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The First Cycles in an Evolving Graph

PHILIPPE FLAJOLET, DoNALD E. KNUTH AND BORIS PITTEL

Abstract. If successive connections are added at random to an initially disconnected set
of n points, the expected length of the first cycle that appears will be proportional to nl/6,
with a standard deviation proportional to nl/4. The size of the component containing
this cycle will be of order nl/2, on the average, with standard deviation of order n7/12,
The average length of the kth cycle is proportional to n'/6(logn)¥~1. Furthermore, the
probability is 4/2/3 + O(n~'/3) that the graph has no components with more than one
cycle at the moment when the number of edges passes %n These results can be proved
with analytical methods based on combinatorial enumeration with multivariate generating
functions, followed by contour integration to derive asymptotic formulas for the quantities

of interest.

Les premiers cycles dans un graphe en évolution

PHILIPPE FLAJOLET, DONALD E. KNUTH ET BORIS PITTEL

Résumé. Si 'on ajoute aléatoirement des arétes & un ensemble de n points initiallement
disconnectés, la longueur moyenne du premier cycle qui apparait est proportionnelle & n1/6
avec un écart type prqportioﬁnel 3 nl/4. La taille du composant contenant ce cycle est de
I’ordre de nl/2 en moyenne, et I’écart type de l'ordre de n7/12. La longueur moyenne du
k—iéme cycle est proportionnelle & n!/6(logn)*~1. De surcroit, lorsque le nombre d’arétes
atteint la valeur n/2, il y a une probabilité \/2/3+0(n~1/3) que le graphe ne contienne pas
de composante connexe ayant plus d’un cycle. Ces résultats sont établis par des méthodes
analytiques fondées sur I'utilisation de séries génératrices de dénombrement multivariées,
suivies d’intégration le long de contours appropriés. L’on obtient de la sorte les estimations
asymptotiques de divers paramétres caractéristiques du processus d’évolution.

N! !D PAPIER RECUPERE ET RECYCLE
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nected set of n points, the expected length of the first cycle that appears will be

1/8 with a standard deviation proportional to n!/4. The size of

proportional to n
the component containing this cycle will be of order n'/2, on the average, with
standard deviation of order n”/!2. The average length of the kth cycle is propor-
tional to n'/(logn)*~!. Furthermore, the probability is 1/2/3 + O(n~1/3) that
the graph has no components with more than one cycle at the moment when the
number of edges passes %n. These results can be proved with analytical methods
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lowed by contour integration to derive asymptotic formulas for the quantities of
interest.
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A classic paper by Erdés and Renyi [ER59] inaugurated the study of the random graph
Process, in which we begin with a totally disconnected graph and enrich it by successively
adding edges. Algorithms that deal with graphs often mimic such a process, inputting a
sequence of edges until some stopping criterion occurs, based on the configuration of edges
seen so far. To analyze such algorithms, we wish to estimate relevant characteristics of the
resulting graph. For example, we might stop when the graph first contains a particular
kind of subgraph, and we might ask how large that subgraph is.

The purpose of this paper is to introduce analytical methods by which such questions
can be answered systematically. In particular, we will apply the ideas to an interesting
question posed by Paul Erdés and communicated by Edgar Palmer to the 1985 Seminar
on Random Graphs in Posnari: “What is the expected length of the first cycle in an
evolving graph?” The answer turns out to be rather surprising: The first cycle has length
Kn1/6 + O(n'/®) on the average, where

1 (%) 14100 20 ds
K= T / /1 - elrr2(u=a)s — dp = 2.0337.
-0 -—3100

The form of this result suggests that the expected behavior may be quite difficult to derive
using techniques that do not use contour integration. -

The methods to be described start with comparatively easy techniques of combinato-
rial analysis based on generating functions, and finish with more difficult (yet standard)
techniques of complex analysis. The main novelty in this approach is the use of contour
integration to give parametric estimates of a function that appears within an ordinary
integral. Such methods may well find application in other studies of random graphs, so
they are presented here in an expository fashion and in somewhat greater generality than
is needed to solve the special problems used as examples.

Section 1 introduces two basic models of evolving graphs that will be studied in
the sequel, corresponding roughly to sampling with and without replacement. Section 2
discusses bivariate generating functions suitable for studying these graphs. Such generating
functions can be used to derive probabilities in both of the models, as shown in Section 3.
Asymptotic calculations in Section 4, based on the saddle point method, lead to results
in Section 5 about the limiting distribution of first cycle lengths. Section 6 proves the
main theorem about expected cycle length, and Section 7 derives auxiliary results about
the expected waiting time and expected component sizes. The joint distribution of cycle
lengths and edges is studied in Section 8, which also demonstrates a connection between
waiting times and the parametric functions of Section 3. Section 9 extends the ideas to
another problem in which we consider the first “bicyclic” component instead of the first

-cycle. An alternative approach to waiting times is considered in Section 10, where we also
give an affirmative answer to a long-standing conjecture of Erd8s and Renyi about the
probability that a graph is planar. Finally we consider the first k cycles, in Section 11.
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1. Models of graph evolution. We shall consider two related ways to enrich an initially
empty graph on the vertices {1,2,...,n}. The first procedure, called the uniform model, is
the simplest: At each step we generate an ordered pair (z,y), where z and y are uniformly
distributed between 1 and n, and all n? pairs are equally likely. The (undirected) edge z —y
is then added to the graph. In this way we obtain a multigraph, which may have duplicate
edges or self-loops £ — z. Interesting variants of this model can be obtained by imposing
other distributions on the pairs (z, y), but we shall not pursue such generalizations in the
present paper.

