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Abstract

In this paper we determine the maximum number of edges that a strong digraph can have if it has a
unique minimally strong subdigraph. We show that this number equals n(n+1)2+ 1, a surpris-
ingly large number. Furthermore we show that there is, up tw an isomorphism, a unique strong

digraph which attains this maximum.

1. Introduction

A connected graph G with n vertices always has a minimally connected subgraph, namely a

spanning tree. Moreover, the following three properties hold:

- Every minimally connected graph on n vertices has exactly n—1 edges.

- Every edge of G belongs to some minimally connected subgraph of G.

- G has a unique minimally connected subgraph if and only if G is itself.
a tree; or equivalently G has exactly n—1 edges.

We consider here the analogous properties for digraphs. A digraph D is strong (strongly connected)

provided that for each ordered pair of distinct vertices x and y there is a path from x to y. A digraph
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D is minimally strong (minimally strongly connected) if D is strong but the removal of any edge
results in a digraph that is not strong. A strong digraph always has a minimally strong subdigraph,
but the analogy then begins to break down. A minimally strong digraph with n vertices can have as
few as n edges - when it is a cycle on n vertices, and as may as 2(n— 1) edges - when it is a sym-
metric digraph whose underlying graph is a tree [2,3]. The digraph D of Figure 1 shows that nei-
ther one of the other two properties indicated above for connected graphs holds in the directed case.
First, not every edge of a strong digraph need belong to a minimally strong subdigraph of D. For
example the digraph of Figure 1 has 3 edges in no minimally connected subdigraph. Moreover, a
strong digraph D can have a unique minimally strong subdigraph different from D as does the
digraph in Figure 1.

In this paper we determine the maximum number of edges that a strong digraph can have if it
has a unique minimally strong subdigraph. We show that this number equals n(n+1)y2+1, a
surprisingly large number. Furthermore we show that there is, up to an isomorphism, a unique

strong digraph which attains this maximum.

Figure 1



2. Main result

Let D be a strong digraph with n vertices. The digraphs in this paper are simple, unless other-
wise stated. We first consider the case where the unique minimally strong subdigraph of D is a
Hamiltonian cycle. Label the vertices of the digraph such that its unique Hamiltonian cycle is
C =(1,2,...,n,1). All arithmetic operations on the labels are done modulo n. We denote the edge
set of D by E(D) and its vertex set by V(D). The indegree and outdegree of a vertex v are denoted

by d” (v) and d* (v) respectively.

Lemma 1: Let D be a strong digraph with n vertices whose unique minimally strong subdigraph is
a Hamiltonian cycle C. Then | E(D)| = n%2.
Proof: We show that for every vertex k = 1,2,...,n

dt(ky+ d (k+1)=n 2.1
With no loss of generality assume k=1. If there is no vertex j >2 such that (1,j)e E(D), then
d*(1)=1 and hence (2.1) holds. Otherwise let i >2 be the smallest index such that (1,i)e E(D).
Then d*(1)=n — i + 2. Suppose there is an edge (/,2) with j=i. Then the digraph obtained from
D by deleting the edge (1,2) is strong and hence D has a minimally strong subdigraph other than C.
It follows that d~ (2)= i—2. Hence d*(1)+ d~(2)= n. Thus, (2.1) holds for every k=1,2,...,n

and hence

| E(D)| =% 5'1 (@t (k) + d (k) =%n? O
k=1

Lemma 2: Let D be a strong digraph on n vertices and let P=(1,...,n) be a Hamiltonian path in
D. If every minimally strong subdigraph of D contains P then | E|=%(n+2)(n—1). Equality
holds if and only if D consists of the Hamiltonian path P together with all edges (i,j) such that
i>].

Proof: As in the proof of Lemma 1, we can conclude that

ar(+d (k+D=n  k=1,...,n—1. 2.2)

Combining this with the fact that




dT(my=n—-1and d” (I)=n—1, 2.3)

we get

| E| :vg(ﬁ dt (k) + g' d™ ()= %(n(n—1) + 2(n—1)) = %(n+2)(n—1).
k=1 f==1

It is clear that if D consists of P together with all edges (i,j) with i >j, then equality holds.
Conversely, suppose that equality holds. Then we must have equalities in (2.2) and in (2.3). In par-
ticular d* (#)=n—1 and hence (n,i)e E(D) for i=1,...n—1. It suffices to show that there is no
edge (i,j) with j>i+1. Suppose that there is an edge (i,j) with j>i+1. Then the path
(i,j,j+1,...n,i+1) joins i to i+1 in D and hence the digraph obtained from D by deleting the
edge (1,2) is strong. It follows that D has a minimally strong subdigraph that does not contain P, a

contradiction. O

Let S and R be two disjoint subsets of V(D). We denote by (S:K) the set of edges with one

endpoint in S and the other endpoint in R. We say that (S :R) is the set of edges between S and R.
Lemma 3: Let D be a digraph on n vertices whose unique minimally strong subdigraph is the Ham-
iltonian cycle C=(1,2,...,n,1). Let p be an integer such that 2= p=n. Then

| (413:42,...,pH — E(O) | =p—1.
Equality holds only if (p,1)e E(D)— E(C).

