ON STRONG DIGRAPHS WITH A UNIQUE MINIMALLY STRONG SUBDIGRAPH

by

Richard A. Brualdi Rachel Manber

Computer Sciences Technical Report #641

April 1986

ON STRONG DIGRAPHS WITH A UNIQUE MINIMALLY STRONG SUBDIGRAPH

Richard A. Brualdi1

Department of Mathematics

University of Wisconsin

Rachel Manber²

Department of Computer Sciences

University of Wisconsin

Abstract

In this paper we determine the maximum number of edges that a strong digraph can have if it has a unique minimally strong subdigraph. We show that this number equals n(n+1)/2+1, a surprisingly large number. Furthermore we show that there is, up to an isomorphism, a unique strong digraph which attains this maximum.

1. Introduction

A connected graph G with n vertices always has a minimally connected subgraph, namely a spanning tree. Moreover, the following three properties hold:

- Every minimally connected graph on n vertices has exactly n-1 edges.
- Every edge of G belongs to some minimally connected subgraph of G.
- G has a unique minimally connected subgraph if and only if G is itself, a tree; or equivalently G has exactly n-1 edges.

We consider here the analogous properties for digraphs. A digraph D is strong (strongly connected) provided that for each ordered pair of distinct vertices x and y there is a path from x to y. A digraph

¹ Research partially supported by NSF grant No. DMS-8320189

² Research partially supported by Wisconsin Alumni Research Foundation

D is minimally strong (minimally strongly connected) if D is strong but the removal of any edge results in a digraph that is not strong. A strong digraph always has a minimally strong subdigraph, but the analogy then begins to break down. A minimally strong digraph with n vertices can have as few as n edges - when it is a cycle on n vertices, and as may as 2(n-1) edges - when it is a symmetric digraph whose underlying graph is a tree [2,3]. The digraph D of Figure 1 shows that neither one of the other two properties indicated above for connected graphs holds in the directed case. First, not every edge of a strong digraph need belong to a minimally strong subdigraph of D. For example the digraph of Figure 1 has 3 edges in no minimally connected subdigraph. Moreover, a strong digraph D can have a unique minimally strong subdigraph different from D as does the digraph in Figure 1.

In this paper we determine the maximum number of edges that a strong digraph can have if it has a unique minimally strong subdigraph. We show that this number equals n(n+1)/2+1, a surprisingly large number. Furthermore we show that there is, up to an isomorphism, a unique strong digraph which attains this maximum.

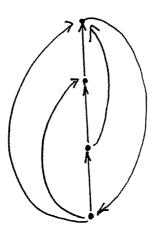


Figure 1

2. Main result

Let D be a strong digraph with n vertices. The digraphs in this paper are simple, unless otherwise stated. We first consider the case where the unique minimally strong subdigraph of D is a Hamiltonian cycle. Label the vertices of the digraph such that its unique Hamiltonian cycle is C = (1,2,...,n,1). All arithmetic operations on the labels are done modulo n. We denote the edge set of D by E(D) and its vertex set by V(D). The indegree and outdegree of a vertex v are denoted by $d^-(v)$ and $d^+(v)$ respectively.

Lemma 1: Let D be a strong digraph with n vertices whose unique minimally strong subdigraph is a Hamiltonian cycle C. Then $|E(D)| \le n^2/2$.

Proof: We show that for every vertex k = 1, 2, ..., n

$$d^{+}(k) + d^{-}(k+1) \le n \tag{2.1}$$

With no loss of generality assume k=1. If there is no vertex j>2 such that $(1,j) \in E(D)$, then $d^+(1)=1$ and hence (2.1) holds. Otherwise let i>2 be the smallest index such that $(1,i) \in E(D)$. Then $d^+(1) \le n-i+2$. Suppose there is an edge (j,2) with $j \ge i$. Then the digraph obtained from D by deleting the edge (1,2) is strong and hence D has a minimally strong subdigraph other than C. It follows that $d^-(2) \le i-2$. Hence $d^+(1)+d^-(2) \le n$. Thus, (2.1) holds for every $k=1,2,\ldots,n$ and hence

$$|E(D)| = \frac{1}{2} \sum_{k=1}^{n} (d^{+}(k) + d^{-}(k)) \le \frac{1}{2} n^{2}.$$

Lemma 2: Let D be a strong digraph on n vertices and let P = (1, ..., n) be a Hamiltonian path in D. If every minimally strong subdigraph of D contains P then $|E| \le \frac{1}{2}(n+2)(n-1)$. Equality holds if and only if D consists of the Hamiltonian path P together with all edges (i,j) such that i > j.