Another way to generate a sequence of random edges may be called the permutation
model; this model corresponds directly to random graphs as studied in the classic papers
by Erdés and Rényi [ER59, ER60]. Here we consider all (3)! permutations of the pairs
(z,y) with 1 < z < y < n to be equally likely, and we generate new edges z — y by
considering the pairs as they occur in such a permutation. The resulting graph contains
no self-loops and no multiple edges; we are essentially sampling without replacement.

The permutation model can be derived from the uniform model if we generate (z,y)
uniformly but disregard any pairs with z = y or pairs that duplicate a previous edge.

Our goal is to study the generation of random edges in such models until a cycle first
appears in the resulting graph. (This would be the first time that a sequence of random
“union” operations specifies a redundant union; see [KS78].) In the uniform model, the
process might stop with a self-loop (z,z), which is a cycle of length 1. Or it might stop
with a duplicate edge (a pair (z,y) such that either (z,y) or (y,z) has occurred before);
this is a cycle of length 2. In the permutation model all cycles have length 3 or more.

For example, Figure 1 illustrates a “random” graph on n = 100 vertices, based on
the representation of = = 3.1415926. .. in decimal notation. (Here the vertices have been
labeled 00 to 99 instead of 1 to n.) A cycle first appears when the 45th random pair,
(05,55), is added. In this case the uniform and permutation models produce identical
graphs, because the first cycle has length > 2; in other words, no duplicate edges or self-
loops are generated before there is a cycle. (We will see in Theorem 2 below that both
models give the same graph with probability approaching 8/15.)

The permutation model of graph evolution is often called the “random graph process.”
In these terms we can call the uniform graph model the “random multigraph process.”

Let us recall briefly some of the main results of Erd4s and Renyi from [ER60], to es-
tablish a context for the facts proved below. (A detailed discussion of the theory appears
in [Bo85] and [Pa85].) The following properties hold “almost surely” (i.e., with probability
tending to 1 as n — o0) at the time when m random edges have been added to an ini-
tially disconnected set of n vertices: Only isolated vertices and edges will be present when
m < n'/2; but trees of order 3 will start to appear at time m ~ n!/2, and trees of order 4
at time m ~ n?/3. .. trees of order k + 1 at time m ~ nl=1/k.
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Figure 1. The final state of a graph on 100 vertices that has evolved until a cycle first
appears. The successive ordered pairs (31,41) (59,26) (53,58) (97,93) (23,84) (62,64)
(33,83) (27,95) (02,88) (41,97) (16,93) (99,37) (51,05) (82,09) (74,94) (45,92) (30,78)
(16,40) (62,86) (20,89) (98,62) (80,34) (82,53) (42,11) (70,67) (98,21) (48,08) (65,13)
(28,23) (06,64) (70,93) (84,46) (09,55) (05,82) (23,17) (25,35) (94,08) (12,84) (81,11)
(74,50) (28,41) (02,70) (19,38) (52,11) produce nothing but free trees in the initially
empty graph, but then (05,55) yields a cycle of length 4. (This cycle is in the lower right

corner.) At this point there still are 39 isolated vertices (shown at the upper left) that
have not yet been mentioned.

There is (almost surely) no cycle while m < n. Later, when m = An/2 and A < 1,
there is at most one cycle in each component, and the largest component almost surely
has size O(logn). A dramatic phase transition occurs near m = n/2, when one or several
large components of size about n?/® appear. Still later, when m = An/2 and A > 1, we
find a single “giant” component of size O(n).

We wish to examine the state of the graph when the first cycle appears. According
to [ER60], this almost surely happens at some time m < n/2; we will see (Section 7,

e
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Corollary 3) that the expected time is m ~ n/3 in the uniform model, m & 0.44n in the
permutation model. There still remain ©(n) isolated vertices when the first cycle is formed
(Corollary 4). And at this time the expected cycle length is of order n'/® (Theorem 3), with
standard deviation of order n!/4 (Section 7). The size of the component containing the first
cycle will be ©(n!/?), with standard deviation of order n7/12 (Corollary 1). We can also
characterize the limit distribution of the first cycle length (Section 5, Theorem 2), as well
as the limit distribution of the first cyclic component size (Section 7, Corollary 2). These
distributions have a very slowly decaying tail and an infinite mean; hence their expected
values of order n!/¢ and n/2 do not contradict the fact that the largest component almost
surely has size O(logn) when m/n < 1 — 6.

With the same methods we will also gain some insight into events that take place
around the time m =~ n/2. The first bicyclic component (Section 9) appears at time
n/2 + ©(n?/?), and its size is then of order n2/3 (Corollary 5). However, at time m = n/2
and a little beyond, there still is a positive probability that the graph will have no bicyclic
component (Theorem 5 and Corollary 7); it will therefore still be planar.

2. Generating functions for stopping configurations. Probabilities and expected
values in such random models can be obtained from generating functions whose coefficients
count the number of graphs with specified characteristics and specified weights.

In our case we wish to count graphs that have a single cycle. Such graphs can conve-
niently be regarded as an unordered set of unrooted trees (representing the acyclic com-
ponents) together with an ordered sequence of rooted trees (representing the component
that has a cycle). For example, the graph of Figure 1 contains 40 isolated vertices, 11 ver-
tex pairs that are (unrooted) trees of size 2, and additional trees of respective sizes 4, 5,
6, and 16; these are the acyclic components. The cyclic component is represented by a
sequence of [ rooted trees, where [ is the length of the cycle, and the roots are the vertices
of the cycle. In Figure 1, this sequence is

(€, 09, § : v

If the final cycle-completing edge in the random model was (z,y), we arrange the sequence
of rooted trees so that the first root is y and the last root is z. We shall say that a collection
of unrooted and rooted trees as just described is a stopping configuration.

