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We present solutions of seven graph equations involving the line graph, complement and n-th
power operations. One such equation L{G)" = G generalizes a result of M. Aigner. In addition,
some comments are made about graphs satisfying G" = G.

1. Introduction

We shall present the soluiions of seven graph equations involviag the line graph
L(G) of a graph G, the complement G. and the n-th power, denoted G". The z-th
power has the same point set as G, and has two points u and v adjacent if their
distance in G is n or less. A standard form of such an equation is one in which the
maximum number of operations appearing on cither side of the equation is as
small as possible. The degiee of an equation is then the maximum number of
operations on either side of an equation in standard form. For example, the
degree of the equation G =L(G) is one, since in standard form it is L(G)= G,
and there is one operation on each side of the equation.

Our goal is to solve all graph equations of degree one and two involving the
above mentioned operations. After giving our solutions we indicate which equa-
tions remain unsolved.

The equations solved in this paper are:

G=L(G)" | )
L(G)=L(G)" @
1(G)=G", where n=2, 3)
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L(G™)=G", where m,n=2, C))
L*(G)=G", where n=2, (5)
L*G)=G", where n=2, and 6)
LXG)=G", where n=2. ¥))

Recall that L*(G) is the second iterated line graph of G.

Several of these equations can be viewed as generalizations of carlier work. For
example, equation (1) is a generalization L(G)= G, which was solved by Aigner
[1]. It is interesting to note that Aigner’s solutions are also generalized. There are
of course other ways to generalize Aigner’s equation, such as (4), but in these
cases the solution changes.

When n =1 in equztions (3) and (5), we get L(G)= G, which was solved by
Menon [4] and van Rooij and Wilf [8]. If n=1 in (G) and (7), the resulting
equation was solved by Simi¢ [7]. The equation (4) with m=1 and n=2 was
solved by Akiyama, Kaneko and Simi¢ [2]; when n =1 and m =2 in this equation
there are no solutions.

Throughout the paper we suppose that a potential solution graph G has p
points and q lines, and in general use the notation and terminology of Harary [3].
Occasionally we will not ailow our graphs to have isolated points. When this
stipulation is made, it shall be stated.

2. The solution of G = L(G)"

The corona G;°G, of two graphs with order p, and p, is defined as the graph
obtained by taking one copy of G, and p, copies of G, and joining the i-th point
of G; to each point in the i-th copy of G,. This term was coined by Frucht and
Harary, see for example [3, p. 167].

In solving equation (1), we restrict our attention to the cases n=2, since the
case n =1 was solved by Aignei [1]. It is often convenient to write (1) as

G=L(G)" | (1)

Preparatory to solving this equation we remind the reader that in a graph G,
d(u, v) denotes the distance between the points u and v. We use d;(x,y) to
denote the distance between the lines x and y; this is the same as the distance
berween the points corresponding to x and y in L(G). It is convenient to
abbreviate L(G)" to H(G), or simply H when there can be no confusion. When x
is a line of G, we shall use the same symbol to represent the corresponding point
of H. The first lemmas require no proof. Lemmas 3 and 4 deal with graphs
without isolated po’nts.

Lemmsa 1. Let x and y be lines of G. Then x is adjacent 10 v in H if and only if
dL(x, y)>n+1.
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Lemma 2. Four lines of G, x, to x5, determine C, in H if dy (x;, x,,;)=n+1 for
0=<i=<3. (Addition is taken modulo 4.

Lemma 3. If G is a solution to (1), then G is connected.

Proof. If G is not connected, then the left hand side of (1) is connected whereas
the right hand side is not. O

Lemma 4. Any solution to (1) is unicyclic.
Proof. We must have p =q and G is connected by Lemma 3. O
We begin the proofs of the important lemmas.
Lemma 5. If G is a cycle, then G is a solution to (1) if and only if G=C,, ..