Proof: As in the proof of Lemma 1, we can conclude that

$$d^{+}(k) + d^{-}(k+1) \le n$$
 $k=1,...,n-1$. (2.2)

Combining this with the fact that

$$d^{+}(n) \le n-1 \text{ and } d^{-}(1) \le n-1,$$
 we get

$$|E| = \frac{1}{2} \left(\sum_{k=1}^{n} d^{+}(k) + \sum_{k=1}^{n} d^{-}(k) \right) \le \frac{1}{2} (n(n-1) + 2(n-1)) = \frac{1}{2} (n+2)(n-1).$$

It is clear that if D consists of P together with all edges (i,j) with i>j, then equality holds. Conversely, suppose that equality holds. Then we must have equalities in (2.2) and in (2.3). In particular $d^+(n)=n-1$ and hence $(n,i)\in E(D)$ for $i=1,\dots n-1$. It suffices to show that there is no edge (i,j) with j>i+1. Suppose that there is an edge (i,j) with j>i+1. Then the path $(i,j,j+1,\dots n,i+1)$ joins i to i+1 in D and hence the digraph obtained from D by deleting the edge (1,2) is strong. It follows that D has a minimally strong subdigraph that does not contain P, a contradiction. \square

Let S and R be two disjoint subsets of V(D). We denote by (S:R) the set of edges with one endpoint in S and the other endpoint in R. We say that (S:R) is the set of edges between S and R.

Lemma 3: Let D be a digraph on n vertices whose unique minimally strong subdigraph is the Hamiltonian cycle C = (1, 2, ..., n, 1). Let p be an integer such that $2 \le p \le n$. Then

$$|(\{1\};\{2,\ldots,p\})-E(C)| \leq p-1.$$

Equality holds only if $(p,1) \in E(D) - E(C)$.

Proof: The proof is by induction on p. The result is trivial if p=2. Suppose it is true for $k \le p$ and let k=p+1. If there are no edges between 1 and p+1 except possibly edges of the cycle C, then the result follows from the inductive hypothesis and equality cannot hold. Similarly, if $|(\{1\}; \{2,...,p\})| \le p-2$ then $|(\{1\}; \{2,...,p+1\})| \le (p-2)+2=p$ and equality implies that $(p+1,1)\in E(D)$. It remains to consider the case where $|(\{1\}; \{2,...,p\})| = p-1$. By the inductive hypothesis $(p,1)\in E(D)$. This implies that $(1,p+1)\notin E(D)$ because otherwise, there is a minimally strong subdigraph of D not containing the edge (p,p+1). Hence $|(\{1\}; \{2,...,p+1\})| \le p$ with equality only if $(p+1)\in E(D)$. \square

Corollary 4: Let D be a digraph on n vertices whose unique minimally connected subdigraph is the Hamiltonian cycle C = (1,2,...,n,1). Then the number of edges between $\{1\}$ and $\{2,...,n\}$ which

are not edges of C is at most n-2.

Proof: By Lemma 3, if the number of edges between 1 and $\{2,...,n\}$ is exactly n-1, then $(n,1) \in E(D) - E(C)$. This contradicts the fact that D is a simple digraph. \square

Theorem 5: Let D = (V, E) be a strong digraph on n vertices whose unique minimally strong subdigraph is a Hamiltonian cycle. Then

$$|E| \leq \binom{n}{2} + 1$$

Proof: First suppose that for some i and j there holds $(i,j) \in E$ and $(j-1,i+1) \in E$. For simplicity assume that i=1 and j=m+1, $m \ge 1$. Let D_1 and D_2 be the vertex subgraphs induced by the sets $\{2,3,\ldots,m+1\}$ and $\{m+2,\ldots,n,1\}$ respectively. If there is an edge $(s,t) \ne (m+1,m+2)$ with $s \in D_1$ and $t \in D_2$ then the digraph resulting by deleting the edge (j-1,j) is still strong. It follows that D has a minimally strong subdigraph other than the Hamiltonian cycle. Thus there are no edges, except (m+1,m+2), directed from D_1 to D_2 . Using a similar argument (deleting the edge (i,i+1)), we can conclude that there is no edge directed from D_2 to D_1 except for the cycle edge (1,2). Hence

$$|E| = |E(D_1)| + |E(D_2)| + 2.$$
 (2.4)

The fact that D has a unique minimally strong subdigraph, does not imply that D_i (i=1,2) has a unique minimally strong subdigraph. However, it does imply that every minimally strong subdigraph of D_1 (respectively D_2) contains the Hamiltonian path (2,...,m+1) (respectively (m+2,...n,1)). By Lemma 2 and (2.4) we have

$$E(D) \le \frac{1}{2}(m+2)(m-1) + \frac{1}{2}(n-m+2)(n-m-1) + 2$$

$$= [n^2 - m(n-m)] + n - m(n-m)$$

$$\le \binom{n}{2} + n - m(n-m)$$

$$\le \binom{n}{2} + 1.$$

The last inequality is justified by the fact that the product xy with x+y=n is minimized when the factors are 1 and n-1 or in otherwords $m(n-m) \ge n-1$.