Proof: The proof is by induction on p. The result is trivial if p=2. Suppose it is true for k=p and
let k=p+1. If there are no edges between 1 and p+1 except possibly edges of the cycle C, then
the result follows from the inductive hypothesis and equality cannot hold. Similarly, if
|(413:42,...,p P |=p—2 then [({1}:{2,...,p+1}) |<(p—2)+2=p and equality implies that
(p+1,1)eE(D). It remains to consider the case where | ({1}:42,...,p | =p—1. By the inductive
hypothesis (p,1)€ E(D). This implies that (1,p+1)¢ E(D) because otherwise, there is a minimally
strong subdigraph of D not containing the edge (p,p+1). Hence |({1 V:42,...,p+ 1Y) | =p with
equality only if (p+ 1)eE(D). D

Corollary 4: Let D be a digraph on n vertices whose unique minimally connected subdigraph is the

Hamiltonian cycle C=(1,2,...,n,1). Then the number of edges between {1} and {2,...,n} which



are not edges of C is at most n—2.

Proof: By Lemma 3, if the number of edges between 1 and {2,...,n} is exactly n—1, then

(n,1)e E(D)— E(C). This contradicts the fact that D is a simple digraph. O

Theorem 5: Let D=(V,E) be a strong digraph on n vertices whose unique minimally strong subdi-

0

graph is a Hamiltonian cycle. Then

|E| = (3] +1

Proof: First suppose that for some i and j there holds (i,j)e E and (j—1,i+1)€E. .For simplicity
assume that i=1 and j=m+1, m=1. Let D; and D, be the vertex subgraphs induced by the sets
{2,3,...,m+1} and {m+2,...,n,1} respectively. If there is an edge (s,1)5 (m+1,m+2) with seD,
and teD, then the digraph resulting by deleting the edge (j—1,/) is still strong. It follows that D
has a minimally strong subdigraph other than the Hamiltonian cycle. Thus there are no edges,
except (m+1,m+2), directed from D; to D,. Using a similar argument (deleting the edge
(i,i+1)), we can conclude that there is no edge directed from D, to D; except for the cycle edge
(1,2). Hence

|E| = |E(DY)| + |E(DY)| +2. 2.4
The fact that D has a unique minimally strong subdigraph, does not imply that D; (i=1,2) has a
unique minimally strong subdigraph. However, it does imply that every minimally strong subdi-
graph of D; (respectively D) contains the Hamiltonian path (2,...,m+1) (respectively

(m+2,...n,1)). By Lemma 2 and (2.4) we have
E(D)<s¥%(m+2)(m—1) + %(n—m~+2)(n—m—1) + 2
= [n2 - m(n=m)}+ n-m(n—m)
=< [g] +n -~ m(n—m)

()

The last inequality is justified by the fact that the product xy with x+y=n is minimized when the

factors are 1 and n—1 or in otherwords m(n—m)=z n—1.




We may now assume that there is no pair of vertices i and j for which both (i,j) and
(j—1,i+1) are edges of D. Itis also clear that if (i,j)e E(D) then (j,i+1)¢ E(D). Let dt(i)=k.

It then follows that d~(i+1)< n—(k+1). Hence d*(i)+ d” (i+1)=n—1foralli. Thus,

| E| =vz§(d+(i)+ d (i+1)=%n(n—-1)= ny.
2.

i=1

We now consider the case where the unique minimally strong subdigraph is not a Hamiltonian

cycle.
Theorem 6: Let D be a strong digraph on n >3 vertices whose unique minimally strong subdigraph

is not a Hamiltonian cycle. Then | E(D)| = [;J

Proof: The proof is by induction on the number n of vertices of D. The case n=4 can be checked
using the fact that unique minimally strong subdigraph D' can be one of the four digraphs of Figure

2.1f D' = D, or D, then D = D' . In the other two cases it can be easily checked that | E(D)] =<6.

Now suppose the claim holds for k <n and let D be a digraph with n vertices satisfying the
conditions of the Theorem. Since D' is not a Hamiltonian cycle, D' contains a minimally strong
subdigraph Do = (Vp,Ep) on m vertices and a simple path (vg,v1,---,Vn—m+1), Where vg and

Vy-m+1 are in Vo while the vertices vy, ...,V are in V-V [1]. Since D' is not a

|
v

Figure 2.



Hamiltonian cycle, m=3. It follows from the inductive hypothesis and from Theorem 4 that the ver-

tex subgraph of D induced by V, has at most [3) +1 edges. Let D" be the simple digraph

obtained from D by shrinking the set of vertices Vj to a vertex V¢ and identifying multiple edges to a
single edge and eliminating self loops. The digraph D" is clearly strong and since D has a unique
minimally strong subdigraph, so does D*. In fact the unique minimally strong subdigraph of D s

a Hamiltonian cycle. Hence, By Theorem 5, D" has at most [n~.31+1 ) + 1 edges. Each edge in

D" between V— Vg and {V} corresponds to at most m edges in D. Thus the number of edges of D
that are not in E(Dg)UE(D") is at most m~—1 times the number of edges between Vo and
{V1,---»Vu-m}- By Corollary 4, the number of edges in D between Vo and vy, ..., V- is at

most (n—m—1). Thus

| E(D)| = (’2”] 14 [”"'2"“) + 1+ (n-m-1)m—1)= (3] —(m-3)= [g]

Let D be a strong digraph on n vertices with a unique minimally strong subdigraph D’ . Our
results show that the the number of edges of D is a number between n and %n(n— 1)+ 1. The two
extremes are attained when D’ is a Hamiltonian cycle, that is, when D' has the fewest possible
number of edges in a minimally strong digraph on n vertices. On the other hand, suppose the
unique minimally strong subdigraph D' of D has the largest possible number of edges a minimally
strong digraph can have. Then, D' is a symmetric digraph whose underlying graph is a tree [2] and

has exactly 2n—2 edges [3]. In this case we must have D=D".
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