The enumeration of such labeled objects with exponential generating functions is a
standard exercise in combinatorial analysis (see, for example, [CO70], [HP73], or [GJ83]),
but it will be helpful to review the basic ideas briefly. If F(z) is a power series, we write
[2"]F(2) for the coefficient of z". We say that F(z) is the ezponential generating function
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(egf) for a collection F of labelled objects if n! [z"]F(z) is the number fa of ways to attach
labels to objects in F that have n elements, i.e., if '

F(z)_z.fn_ z

n>0 n: A€EF

LAl

. (2.2)
AT

If Fi(2),...,Fx(z) are egfs for F,..., F}, respectively, then the product Fy(z)... Fi(2)
is the egf for all ordered sequences (4,...,As) where A; is an element of F; with an
appropriate relabeling. In particular, if Fy(z) = - .- = Fi(z) = F(z), then the functions

F(z)* and  F(2)¥&!

exponentially generate sequences and sets, respectively, of k objects from f. Summing

over k, the functions
1

1-F(2)
are the respective egfs for sequences and sets of all lengths k > 0. ,

We can, for instance, use these ideas to discover the egf for labeled, rooted trees, which
we shall call T'(z). Every such tree is an ordered pair (4, B) where A is the root node and
~ B is a set of rooted trees (the children of the root).A The egf for A is simply 2, and the egf
for B is exp T'(z) according to (2.3); hence we have the well-known relation

and exp F(z) (2.3)

T(z) =273, | | (24)

Let U(z) be the egf for labeled, unrooted trees. We can represent every rooted tree T
on the labels {1,...,n} as either an unrooted tree U (if 1 is the root of T) or as a unordered
pair {4, B} where A and B are rooted trees (if 1 is not the root of T). In the latter case,
either A or B contains the node 1, say A does; we add an edge from the root of A to the
root of B. This construction is reversible, hence we have another well-known relation:

T(z) = U(z) + 1 T(2)? . (2.5)

We can now enumerate stopping configurations that contain k unrooted trees in the
acyclic components and [ rooted trees in the cyclic components: The egf is

T(2)'U(2)*/k!. | (2.6)

Summing over k and [, the total number of stopping configurations for cycles of length > [
has the egf

1 f(;)(lz) e’ @7
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We get all stopping configurations for the uniform model when ! = 1, and for the permu-
tation model when [ = 3.

For our purposes we need additional information provided by a bivariate generating
function (bgf), which enumerates stopping configurations by the number of edges as well
as the number of vertices. A bgf is a power series

. n
F(w,2) = Z fmnw™ ;—, (2.8)
m,n>0
in which fm,n is the number of stopping configurations with m edges and n vertices,
weighted by some criterion. Notice that the coefficients are “exponential” in n (i.e., they
include a factor 1/n!), but not in m; setting w = 1 converts the bgf into an egf.

The bgf for unrooted trees is U(wz)/w, because every tree with n vertices contains n—1
edges. Similarly, the bgf for rooted trees is T(wz)/w. The bgf for stopping configurations
with k unrooted trees and ! rooted trees, corresponding to (2.6), is

w! (T(w2)/w)' (U(wz)/w) 1kt = T(wa) (U(wz)/w) /41, (2.9)

because we implicitly associate I additional edges with the edges of the rooted trees. (These
are the edges of the cycle.) Summing over k and [ gives us the bgf analogous to (2.7) for
the set of all stopping configurations with cycle length > I
1
Si(w,z) = 1—% eVwa/w, (2.10)
When ! = 1, for example, we obtain the bgf for all configurations in which the uniform
model can stop:

2 3
S1(w,2) = wz + (w + 2w?) 2% + (w+5w + 9w )z3

2
2 3 4
+(w+9w +l;6w +64w)z4+“.. (211)
In particular, when there are n = 3 vertices the coefficient of z"/n! is
3w + 15w? + 27Tw?; (2.12)

this means that there are 3 stopping configurations in which the uniform model stops after
m = 1 steps, plus 15 in which it stops after m = 2 steps, plus 27 in which it stops after
m = 3 steps. The 27 with m = 3 have the following forms:

6 cases 6 cases 6 cases 6 cases 3 cases
a b a a b
l | I \/

(a,d,c) (b, c) (a,c) b ()

I
()



The 15 with m = 2 include 6 with a 2-cycle and 9 with a 1-cycle.

Setting [ = 3 in (2.10) gives the bgf for all stopping configurations in the permutation
model:

w? + 9wt + 25w5) St

: (2.13)

Sa(w, 2) = wi2® + (wd + 4wt) 2* + (
In both models the process must stop after at most n edges have appeared.

- 3. Probabilities from generating functions. We need to multiply the coefficient of
u™z"/n! in a bgf by a suitable function of m and n, in order to compute the probability
that a given stopping configuration occurs in the dynamic evolution process.

In the uniform model, a given stopping configuration with m edges {u; — vi,...,
Um —vm} can arise from exactly 2™~1(m — 1)! sequences of ordered pairs {z1,¥1), ...,
(Tm,Ym). (The values of r,, and y,, are determined, since they are roots of specific trees
in the cycle; the other m — 1 edges can be permuted in (m — 1)! ways, and there is an
additional factor of 2™~! because each of these edges can be written as an ordered pair
in two ways.) Therefore the probability of obtaining any given m-edge, n-vertex stopping
configuration in this model is 2™~1(m — 1)!/n2™,

For example, we can check this calculation when n = 3, using (2.12):

3.20.0! + 15-21 . 1! + 27.22.2! _l+l(_)_+_8_
9! 92 93 8277 27
The probabilities sum to 1, as they should; we note in particular that the process stops in
this case after the second step with probability %2—.
Given a bgf F(w,2) =3, , fm,nw™2z"/n! as in (2.8), we want to calculate the corre-

sponding probability

2™ (m - 1)!
. F =) 752,,, ) frn (3.1)
m2>1
for problems of size n. The linear functional ®, can be obtained in two steps. If we know
Fa(w) =n![z"|F(0,2) = Y fmaw™, (3.2)
m2>1
then o
&, F =+ / e°""/2F,.(t)55, (3.3)
2 Jo t

because the operation f(w) — 1 [ e~"*t/2 f(t) dt/t maps w™ into

3 /°° e~ t/2m=1 gy 2 /°° e *u™ 1 du = 277 (m —1)! .
0 0 ' _

2 n2m n2m

7




And we do know F,,(w), because Cauchy’s integral formula gives

n! dz
Fu(u) = 5= § Flw,2) 227 (3.4

if we integrate around a small circle enclosing the origin. Therefore ®,, is determined.

