph
wich weighted points obtained from G, then H may be regarded as an
ordinary (unweighted) graph by taking each point v; of G and adding
(n; — 1) new points and (n; — 1) new lines joining them to v,. This prc-
cess is shown in Fig. 1.

The next unary operation on graphs apparently was introduced in
[5, p. 63] for trees, but can be defined for an arbitrary connected graph
G with at least three points. The derivative G’ of G is obtained on delet-
ing all the endpoints of G. Thus the underlying graph G of a graph with
weighted points is the same as the derivative of its associated ordinary
graph (illustrated in Fig. 1) if and only if the weight at each endpoint of
G is at least 2, and if G happens to be K, the weight at its point is a*
least 3.

We need to define some concepts involving graphs and groups (sce
[1. Chapter 14]). The group of a graph G, written I'(G . is the permu-
tation group consisting of all its automorphisms, each being a permu-
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Fig. 1. A giaph with weighted points, and its associated ordinary graph.

tation on the set of points of &. The cvcle index of a permutation group
A in which each permutation a has j; {a) cycies of length £ is the follow-
ing polynomial in d variables y;, where d is the degree of 4:

. 4 k@
(1) Z(A) = 2 [T vE.
k=1

141 asA

The symbol Z(A4; f(x)) is the expressicn obtained from (1) when each
variable y; is replaced by [ o).

By an application of Pélya’s classical enumeration theorem (see [2,
Chapter 2}), it follows that the coefficient of x" in Z(I'(G); 1 + x) gives
the number of inequivalent r-subsets of points of G with respect to the
group of G. This result can be viewed as the number of weighted graphs
of weight r with underlying graph G where each point has weight O or 1.
Once we realize this, it is easy to see how to generalize this result by
substituting a “‘bigger” series into Z(I'(G)).

Theorem 1.1. The number of weighted graphs with underlying graph G
whose points all have positive weght is given by

@ w@)=ZIG); x/(1—x).

Proof. Since x/(1 — x) =x +x2 +x3 + ..., this is the appropriate series
to provide possible point weights of 1, 2, 3, ... . Thus we may apply
Polya’s theorem with x /(! — x) as the figure counting series and I'(G)
as the configuration group to cbtain equation (2).

Corollary 1.2. Let G be a connected graph with a{G) points of degree i
fori=0and 1. Let hix) = Z7.;h; x¢, where h; is the number of connected
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graphs H with i points such that H' = G. Then

(3) h(x) = x2° "9 Z(N(G); x/(1 - x)).

Proof. As we observed above, the number of weighted graphs with G as
the underlying graph ;s the seme as the number of graphs H having

G = H' if and only if the weight at each endpoint of G is at least 2, but
if G is K,, then the weight ai its point is at least 3. Thus if we subtract
1 from the weight of each endpoint, and if G = K, , we subtract 2 from
the weight of its point, then we obtain a weighted graph with arbitrary
positive weights. We now apply Theorem 1.1 and include a factor of
x2%0*91 16 correct for the weights we have altered, and obtain equation

3).

2. Caterpillars

We may now use this result to count a certain species of irees which
we studied in [3. 41, called caterpillars by A. Hobbs. These are the
trees T with at least three points whose derived tree 7" is a path. Let
c(x)=Z5-3¢, xP be tie generating function for the number of cater-
pillars.

Theorem 2.1. The number of caterpillars on p 2 3 points is given by

x3(1 - 3x2)

(4) cx)= ,
(1 — 2x)(1 — 2x2)

or equivalently, writing p =n + 4,

(5) Cpaq = 2" +200121

Proof. We wish to count those p-point caterpillars whose derived tree is
the path P, for each positive A. We observe that when & = I, we have

@y = 1 and a; =0, and when k> 1, we see that gy =0 anda; = 2. Thus,
in either case, we have x2% %1 = x2 so applying Corollary 1.2, we have
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) cx)= 3 x2Z(T(P,); x/(1 —x)) .
k=1
We sgplit this sum into even and odd terms and write

7 o(x) = x2 17_“; Z(I‘(Pz,), )+x Zoz(npz,ﬂ) x) .

