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LINE GRAPHS OF HYPERGRAPHS I

J.C. BERMOND, M.C. HEYDEMANN and D. SOTTEAU
Université de Paris-Sud, Centre d’Orsay Mathématique, bat. 425, 91405 Orsay, France

We define the k-line graph of a hypergraph H as the graph whose vertices are the edges of H,
two vertices being joined if the edges they represent intersect in at least k elements. In this paper
we show that for any integer k and any graph G there exists a partial hypergraph H of some
complete h-partite hypergraph K.y such that G is the k-line graph of H. We also prove that, for
any integer p, there exist graphs which are not the (h —p)-line graph of some h-uniform
hypergraph. As a corollary we answer a problem of C. Cook. Further we show that it is not
possible to characterize the (h — 1)-line graphs by excluding a finite number of forbidden induced
subgraphs.

i. Introduction

il

A hypergraph H will always be defined by its vertex-set X and its edge-set
€ ={Ei}i<i=m. The hypergraph H is said to be h-uniform if | E;|= h for each i
(I=i=m). In what follows we shall always consider h-uniform hypergraphs.

1.2

Let H be a given hypergraph, then we define the k-line graph of H, denoted by
L, (H), as the graph (without loops or multiple edges) whose vertices (e;) can be put
in a one-to-one correspondence with the edges E; in such a way that two vertices e;
and ¢; in L, (H) are adjacent (joined) if and only if their corresponding edges in
H, E; and E;, have at least k elements in common.

1.3

Let K}~ be the complete h-partite hypergraph defined as follows: its vertex-set
X is the union of h disjoint sets X; (1 <i=<h) with | X;|= N, and its edges are all
the subsets E of X where |E[=h and |[ENX;|=1 for each i (1<i<h).
Properties of L, (Kh«n) are studied in [2].

1.4

We define a k-plane graph as the k-line graph of an hypergraph H which is a
partial hypergraph of K.y for some N.
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A k-plane graph can be considered as a graph with distinct ordered h-tuples of
integers as its vertex-set, in which two vertices are joined if and only if the
corresponding h-tuples agree on k or more coordinates.

Such a graph is defined by Cook [3] as a plane graph in the case k = 1, and an
arrow graph in the case k = h — 1.

1.6

In [3] Cook has shown that any graph G is a plane graph, that K,— x is not an
arrow graph and has asked whether any graph G is, for some h, an (h — p)-plane
graph where p is a given integer.

In this paper we show that for any k, any graph G is a k-plane graph (Theorem
2.1), but that, for any p, there exist graphs which are not (h — p)-line graphs
(Theorem 3.3) and consequently, not (h — p)-plane graphs. This answers Cook’s
question.

Furthermore we prove (Theorem 4.3) that, contrary to the line-graphs of graphs
[1, Ch. 18], it is not possible to characterize the (h — 1)-plane graphs by excluding a
finite number of forbidden induced subgraphs.

L7

In what follows we shall always denote by d(e,¢;) the distance between two
vertices e; and ¢; of a graph G and by D (e;) the subgraph of G all of whose vertices
are adjacent to e; in G. We shall define an edge of an h-uniform hypergraph by the
sequence of its vertices {x,, x2,..., x,}. The notation {x,,..., %,..., x,} signifies that
we consider the sequence of vertices (x;)<i<» €xcept x;. All the definitions not given
here can be found in [1].

2. Theorem 2.1

Theorem 2.1. Let G be a given graph, k a given positive integer, then G is a k-plane
graph, that is there exist integers h and N and an h-uniform partial hypergraph H of
KﬁxN such that G = Lk (H)

Proof. Let G be a given graph. We shall prove by induction on the number n of
vertices of G that there exist an integer h and a family (E),zi=. of h-tuples of
integers not greater than n with the following property: there exists a one-to-one
correspondence between the vertices (e;)i<i<. of G and the (E;),<;=, such that for
Lj,1<i<js=n, E and E; agree on at least k coordinates if and only if {e, ¢;} is an
edge of G.

The case n =1 is trivial.