A similar method applies to the permutation model. In this case any stopping config-
uration with m edges arises from } (m — 1)! sequences of pairs (z,y) having z < y. (The
factor % comes from the fact that a cycle can be oriented in two ways. Strictly speaking,
our definitions impose an ordering on the nodes in the cycle so that exactly half of all
stopping configurations with | > 3 are forbidden.) A given sequence of m edges occurs
with probability 1/N(N —1)...(N —m+1), where N = (3)- Hence the weighting function
that converts m-edge, n-vertex stopping configurations to probabilities in the permutation

model is (m — 1)1 )

2NN -1 .. (N=m+1)  2m(")

For example, we can check this calculation by looking at the case n = 5, when there
are N = 10 possible edges. The coefficient of z5/5! in (2.13) is 60w® + 540w* + 1500w,

and 60 540 1500 © 1 9 25

==t =4 —=1.
2.3. (130) + 2.4. (140) + 2.5. (150) 12 + 28 + 42
The relevant linear functional in the permutation model is
V. F = Z Fmyn where N = ( (3.5)
2 b

m2>1 2m(ﬁ) ’

and in this case the integral formula analogous to (3.3) is

1 [ 1 dt
== e Fp(t) — . 6
¥nF 2/0 (1+t)NF(t)t(1+t) (3.6)
(The substitution u = ¢/(1 + t) converts Lo t™tdt/(1 + )N+ into

L
m(n)’

by well-known formulas.) Notice that the kernel factor (14 t)N = e~ N(+0(#) iy (3.5) is
analogous to the e="'*/2 in (3.3).

Our formulas for &, and ¥, in (3.3) and (3.6) evaluate F,(w) only at positive real
values of the parameter w. However, F(w, z) is evaluated for (small) complex values of z
in (3.4). We can think of w as a positive real parameter in that formula.

1
/ um 1 1-uw)N"du=B(N +1 - m,m) =
0
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In our applications the bgf F(w, 2) actually has the special form

F(w, z) = f(w7 T(wz)) ) (37)

where T is the tree function (2.4). For example, the bgf Si(w, z) of (2.10) is the function
s1(w, T(wz)) defined by '

i, 2) = e DI (3.8)

-z
because of (2.5). The linear functionals ¢, and ¥, can be simplified in such cases because
we can “invert” functions of T'. ,

Namely, the relation T(z)e~T(*) = z of (2.4) implies that T is the inverse of the
. function ue™*; hence
T(ue™)=u (3.9)

when |u| is small. The contour integral (3.4) now becomes

Fp(w) = —%f(w T(wz)) )

o fwwen - v S
= n!w"[u"]f(w,u)e™™(1 — u) (3.10)

if we make the substitution wz = ue™™. (This is a special case of a trick often used to
prove Lagrange’s inversion theorem.) _ :

It turns out that a rescaling of the parameters is quite helpful: We can replace w by
A/n, thereby introducing a factor n™" that nicely tames the effect of n! in (3.10). An ad-
ditional factor of e™ will reduce the coefficient to polynomial growth; such transformations
lead to the following convenient reformulation of the operations described above:

Theorem 1. Let f(w,T(wz)) be the bivariate generating function (2.8) for a collection F
of stopping configurations. Then the probability that a random graph will lie in F, if the
graph is constructed by the process described in Section 1, is ¢ f for the uniform model
and Y, f for the permutation model, where ¢,, and ¥, can be computed as follows:

bof = /0 ~ fa(V)dr; (3.11)

Yuf = / N (W) " 1f+"(,(\/)n dA; (3.12)

fn(’\)_='%\_/iff< ﬂ-)(l—z)(Ae) gz—. ] (3.13)

9




These formulas appear formidable at first glance—there is a contour integral inside a
real integral—but we will see that they lead to asymptotic results without great difficulty.
The value of f,()) is nonnegative, and it decreases rapidly to zero when ) is greater than 1
because of the factor e~"*/2. The difference between ¢, and v, is a rather horrid-looking
fudge factor, but we can replace it by its asymptotic value

n/2 ' 2 3 2
( e ) 1 — M2H+AY4 (1 _ 1224327422 +0 (’\ +’\6>) (3.14)

(1+A/n)n2 1+/\/n 12n n?

uniformly for 0 < X < 2 3 n. Thus the two models are roughly the same, except that the
permutation model calls for an additional factor of e*/2+2”/4 in the integral transform. We
can take comfort in the fact that some simplification must be possible, since

$ns1 =1 foralln>1; (3.15)
Yns3 =1 foralln > 3. (3.16)

(The function s; is defined in (3.8); it yields the probability that the first cycle has length
2 l. Thus, formulas (3.15) and (3.16) sxmply state that the algorithm stops with proba-
bility 1 in both models.) :

4. Asymptotic distributions. Let’s try to get a concrete idea of what the abstract
formulas in Theorem 1 mean, by working out some of their simplest consequences. Our
goal in this section will be to derive asymptotic formulas for the probability that the cycle
length is > . Once the methods are understood, more difficult applications will not be
much of a challenge. :