Now it foliows from the definition of the cycle index that
(3) ZN(Py)) = Z(S, LEN) =1 ¥ +0h),
9) Z(T(Pyjs N =Z(E; - S, [Ei])=%'yl(,V%i+yli)_)-

We proceed to substitute x /(1 — x) into (8) and (9) and substitute the
resulting expression into (7) to obiain

a0 w=xt 2 555)" +(55))

i=1

+a? E__f, 2(l—x) (((1f-x)>2'“ ((*—Z‘T)i)'

This simplifies routinely to equation (4).
Now to verify equation (5), we use partial fractions to express this as

Ax3  Bx3 +(Cx?

(h = 7+ T

This leads to the system of simultaneous equations4 +B =1, -2B +C
=0and —-24 — 2C = -3, which we solve to find A =B =% and C=1, so
that

x3/2 + x3/2 + x4
1 - 2x 1 - 2x2 °

(12) cx)=

From (12), it is easy to see that the coefficient of xP is given by Cp
Cnagq = 2" + 21750 proving equation (5).
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Fig. 2. The two labelings of a caterpillar.

3. Alternate proof

The simplicity of this final result suggests that there may be a more
natural and direct approach to obtain this formula, as occurs so often in
combinatorial mathematics, and in fact we have found one.

We start by attempting (> define a unique labeling for the lines of
each caterpillar 7. Let x, be an endline o: a longest path in 7. We pro-
ceed to label the remaining lines inductively. Assure i lines have been
labeled x, ..., x; and assign x;,; to an endline adjacent to x; which has
not vet been labeled, provided one exists, but if there is no such endtine,
then by the structure of a caterpiliar, there remains only one unlabeled
line incident with x;, and it lies or. the path 7". We label it x;,, . Fig. 2
displays two possible labelings of a particular caterpillar.

In fact, since at each step in the labeling procedure all the unlabeled
endlines adjacent to a given line are equivalent, it is clear that the only
way we obtain different labelings of a caterpillar is by choosing as x| an
endline incident with a different non-endpoint. Thus there are at most
two labelings of a caterpillar, and these arise by starting at opposite ends
of a longest path. Note, however, that these two labelings are identical
if the caterpillar has an automorpliism a interchanging the endpoints of
a longest path. These caterpillars which have just one labeling we call
syminetric.

W: now examine the number of *“‘caterpillar labelings’ which can oc-
cur on p points. Lines x, and x, can be adjacent in just cne way, but
for each of the p — 3 rema‘ning lines, there are two ways for x;,, to be
incicent with x;, namely, at either endpoint of x;. Thus we have 27 3
labelings.

Now most caterpillars are counted twice among these labelings, but
the symmectric ones are just counted once. In order to correct for this,
we musi determine the number of symmetric caterpillars. If p = 24 + 1
is odd, then the automorphism « interchanging the ends of a longest
path must fix the central point vy of T. Since T has an even number of
lin s, v, must have even degree, so we may use half of the linesin T to
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Fig. 3. A 13-point symmetric trec, its subtree, and the labeled subtree.

induce a subtree whose structure determines that of the entire tree. We
label this subtree which is also a caterpillar by the procedure given above.
This process is depicted in Fig. 3.

Now there are 25~ possible labeled subtrees since each line after the
first has two ways to be adjacent to its predecessor. Thus there are
k-1 = 2“"‘;2’/ 21 symmeric caterpillars on p = 2k + 1 points.

We find «'similar resuli when p = 2k is even, except that two cases
must be couisidered. If 77 has an odd number of points, the central point
v, must have odd degree, and we obtain a subtree to label as depicted in
Fig. 4(a). There are 2¥-2 such labelings. Finally, if 7" has an even num-

(a) (b)

Fig. 4. Two 12-point symmetric caterpiilars formed from the same labeled subt:iee.
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ber of points, then T has a “symmetry line” (see [1, p. 189]) and again
we cbtain a subtree to labe! (Fig. 4(b)). Here ioo there are 2%-2 labelings,
so we add these two to get 28-1 = 21®-2/2] ' which happens to be the
sama number us obtained in the case p odd. Thus in either case, we may
corrzct our original count by adding 2{®-2"2] and dividing by 2 to get
equation (5).

Observe that in Fig. 4, the same labeled subtree has been used in two
different ways to produce two distinct symmetric caterpillars. In onc of
these, T° has even length, and in the other, it has odd length. In this
way, 2%-2 1abeled subtrees yield 2k-1 symmetric caterpillars.
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