Proof. If G =C,,.3, then (1) holds. Conversely, suppose that (i is a sciution.
Since the radius of G must be at least n+1 (or H has isolated points), g =n+2.
If g=2n+2, then H=(n+1)K, and this does not give a sclution. And if
g =2n+4, the minimum degree 8(H)=3, and here also we get nc solution. Thus
g=2n+3 as required. O ‘

For the next lemma we suppose G is a unicyclic solction to &, but is not a
cycle. The points of the unique cycle in G are denoted by v, ..., v,-;, and the
tree, possibly trivial, attached tG the cycle at v; is called T,. We let

h(T))= max {d(v, u)},
neV(T) '
the height of T,. A poirt u of T; is called a k-point if d(v,, u) =k, and similarly a
line e of T; is called an k-line if the points of e are at distances k —1 and k from
v;.

Lemma 6. If G is not a cycle, then G is a solution to (1) if and cnly if
G =G50k,

Proof. The proof is divided into cases according to the girth g, which by Lemnma 4
is the length of the only cycle in G.

Case A, g=4

Let ¢ ={v, vi,1}, i=0 to 3, be the lines of the 4-cycle. We first show that
h(T,) <n+1, for all i. If this is not the case, let x and y denote an n+ 1-line and
an n+2-line of T, for which h(T})=n+2. Then the sets of lines {x, &;_;, v, €}
and {x, e,. y, ¢} both detzrmine 4-cycles in H, which is impossible if H is to be
unicyclic. So h(T;)<n+1, for all i.
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Fig. 1.

Next consider subcases, (a) h(T;)=n+1 for some i, and (b) h(T;)=<n for all i.
In subcase (a) we lose no generality in supposing h(To)=n+1. This implies
degv, =2 for i=1,2, 3. For otherwise H would contain at least two 4-cycles;
these can be located in a manner analogous to that above. Let x be a 1-line of T,
on the path from v, to an n+ 1-point. In order that x not be isoiated in H, T,
must contain at least two line disjoint paths of length n+1, starting at v,. This
implies the existence of two n + 1-lines, y, and y, in T,. But then the lines y,, y,
and e, determine a 3-cycle in H, so in subcase (a) there are no solutions.

In subcase (b) we are given that h(T;)<n for each i. We claim that either
h(T,) = h(T,) =n or h{T,) = h(T;) = n. If not, we suppose, without loss of gener-
ality, that h(Ty), h(T;)< n. But then the line e; ={v,, v,} is isolated in H, so the
claim is proved, and in complete generalitv we take h(T,) = h(T,) = n. Let u, and
u, be n-points of T, and T,. Let y; to y, and z, to z, be the lines of the paths
from v, to u, and from ., to u,. Then, if n =3 we find at least two 4-cycles in H
in the usual manner. Two such 4-cycles are given by the lines y,, z,, Yn-1, 2, and
Yns Zns Yn—15 Zn—2- 9O We are left to consider n =2, when deg v, =deg v, =2 lest H
contain a 3-cycle. In adcition deg v,=deg v, =3 or H contains two 4-cycles. It
follows that h(T,) = h(T,) =2 or many 4-cycles are found in H. So G is the graph
in Fig. 1, and this graph is easily seen not to be a solution. So subcase (b) offers no
solutions and if G is a solution to (1) we now have g#4.

Case B, g=2n+3

In this case we get 8(H)=2, which is impossible since G has endpoints.

For further cases, we of course know g# 4, so the following results hold:

(i) h(T,)<n+2-13g i g is even, and

(i) h(T)<n+3-%g+1).
To show (i), let g be even and k =n+2—3g. If h(T,))=k+1, let x and y be k-
and k +1-lines of T,. Let 2z, and z, be two lines of the cycle which are as far as
possible from v,. Then x. y, z; and z, determine a 4-cycle in H, a contradiction,
proving (i). Inequality (i) is proved similarly.

Case C, g=2n+2
From (i) we have h{(T,)<1 for all i. Suppose T, is nontriviai. Thzn T,, T,., and
T, are trivial, or else H contains a 4-cycle. Another 4-cycle results unless

£ o

dcp ;<3 for all i If two adjacent points of the cycle have degree three, then
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there are two endpoints of G at distance three, all endpoints of H correspond o
lines of the cycle in G. Clearly it is impossible for two such lines to be at «listance
three in H and be endpoints of H.

But then for each i such that deg v, =3, the lines {v,_,, v,} and {v;, v;,,} have
degree one in H. Thus H has twice as many endpoints as G, but G=H so
g#F2n+2.