According to Theorem 1 and equation (3.8), the probability P>, that the uniform
model produces a cycle of length > lis [ s;,n()) d\, where

In=—ne—nA/2
s1,n(A) = MT;-—fz'_le”h(‘) dz, (4.1)
v — 22
h()— /2+z—lnz+lnA. (4.2)

The contour integral in (4.1) is a polynomial in A of degree n — 1, and this polynomial is
a multiple of A1, because

.2
- n((z- 2/2)/«\+z) An-1 dz [zn—l] A" exp (n (z 2%/2 + z)) . (4.3)

21rz o=+l A

For example, when n = 3 we have
s13(A) = § (3+ 52 +3)%)e™*V2,
s24(0) = 1 (A + N2, (49)
s33(A) = 1 AZe3M2,

10



1.0

n =40

n=20

0.0 1.0 2.0 3.0 A
Figure 2. The distribution functions s (1) for n = 20 and n = 40.

Integrating over 0 < A < oo gives the respective values 1 Hence when n = 3 the

’ 81 ’ ?4—3
probability that the uniform model produces a cycle of length 1is 1 — £2 = 81, the cycle
has length 2 with probabﬂxty s % = m; and it has length 3 with probabxhty 3 43

The coeficients of the polynomxa.l part of s;,,(A) always have “mirror symmetry” in
the sense that
Mgy n(X) = APH=2mAT 25, (3-1) (4.5)

For example, we have
s15(A) = 5}6 (25 + 70X + 93)% + 7013 4 25)4) ¢~32/2 (4.6)

Relation (4.5) is important because it says that we can deduce the value of 81,n(A) for all
A 2 0 if we know its value for 0 < A < 1. The proof is immediate:

["Y A" exp (n (’ = ;2/ 2 + z)) = APT1=(n=D [0l oy (n (—Az—“—(}-’m + Az))

= A2 [pr=l \1-n exp(n(A(z — 2%/2) + 2)) .

Figure 2 shows 81,,(A) when n = 20 and n = 40. These functions both yield 1 when
integrated from 0 to oo; notice that when n increases, more of the “mass” is concentrated
in the range 0 < A < 1. In fact, we shall soon prove that lim,_ o fol 81,n(A)dX =
(A “physical” interpretation of this fact appears in Section 8.)

Let us first attempt to find a uniform estimate for s; n(\) when 0 < A < 1. Integrals
of the type (4.1) are well suited to the “saddle point method” [Br58, Section 5.7); hence
we investigate the roots of h'(z) =0

h'(z) 1;z+1-%; | (4.7)
11
H'(z) = -3+ = (4.8)



There are two saddle points, at z = X and z = 1. We notice that A"(A) = (1 = A\)/A% > ¢
and A"(1) = (A ~1)/A < 0; also k(1) — k()) > 0. Hence we want our path of integration
to pass vertically through the point z = A.

If we integrate around a circle |z| = r, where r is any radius between 0 and (1+X)/2,
we can show that |e*(?)| takes its maximum value at z = r and its minimum value at

z = —r, with no other local maxima or minima. For if z = re'? we have*
leh(z)l = BB - f(r,0) (4.9)
where
f(r,8) = A" (rcosf — 37%c0820) +rcosf—Inr+1InA, (4.10)

and the first derivative
f'(r,0) = =X (rsind — 2r sinf cos 6) — rsin (4.11)

is zero only when sin8 = 0. Therefore the integrand in (4.1) makes most of its contributions
near 6 = 0.
Let us now assume that A < 1. On the circular path z = Ae¥, equation (4.1) takes

the form
nln—ne—nA/2)\l-1

4r

And by what we have just proved, we can integrate from —6y to 8 instead of from —=x
to , for any desired 6 < m, using O(|exp(nh(Ae®)) |) as an upper bound for the omitted
portion of the integral.

The main point of the saddle point method is that h'(A) = 0 and A"()) > 0, hence
nh(Ae') is approximately nh(A) —nA%h"())6%/2 in the neighborhood of § = 0. Therefore
we will be able to estimate the integrand with a formula like ae="%%" 2, plus terms that
are asymptotically negligible when |6] is small. Let’s see what that will buy us, saving the
justification for later: If the integrand is replaced by e®*(\)—nh"()6%2 the integral reduces
to

x . )
/ etw+nh(,\e )do. (4.12)

-

Si,n(A) =

tyy=n n)l-1 oo
31,n(A) ~ E-n—;—/\——/ e~"(1-N82 g (4.13)
us -~ 00

And this is just a multiple of the familiar integral for a normally distributed random
variable with mean 0 and variance 1/n(1 — ). In general, if k is any nonnegative even
integer we have the well-known identity

e * (a\*? _, dt
ok —ab?%/2 do = 2/ (___) -t

* We use the notation Rz for the real part of z and 3z for the imaginary part.
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2(k+1)/2
a("+1)/2
_ 2T ((k +1)/2)
a(k+1)/2
k/2

a(k+1) 72 H(2] (4.14)
=1

/ §k41)/2-1 1 g

(The corresponding integral is zero when k is odd.) Therefore our approximation (4.13)
simplifies to : .
nln—"erAl-1 Al-1

,,,\N ~ .
M)~ 3 (i = A)  2vI- A

In fact, it is possible to prove a stronger result, without handwaving:

Lemma 1. If0 < A < 1 — (Inn)*/n'/? and | > 1, the function s;n()\) defined in (4.1)

satisfies . - 1
Al 125 N A
si,n(A) = Wi O(—_—”n(1-,\)3/2)+0(-_"_n(1-,\)7/2) - (4.15)
uniformlyinz\andl,asn—voo.