Suppose that we have proved it for a graph with (n — 1) vertices. Then if G is a
graph with n vertices e,, ..., e, by inductive hypothesis applied to G — ¢, we can
find an integer [ and (n — 1) I-tuples (Fi)izi=n-1 Of integers not greater than n — 1
such that foreach i,j, 1<i<j<n -1, F, and F; agree on at least k coordinates if
and only if d(e,e)=1.

Let (e:)ier be the adjacent vertices of e, in G, I C {1 aon =1} and | T & diWe
construct n h-tuples (E;)i<i<. with h = [ + dk, as follows:

Vi,1<is<n-1, E, is obtained from F, by adding dk coordinates equal to i.

The [ first coordinates of E, are equal to n and, in the dk last ones, k of them
are equal to i for each i € I. It is easy to verify that the family (E;) has the required

property.

3. Theorem 3.3
For Theorem 3.3 we need the following lemma:

Lemma 3.1. Let H be a given h-uniform hypergraph with edges (Ei)i<i=<n, p a given
integer, p <h, and G = L,_,(H) with vertices (&), Isi<n. If d(e,e)=1, then
|E;NE;|=h—Ip.

Proof. (By induction on /). According to the definition of L,-,(H) it is true for
I'=1. Assume we have proved it for [ — 1. If d(e; ¢;) = | then there exists a vertex e
of G such that d(e,e;) =1 and d (e, ¢;) = | — 1 and consequently there exists an edge
E of H such that |[ENE;|=h~p and, by inductive hypothesis, |[E N E, | =
h —(l - 1)p. We can write:

h=|EN(E UE)| =|ENE/|+|ENE|-|ENENE,|

sohBh—prh—(l—l)p—!EﬂE,-ﬂE,-],therefore]EiﬂE,-lzlEﬂE,-ﬂE,-]>
h —Ip.

Remark 3.2. In particular, if d(e,¢) =2, then h — p>|E NE;|=h-2p.

Theorem 3.3. Le:r p be a given integer. Then there exist graphs G which are not
Ly, (H) for any integer h > p and any h-uniform hypergraph H.

Proof. We shall show that for any integer p, there exists an integer N depending
only on p such that the complete bipartite graph K, n., is not L,_, (H) for any
integer h >p and any h-uniform hypergraph H. It is sufficient to prove that if
G =L, ,(H) and if two vertices ¢, and e, of G satisfy d(ey, e;) =2, then
D(e;) N D(e,) contains a set of independent vertices of cardinality not greater
than N.



Let E,, E; be the corresponding edges of H. From Lemma 3.1, we have:

K=2p =\ ExVExi< h = p.
Put
|[E\NE;|=h—q withp<q=<2p, (3.4)
DR P TRURE RS ST ) N
and

E?z{y|1°~0a))xp x(ll*‘\vo.,.rh}’

with vy # x; for any i,j such that 1 =i, j<q.
Let e and e’ be two other vertices of G both adjacent to ¢, and e., and E, E” their
corresponding edges in H. We can write

E={x, i€ TUK}U{y,jEJtU{a\,...,a},
E'={x,i € PUK}U{y,j EJ}IU{by,...,bu},
with I, I',J,J' subsets of {I,...,q}, K, K' subsets of {¢ +1,...,h} and a\, ..., a,

bi,..., b, vertices which do not belong to E, U E.. Since d(e, e)) = d(e’, e:) = I, we
have

[ENE,|=|Il+|K|=h-p (3.5)
and
|E'NE,

=|J'|+|K'|=h-p (3.6)

We shall show that if e and e’ are not adjacent, then (1,J) # (I'. J'). Indeed assume
that I =1I' and J = J', then
|[ENE'|=|I|+|J|+|KNK',
|[ENE’|=|I|+|J|+|K|+|K'|-|KUK'].

From inequalities (3.5) and (3.6) we deduce

IENE'| =2(h-p)-|KUK'],
|I[ENE'|=2h-p)-(h—q),

and by (3.4), |[ENE'|=zh-p+q-p>h-p This implies that ¢ and e’ are
adjacent in G.