Case D, 5<g<2n -

We split this case into two subcases, (a) h(T;)<n+2—{ig} for all i, and (b)
h(T;) =n+3—{3g}, some i. By (i), in subcase (b), g is odd. In (a), if some T; has
height less than n+2—{}g}, then a line on ths cycle at greatest possible d1stance
from v; will be isolated in H. So h(T;) = n+2—{3g} for all i. So for some i there is
a point w; on T; at distance n+2—{}g} from v,. Then let ¢, be a line incident with
w; for each i. The lines ey, e, €, and e, determine a 4-cycle in H, a
contradiction. ,

In subcase (b) h(T;)=n+3—{ig} for some i. Suppose h(T,)=n+3—{g}, and
let w, be an endpoint of T,. If h(T,)=n +2—{3g} for k ={ig}—1, {ig} or fig}+1,
then a 4-cycle is determined in the usual way. But if not {v,, v,} is isolated in H.
This dispenses with subcase (b).

Case E, g=2n+1

By (i) and (ii) either

(iii) h(T;)=n+3-{ig}=2 for some i, or

(iv) h(T)=n+2-{3g}=<1, for all i.
It we suppose (iii) holds we can show no solutions are obtained using the same
techniques as in the last case. Thus we suppose (iv) holds. If deg v, =4, then H
contains a 4-cycle and if deg v, =2, then we get an isolated point. So .leg v, =3,
for all i and G =C,,,,°K, which is a solution, as is easily verified.

Case F, g=3

If g=3, then by (ili) we know h(T;)sn+1, for all i. Again we consider
whether

(v) h{T,)=n+1 for some i, or

(vi) h{f)<n for all i.
I we have (v), then suppose h(T,)=n-+1. Since T, contains at most one
r+ 1-line {or H would have several 4-cycles), either T, or T, has height n or
greater, suppose h(T,;)=n. But an n+ 1-line of T, an n-line of T, an n-line of
71, and an n—1-line of T, determine a 4-cycle in H. Thus g# 3.

This last case exhausts the possibilities and G = C,,,,,° K, is the only solution.

Lemmas 5 and 6 together constitute the foliowing theorem:.

Theorem 1. The graphs C,, .., and C., . ,<K; are the only graphs without isolated
soints satisfying G =L(G)", n=2.
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The soiutions to (1) obtained by Aigner for n =1 were Cs and C;oK,. Thus
Theorem 1 holds for n=1.

3. Solutions of other equations

Tiaevicia 2. For any n=2, G =K, is the only solution to L(G)= L(G)" without
isulated points.

Proof. It suffices to consider connected graphs, for if G is discor:..  !then G is
connected.

Suppose G is a solution to (2). Since |V(L(G)|=|E(. “)-q and
|V(L(G)")| = q, we have q=3p(p—1). )

Let (dy,...,d,) and (d}, ..., d}) be the degree sequences of ¢ and G. Note
that d/=p—1-d,. And as |E(G)|=|E(G)|=q=13p(p—1), we have ¥ d,=Y d! =
2q=1p(p—1). Let D; and D} denote the degres sums of L{G) and L(G). Then
D;=%Yd(d,—1)=Y d?—2q and D} =% d! (d!-*)=Y d?~-2q, and so D, =D;.

Next let D, denote the degree sum of L(G)" and suppose : ‘G) is not
complete. Then D,>D, for n=2. But then D,>Dj, a contradiction which
implies that L(G) is complete, and so G =K, ,,, if anything.

If m>3, then L(G)" is complete but L(G) is not, thus G is not a solution. If
m <3 we again findd no solution. But by direct verification K, ; is found to be a
solution, thus the ¢nly solution. O

It is now convenient to define a family & of graphs which will be useful in
solving the next equation. Let Ge & if and only if G is unicyclic and either the
diamet=r d(G)=3 or G is disconnected. We now list the graphs in %.

if t'e girth g of G exceeds four then d(G)=2. Thus the unique cvcle in G has
length 3 or 4. If g =4, then no point can be at distance d =2 from the nearest
point on the cycle. Similarly if two opposite points on the cycle have degrees
exceeding two then d(G)<2. So if g=4 it is easy to see that only the graph in
Fig. 2 are in %. Note that the distance from u to v in G is three, and that there
can be any number of pendant lines at points u and v.