Proof. On the circle |z] = A the function A(z) is simply

h(Xe*?) = (1 + A)e'? — %,\e‘*’“’ ~ i

1 k-1 (z
_1+2,\+k2>2(1 e R

n1+%,\—5(1—,\)02+z‘0(03)+0(94), (4.16)

where the quantities represented by 0(6°) and O(6*) are real. To evaluate (4.12) we want
to know the value of

”

exp(ilf + n(h(Xe'®) — 1 — 1)) d8;

-
and we have observed that it suffices to integrate from —8y to 6, for any convenient
value 6, using the magnitude of the integrand at 8y to bound the resulting error.

Let A = 1—pun~!, so that y/m(Inn)? < u = n(1 - ) < n. We will integrate from —6,
to 8y, where 8y = u~*/? Inn. The resulting error will then be exponentially small, because
|lexp (:160 + n(h(Xe'®) -1 — 3\)| = exp(—3n(1 - 282 + O(nb}))

— O(e-—(ln n)2/2) ) :

13



The substitution # = tu~1/2 yields

/90 exp(il8 — n(1 — X)6%/2 +iO(n6%) 4+ O(n6*)) dé
-00

Inn
= p~1/2 / exp(—t%/2 + O(np~2t*)) cos(lu~/%t + O(nu~3/%t%)) dt
—Inn
Inn
= u~1/2 / e~t1? (14 O(np~2t*)) cos(lu~*/?t + O(nu~3/%¢%)) dt
~Inn

= “—1/2/ 6—13/2 (1 +.O(n,‘—2t4)) (1 + O(Izﬂ_ltz) + O(n2#—3t6)) dt + 0(6—(111 n)3/3)

= [ (14 0t + 0u71) + O )).

(We are allowed to replace ¢?(*) by 1+ O(z) when z = O(1), hence the replacement of
exp(O(np~%t*)) by 1+ O(nu~?t4) is legitimate when }¢| < lnn. Other estimates made in
this derivation, where we replaced cos z by 1+ O(z?) and (= + y)? by O(z?) + O(y?), are
valid without restrictionson z and y.)

The procedure used in the proof of Lemma 1 can be used to obtain as many further
terms of the asymptotic expansion as desired (using a computer). For example, the O terms
of (4.15) can be shown to equal

Al-1 (1+ 1 P I3 -1D+7A-1 53A-1) (417)
2v/T— X 12n " 2n(1—)) 2n(1 — \)2 24n(1 — A)? ‘

plus terms of lesser order. However, we reach a point of diminishing returns in these
estimates when A becomes larger than 1 —n~'/3 or when I becomes larger than n!/2,

Lemma 2. If A > 1+ (Ilnn)?/n!/? and ! > 1, the function sy ()) defined in (4.1) satisfies

sta(A) = e;%" (1 +0 (ﬁ_(f_iT)) +0 (n—(/\:\—il_):’)) : (4.18)

uniformly in A and I, as n — oo.

Proof. We could prove this by contour integration, using an argument almost identical to
that in Lemma 1 but choosing the other saddle point and integrating around |z| = 1. But
(4.18) is actually an immediate consequence of Lemma 1 and the reflection law (4.5). 1

For fixed A > 1, equation (4.18) implies that 81,n(A) decreases exponentially to zero
as n — oo, because A —1/X > 2InA. (If A = ¢!, we always have e* — e~! > 2t.) On the

14



other hand, the difference between A —1/X and 21n X is of order (A — 1), so formula (4.18)
says that

-€%/6,,1/6 2 4 -
s1a(1+ en"lls) = 22—/\/_11 (1 +0 (;21/32) +0 (-elg) +0 <%—§—)) ’
- when n~1/%(Inn)? < e < 1 n'/3. Thus s;,(1+n"1/3) is of order n1/8, but the nearby value
31,n(1 + n~1/3Inn) is already exponentially small. In other words 81,n(A) is unbounded as
n — 0o, but it decreases very rapidly when A passes 1.

- Lemma 1 tells us that s;,»(1 — n'/3) is of order n!/6 and that s;,(1 —~ n=1/3Inn) ~
37'/%(Inn)=1/2. But the error estimates in both Lemmas 1 and 2 blow up when Ais near 1,
because the two saddle points at A and 1 come together; indeed, we have h'(1) ~ 0 and
h"(1) ~ 0 but A" (1) # 0 when ) ~ 1, so the magnitude of e*(*) near z = 1 has a graph that
looks like a three-legged saddle—as used perhaps by Martian horsemen. A third lemma
closes the gap in our knowledge by focussing on the region near A = 1:

Lemma 3. If |u| < n!/1% and | < n'/4, the function s;n(\) defined in (4.1) satisfies

Sl,n(e—“"—l/a) - ‘1/3;__::2 /;loo eP(#,a) ds (1 +0 (ﬂ(l‘1n)i':'/f(l‘7 n)4)) (4.19)

uniformly in y and | as n — oo, where

P(us) = LE2Ne—of
B(1,m) = 4] +1an. (e21)

(4.20)

Proof. Let v = n~'/3. We will integrate on the circle |z] = e=*¥, where a is the positive
solution to
p=a-—al; A (4.22)

this radius comes close enough to the saddle point for our purposes. The integrand on
|z| = e~*" has the nice monotonicity property described in connection with (4.11), because
e < (1+e7)/2 = (1+ A)/2. |

A straightforward calculation now proves that, for any s,

—3¢ " +h(e™) =1+ 13P(u,s) + R, (4.23)

where the remainder term is

Vk
R =3 (=9"—3-29* +(=o)* + }u") 2=
k>4 :

k
= 30 QLD _ o4 g,

k>4

15



uniformly in any region where (|u|+|s|)v is bounded. The terms in v and v2 have cancelled
out beautifully from the right-hand side of (4.23), thereby making the asymptotic behavior
simple when we multiply by n = v=3..