So the maximum number of independent vertices we can find in D(e)N D(ex)is
not greater than N, the number of different (1,J), that is N’ = (2%, CL). Since,
according to (3.4), N’ < (22, C3,), this yields the theorem with N = (23, Ch).

Corollary 3.7 (Answering Cook’s problem [3, p. 116]). For every p, there exist
graphs which are not (h — p)-plane graphs.



4, Theorem 4.3

Definition 4.1. Let us denote by 9% the set of graphs G for which there exist
integers h and p,p < h, and a h-uniform hypergraph H such that G = L., (H).
Let 4, = U, 4.

Remarks 4.2. We have proved in Theorem 3.3 that K n+1 € %,. The value obtained
in the theorem is not the best possible. For example for p = 1, we have N =9, but
K, & %, as it can be easily seen.

Moreover there exist non bipartite graphs which do not belong to %,. For
example, for p = 1, it can be proved that there are exactly three graphs other than
K. , with less than five vertices which do not belong to 9,: the two non isomorphic
graphs obtained by adding an edge to K., and the graph obtained from Ks by
deleting an edge.

@2 is nothing else than the class of line graphs of simple graphs, for which many
characterizations have been obtained ([1, Ch. 18]) in particular by excluding a finite
number of induced subgraphs. If G € %,, then any induced subgraph of G belongs
to 9,. So we can ask whether there exists a characterization for ¢, by excluding a
finite number of induced subgraphs. The next theorem gives a negative answer to
this question: we shall exhibit an infinite family of graphs which do not belong to %,
and whose induced subgraphs belong to 9.

Theorem 4.3. Let us denote by W, the graph which is a wheel with a central vertex e,
joined to every other vertex e, 1 <i<n —1 of a cycle of length n — 1. Thus, for any
k.k=3,

(i) Wau & %..

(ii) Any proper induced subgraph of W € 4.

Proof of (i). We break the proof in two parts.

Case 1. Wy & 91 for h <k and k =2.

Suppose that Wa.. € 91 with h < k. Then K, , which is an induced subgraph of
Woar.» belongs to 41, Let e, 0<i <k, be the vertices of K, with d(e, e)) =1 for
i€{l,...,k}, and let H be the hypergraph such that K, = L,-,(H). Put
Eo={x1,...,Xn}.

Since d(e, e0)=1 for each i €{1,...,k}, we must have | E; N Eo|=h — 1, so
E =(X1y.00yXpeeesXn Vi)

If 0<i<j<k, we have d(e,¢)=2 and thus, |E,NE|<h—2 and n#r
Therefore we must find k different numbers belonging to {1, ..., h}, which implies
k < h, contradicting h < k.

Case 2. Wy & G for h = k.

We need the following lemma:

Lemma 4.4. If G = L,_.(H) and if e, and e, are two adjacent vertices in G then
D(e))N D (e,) is the vertex-disjoint union of two cliques.



Proof. Let E, and E; be the corresponding edges of H. If E, = {x,,.
Ex={xi,...,%, ...,x,y} with y@€E, and 1l <r<h.

If e is both adjacent to e, and e, then the corresponding edge E of H satisfies
|[ENE,|=|ENE,|=h—1 and there are only two kinds of such edges:

(@) E =(xi;..., 8.0, X, 2) with 2%y and z € E,,

(b) E = (x,,...,x X y) With 1<s<h and s#r.

All the edges of each kind have (h — 1) vertices in common, so the corresponding
vertices e form a clique. Moreover, for any z,z#y and z & E,, and for any
s,$1<s<h and s# r, we have

.., Xy} then

,{xl,...,f,,...,xh,Z}m{xl,...,fs,...,xh,}’}'=h_2,

thus the vertices corresponding to two edges not of the same kind a or b, are not
joined.

Remark 4.5. By this lemma, if in a graph G = L,_,(H) two vertices ¢ and e’ are
both adjacent to e, and e,, where d(e;, e,)=1, but not mutually adjacent, their
corresponding edges in H are each of a different kind a or b and so, if one is
known, the kind of the other is well determined.