[

e mame e

Fig. 2.
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Fig. 3.

A similar analysis for the case g =3 reveals that only graphs of the types shown
in Fig. 3 are in %. Observe that in each case the number of pendent lines is
arbitrary.

We solve the third equation.

Theorem 3. The graphs C; and C, are the only solutions to the equation ) (G)=
G", n=2.

Proof. If G is not connected then G" ic complete, thus G cannot be a solution.

If G is connected, then G must be unicyclic to be a solution. This follows
because the graphs on either side of the equation must 1ave the same number of
points, and this means that G has an equal number of points and lines.

Now if G¢ & and G is unicyclic, then G" = K, but L(G) = K, is impossible. On
the other hand if G € F we can consider each type of graph in & separately and
verify that C; and C, are the only solations. [J

Theorem 4. The equation L(G™) = G™ has nc solutions, m,n=2.

Proof. If G is disconnected then G" is connected, and so L(G™) must be
connected. The conly possible form of G is the following:

G =HL’XK1,

where H is a conaected graph and x is a positive integer. In such a graph G there
is a point v whose degree is p—1 in G*. However it is easy to verify that the
maximum degree of L{G™) is less than p —1, a contradiction. Thus, there are no
disconnected solutions.

Assume that G is connécted, then G is unicyclic. Since m =2, the only possible
soiutions are P; and K, as they are the only connected graphs G for which G™ is
unicyclic, m =2. But reither is a solution. []

The next three equations involve the second iterated liac graph L*(G). It will
be necessary to determinc the graphs G for which L*(G) and G have the same
number of points.
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Lemma 7. If L*(G) and G have the same order p and if G is connected then G is a
l \1!"0 nr n C"hl’l‘nl@ln" nf K.O’)K (Qpﬂ Flo 4\
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Proof. Let p, be the order of L*G). It G has more than one cycle then p,>p,
and if G is unicyclic but not a cycle, then again p,> p. The same inequality holds
for trees with a point of degree greater than three and for trees with more than
two points of degree three. On the other hand if G is a tree with fewer than two
points of degree three and no points of higher degree p,<p, then it is easily
verified that graphs of the types mentioned in the statement of the lemma satisfy
po=p. O

Theorem 5. For n =2, the only connected solution to L*(G)=G" is K.

Proof. It is immediate that X is the only cycle which is a solution. We now show
that no subdivision of K,°2K, is a solution.

Since n=Z, G" contains at least two copies of K, as subgraphs. But L*(G)
contains at most one copy of K, and this maximum occurs only when the two
points of degree 3 are adjacent. Thus no subdivision of K,°2K is a solution. []

The next two theorems are rather easy, so that proofs are omitted.
Theorem 6. For n:=2, the only solution to L%(G)=G" is C,p.s.

Theorem 7. There are no solutions to the equation L*(G)=G", n=2.

4. Remarks

We note that equations (5),(6) and (7) can be easily generalized, replacing
L*(G) by L™(G). Using the following lemma it is easy to verify that the solutions
are the same.

Lemma 8. Let G be a connected graph with p points, and let L™(G) have p,, points.
Then

(i) for m >3, n,. =p only when G is a cycle,

(i) ps=p, when G is a cycle or a graph of the type shown in Fig. 5.
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Fig. 5.

INote that the graph equation L(G) = G"is essentially the same as the equation
(3), as is easily verified by replacing G by H.

S. An unsolved eguation

/mong first degree equations only G" =G is not solved. Of conrse for n=1
this reduces to the problem of finding all self-complementary graphs, which was
done independently by Ringel [5] and Sachs [6].
Propesition. The equation G" = G has .solutioﬁs of all ord.eré p=2n+3.
Proof. Let Gy = C,,.3, which is cicarly a solution. Let u and v be two points of

G, at distance two. Define G, by adding k points to G and joining each to u and
v (see Fig. 6). Clzarly G, is a solution for all k. 7]

Fig. 6.

‘We have not yet found all soiutions to G>=G, but have found several
sclutions, see Fig. 7.

Fig. 7.
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