Formula (4.1), with 2 = e+ and ¢ = tv, becomes

_ 1/8
(=) nln~"e"y [T
m dme=rv  J . s

exp((it — a)lv + P(u, e + it) + O((lul+1+]t])*v)) dt,

because a < |u| + 1. We can restrict the range of integration to |¢| < Inn as in Lemma 1,
incurring only an exponentially small relative error, because the real part of the exponent
P(p,a—it)—P(p,a) is —3(e+a~?)(Inn)? < —1(lnn)? when |t| = Inn, while the O term
is O((lul + 1 + Inn)*v) = O(1) by our assumption that lu] = O(n'/2). The integrand
can now be replaced by eP(#:2=it) times 1 4 O((ls] + Inn)lv) + O((|u] + In n)tv), after
which we can extend the integration from —oo to oo. Finally, the substitution s = a — it
gives the stated result (4.19), except that the integral runs from a — 300 to a + ioo instead
of simply from —ico to ico. The path of integration can be shifted to the left, because
the integrand is exponentially small when s = +iR + a and R — 0o, if @ is any positive
constant. J]

The integral (4.19) is investigated further in the appendix below, where the following
result is derived as a special case of a general series expansion:

Sin(1) ~ —r‘(—inl/6 (4.24)
bn 31/64/8n . '

5. Distribution of cycle lengths. We can now combine the three lemmas with Theo-
rem 1 and obtain the limiting probability distribution of cycle lengths:

Theorem 2. For fixed l as n — oo, the graph evolution procedure of Section 1 generates
a first cycle of length 1 with probability ' |

Pio=1 ﬁ (i) + O(n™1/9) I>1 (5.1)
"3 \2k+3 ’ ="
in the uniform model, and with probability
1
Pin = % / ALTZTXHM N4 gx 4 O(n=1/%), 1> 3, (5.2)
0

in the permutation model.

Proof. In the uniform model we have
o0
Pio= [ (s1a) = str1,n(0) 2, (53)
0

16



. 80 it suffices to determine [;° s;,(\)d\. The infegral for A >1-n"13is O(n~'/¢), by
Lemmas 4.2 and 4.3. Therefore we may restrict consideration to the interval 0 < A <
1 —n~1/3, when we find that the total error in (4.15) is

-1/3

1l—n
n~1 / O((1 = X)""?) dX = n™10(n%/®) = O(n™1/8).
0 - -

The integral from 1 —n=!/3 to 1 of (1 — A)~/2 is also O(n~1/%); hence

P —/ws (A\)dA = = AT +O(n~1/8), | (5.4)
2>lLn A lI,n \/———- :
And this is a Beta integral,
1) ( 2k ) |
P ,._-Bz----——— = ). 5.5
2 ( 2T(+1) kl;Il 2k + 1 (55)

The difference P>;n — P>141,n is, similarly, 3 B(1,2), and we obtain (5.1). Equation (5.2)
follows from (3.12) and (3.14). & : ,

Thus the cycle lengths approach a stationary distribution, without any normalization.
Formula (5.2) was first obtained (without the error bound) by Svante Janson [Ja87], using
a general theory of Poisson processes, and independently by Béla Bollobss [Bo89], using
the theory of martingales.

Since the extra factor e*/2+2/4 lies between 1 and €3/4 ~ 2.11700002 for 0 <A<,
both probablhtles Py, and P; n have the same order of growth as [ i increases. Indeed, let

=3 H (2k+3) B “/ ANTWI=XdA; pr= ‘/ NI = XeM2HA4 gy

| (56)
Then we can write A/2 + \¥/4 = 3/4 + O() — 1), obtaining
' - . T e3/4 _
b= 2ors +00~); = Vo O, (57)

In both cases the average value £;p; is mﬁmte, therefore the expected cycle Iength must
be unbounded as n — oo. .
The limiting probabilities p; for the uniform model obey simple recurrence relations:

2l 21
= ——1; = = 2lp;. .
Pi+1 =37 T3 o P2i+1 = o7 g2 Dl - (5.8)
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Hence it is natural to wonder if the corresponding numbers ; and P> for the permutation
model satisfy similar recurrences, and in fact they do. First we note that

11 X A/242%4 bY Yl
og = = | — ¢ d\ = —/1 = XeM2H+X/4| 1. 5.9
P23 2 /o V1I=2) 0 (5.9)

A similar integration shows that
P11 = (21 - 4)pi-2, (5.10)
and it follows that we have the recurrence
Pirz2 = 2(1 = 1)p1—1 — 21 ;. (5.11)

Is there a “simple” graph-theoretic explanation of (5.10)?
Setting ! = 5 in (5.10) yields

Ps =1-Tps — ps, (5.12)

hence the values of p; can all be expressed in the form a1 + bips + cips where a;, by, and ¢
are integers. Recurrence (5.11) is numerically unstable, but we can obtain accurate values

p3 = 0.1216082217 14483 58918, (5.13)
Ps = 0.08491 50995 26335 99860 , (5.14)

by calculating p; and pi4; accurately for some large I and then solving backwards.
Do the fundamental quantities s; ,(\) defined in (4.1) obey a recurrence relation? Yes,
but it is a bit more complicated: We have

l
s1+2,n(A) = (1 + A)si31,n(A) = A (1 - ;) s1,n(A). (5.15)
This relation follows since si4+1,,()) has the form

f(znﬂ,.;_,\) leenh(z) dz

where f(n,\) does not depend on 1. Differentiating the integrand with respect to z yields
a function with nothing but zero residues, hence

0= M 2lenh(®) (1 + nh'(z)) dz
2w z

n(A) = S142,0(A
=1s1,n(A) +n (SH'I’ ( )/\ St2() + s141,n(2) —St—l,n()‘)) .