We come back to the proof of the theorem. Assume that there exists an
hypergraph H such that Wa.,= L,_,(H). Let us denote by C(Pa.1) the graph
obtained by joining a vertex e, to each point of a path P,,., of length 2r. For any
nlsrs<k-—1, C(Pz.)is a subgraph of Wiz, and thus, C(Py..)= L,_ W(H,)
where H, is a partial hypergraph of H. By induction on r, we shall find the necessary

form of the edges of H, for r €{1,. -1}
For r =1, if P; has vertices e2k+1,e1,e2 and edges {e,, e;} {ei, €141}, put Eo=
{x1,...,x,}; without loss of generality, we can assume E; = {£,, x,..., X, y:} with

yi & Eo According to Lemma 4.4, as e, and e, are both adjacent to e, and e, but
not mutually adjacent, we can suppose without loss of generality that

Esii = (XA1, X2y ooy Xny yO) with yo# Vi, Yo E E,

and E,= (x;, X2,..., X, y1) and thus H, is well determined.

Suppose that H,_,=(X,%) with X ={x,,...,x, Yos---,¥-1) and &=
{Ezi+1, E,0<i<2r—2}, where Eo={xi,...,%.}, Eapsi = {X1, X2, ..., X, Yo} Wwith
Yo Eo, and for any i €{1,...,r—1}:

E2i—l = {xl, o) i .,)’C‘,-, R ¢ 7 y,'},
EZi = {X],. -.,f,‘+1,-- <5 Xny yl'}a

with y; & E, and y; # y; for any j,j# i.

We construct H, from H,-, by adding two edges E,,_, and E,, corresponding to
the vertices e;,_, €2, we add to C(P,,-,) to obtain C(P3,+1). First e,,_, and e,,_; are
both adjacent to e, and e,_,. Since we have



Elr—l = {xla RIS ,.f,, vy Xny Yr—l}
and
Elr—} e {xl, seey fr—l, e g x;,, yr—l},

by Lemma 4.4 and Remark 4.5, we must have E,,_, = 33 TSR - P, B 4 1
¥.# yi-1 and y, € E,.

Moreover as d(ex-1,e)>1forany i €{1,...,2r — 3,2k + 1}, then y, # y, for any
10 s =1k

Furthermore e, and e,_. are both adjacent to e, and e,_, with E,_, =
(Xt i oy X Yk and Bop o =85, 0. By vios X Witk So by Lemma 4.4 and
Remark 4.5 we must have E ={x,,...,%,...,%,y,} with s€{l,...,h), s#r.
Moreover, as d(e.,, e;)>1forany i €{1,..., r — 2} then we have s > r. Without loss
of generality, we can take s = r + 1. This is possible for r + 1 < k < h, and we have
Ex ={x,...,%41,...,%n ¥:}. So for r = k — 1 we have found a unique hypergraph
Hy, such that C(Pay-1) = Li_\(H,-,).

If we want to construct H, such that C(Pay..) = L,-,(H,) there are two cases:

(@) k = h. By the method just shown, we find Ex—; = {x,,..., £, y.}, but then we
cannot construct E,, such that e, is both adjacent to ¢, and e, but not to e; for
i €{1,...,2k —2} because we cannot find s > k as done before. So Wane1 & 45,

(b) k> h. By the same method, we find Ea 1 ={xi,...,%..., X y«} and
Eo ={x1,..., %1, .., Xu, i} With y. #y; for each i €{1,... , k — 1} and y, & E,.
But| Ezx N Esievi| = h = 2,50 ex and e, cannot be adjacent. Thus W, & 4"

Proof of (ii). The proof of (i) shows that the subgraph obtained by deleting one
vertex (here e.:) belongs to 9. So any induced subgraph of W, containing e,
belongs to ¢,. If an induced subgraph does not contain e, it is a subgraph of a cycle
which belongs to ¥,.

Problems. It would be interesting:

(a) tofind asimple way to construct all the graphs which do not belong to %,

(b) to study the class 9, for p > 1; in particular, is it possible to characterize the
class 4, by excluding forbidden induced subgraphs?

Note added in proof. Further results will appear in M.C. Heydemann and D.
Sotteau, Line graphs of hypergraphs II, in: Proc. Coil. Keszthely (North-Holland,
Amsterdam, 1977).
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