We may now assume that there is no pair of vertices i and j for which both (i,j) and (j-1,i+1) are edges of D. It is also clear that if $(i,j) \in E(D)$ then $(j,i+1) \notin E(D)$. Let $d^+(i) = k$. It then follows that $d^-(i+1) \le n - (k+1)$. Hence $d^+(i) + d^-(i+1) \le n - 1$ for all i. Thus,

$$|E| = \frac{1}{2} \sum_{i=1}^{n} (d^{+}(i) + d^{-}(i+1)) \le \frac{1}{2} n(n-1) = {n \choose 2}.$$

We now consider the case where the unique minimally strong subdigraph is not a Hamiltonian cycle.

Theorem 6: Let D be a strong digraph on n > 3 vertices whose unique minimally strong subdigraph is not a Hamiltonian cycle. Then $|E(D)| \leq \binom{n}{2}$.

Proof: The proof is by induction on the number n of vertices of D. The case n=4 can be checked using the fact that unique minimally strong subdigraph D' can be one of the four digraphs of Figure 2. If $D' = D_1$ or D_2 then D = D'. In the other two cases it can be easily checked that $|E(D)| \le 6$.

Now suppose the claim holds for k < n and let D be a digraph with n vertices satisfying the conditions of the Theorem. Since D' is not a Hamiltonian cycle, D' contains a minimally strong subdigraph $D_0 = (V_0, E_0)$ on m vertices and a simple path $(v_0, v_1, ..., v_{n-m+1})$, where v_0 and v_{n-m+1} are in V_0 while the vertices v_2, \ldots, v_{n-m} are in $V-V_0$ [1]. Since D' is not a

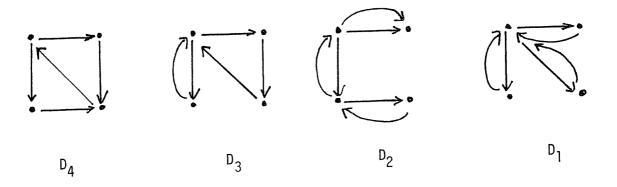


Figure 2.

Hamiltonian cycle, $m \ge 3$. It follows from the inductive hypothesis and from Theorem 4 that the vertex subgraph of D induced by V_0 has at most $\binom{n}{2} + 1$ edges. Let D^* be the simple digraph obtained from D by shrinking the set of vertices V_0 to a vertex V_0^* and identifying multiple edges to a single edge and eliminating self loops. The digraph D^* is clearly strong and since D has a unique minimally strong subdigraph, so does D^* . In fact the unique minimally strong subdigraph of D^* is a Hamiltonian cycle. Hence, By Theorem 5, D^* has at most $\binom{n-m+1}{2} + 1$ edges. Each edge in D^* between $V - V_0$ and $\{V_0^*\}$ corresponds to at most m edges in D. Thus the number of edges of D that are not in $E(D_0) \cup E(D^*)$ is at most m-1 times the number of edges between V_0^* and $\{v_1, \ldots, v_{n-m}\}$. By Corollary 4, the number of edges in D between V_0^* and v_1, \ldots, v_{m-m} is at most (n-m-1). Thus

$$|E(D)| \le {m \choose 2} + 1 + {n-m+1 \choose 2} + 1 + (n-m-1)(m-1) = {n \choose 2} - (m-3) \le {n \choose 2}.$$

Let D be a strong digraph on n vertices with a unique minimally strong subdigraph D'. Our results show that the number of edges of D is a number between n and $\frac{1}{2}n(n-1)+1$. The two extremes are attained when D' is a Hamiltonian cycle, that is, when D' has the fewest possible number of edges in a minimally strong digraph on n vertices. On the other hand, suppose the unique minimally strong subdigraph D' of D has the largest possible number of edges a minimally strong digraph can have. Then, D' is a symmetric digraph whose underlying graph is a tree [2] and has exactly 2n-2 edges [3]. In this case we must have D=D'.

References

- [1] C. Berge, Graphs, North Holland Mathematical Library, Second revised edition, 1985.
- [2] R. A. Brualdi and M. Hendrick, "A unified treatment of nearly reducible and nearly decomposable matrices," LAA 24 (1979) 51-73.
- [3] R. P. Gupta, "On" basis J. Combinatorial Theory 3 (1967) 16-24.