18



The recurrence (5.15) can be used to calculate s;n(A) “backwards,” starting with the
values

3n+l,n(’\) =0 ’ sn,n(A) = %n' TI,_“A"--IG‘-“A/2 N (516)

and working down to s; ,()). This does not appear to lead to any simple consequences
about the asymptotic behavior of s;,,(1). We can, however, use (5.15) to prove by in-
duction that the coefficients of the polynomials (s;,n(X) — s14+1(})) e™*/? are nonnegative.
Furthermore, (5.15) implies the remarkable identity

Z 181,,.(/\) = n(sl,n(A) - /\—132,,.(A)) ) - (517)

121

which can be used to study the variance of the cycle lengths.

8. The average cycle length. We have seen in Section 3 how to set up a bivariate
generating function F((w, z) for a set of stopping configurations, thereby allowing us to
compute the probability &, F that such configurations occur in a graph of n vertices. But
we can, of course, also use ®, F to compute expected values, if F(w, z) is a bgf in which each
stopping configuration has been multiplied by a weight representing the random variable
in question. ‘ :

For example, T(wz)'eV(¥?)/¥ i3 the bgf for stopping configurations with cycles of
length I, hence

A(w,z) = (T(wz) + 2T (wz)? + 3T (wz)* +--+) eUwa)/w

= T(wz) eU(wz)/w ‘ (61)

is a bgf such that ®,A is the expected cycle length in the uniform model. According to
Theorem 1, this expected cycle length is

nln™"

/ Ca)dh,  an(n) = Re ]( L2 g (6.2)
o T T T i ¢ = '

1—2

where h(z) is the familiar function of (4.2). Notice that we have
an(A) =Y s1,a(0) =D s1,a(R). (6-3)
>1 =1

Since s1.2(}) is exponentially small for A > 1+n~/3Inn, we need not consider large values
of \. However, the presence of 1—z in the denominator of (6.2) means that values of an(})
near A = 1 will be crucial.
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n =40

2.0

1.0

0.0 ,
0.0 1.0 2.0 ' 3.0 A

Figure 3. The weighted distribution functions a,()\) for n = 20 and n = 40.

A slight modification to the proof of Lemma 1 shows that the asymptotic formula

1 1
a,.(/\) = m + O (W) (6.4)

holds uniformly for 0 < A < 1—n"/?(lnn)? as n — oco. If we integrate this quantity as A
varies from 0 to 1 — n~!/3In n, say, we get

n1/8 n1/6
T 0 (@) 9

hence we may conclude that the value of a, () is negligible except when |[A—1| < n=1/3Inn,
if we can show that the integral of a,(\) over that range is of order n!/¢.

Figure 3 shows the behavior of a,(\) for n = 20 and n = 40. As n increases, the
function has sharper and sharper peaks, apparently reaching a maximum when ) is very
slightly greater than 1.

The contour integral that arises when ) is near 1 is just like the integral we studied
in Lemma 3, except that there is an additional factor (1 — z)~!. If we set z = (=" as
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in that lemma, we have

=-Y(it-a Sk _ +0 6.6
1—-2 k>o-(z )T k! a—1it 1), (6.:6)

uniformly in & and ¢, provided that |a —it| < 6n!/3, since the series converges for |a —it| <
2wn!/3. Therefore the calculations of Lemma 3 can be applied almost without change, and
we obtain

—_— nl/2 1+ioco ds
an(e un! a) = V871 ./1 . eP(wa) ? + O(nl/ﬁ), (67)
~ico

- uniformly over all i such that |u| < n1/12, (The integrand now has a pole at s = 0, so we
are no longer allowed to shift the pa.th of integration to the imaginary axis. But we can
integrate for ¢ — oo to ¢ + ico for any ¢ > 0.)

Finally we can compute the asymptotic path length, proving the formula claimed in
the introduction:

Theorem 3. The expected length of the first cycle in an evolving graph is Kn1/® 4+ 0(n1/#)
in the uniform model, and €¥/*Kn'/¢ 4 O(n1/8) in the permutation model, where

1 oo 14t00 . .2 d8
— (u+25)(n—s)%6 23
K o /;oo /;_ioo e . du. (6.8)

1/8 -1/

174 : 4
y Ai=e™™ " land Ay =e™ ", we have

Az nl/é w0 pldico ds
an(A)d) = / e hn / P2 22 4 + O(n—1/12 ,
‘/';1 " V8Tt Ju, 1-ico s ( )

where 413 = n'/12 and py = —n!/12, When y is between p2-and py, the integrand factor
exp(—pn~1/3) is 1 + O(n~1/4), so we can ignore it. Thus we obtain an integral whose
integrand matches (6.8). '

This integrand is exponentially small as u — —o0, and we will prove in the appendix
that it is O(u~%/2) as u — oo. Extending the integral from —oo to o0, instead of from
p2 to p1, therefore introduces an error of n!/60(u; /%) = O(n'/8). To obtain the total
expected length [ an()) d\, we must add ( fo)\l + [x,)an()) d); this gives a further error
of O(n'/®), by (6.4), so we have established the result claimed for the uniform model.

The permutation model requires an additional factor

exp(32 + 12) = exp(} + O(Juln=1/%)),

Proof. Setting A\ = e—#n"

which is treated similarly. There also is a (negligible) factor e2(*~" in the inner integral,
because the numerator of the bgf in (6.1) must be changed from T(wz) to T(wz)? in order
to get the expected value of [ 2. |}
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7. Additional statistics. To find the variance of the cycle length, we can compute -

* 2) = T(wz) U(wz) /w
/o WA, Blus) = o s : (7.1)

which is the expected value of 31(I — 1). We get bn()) from an()) by essentially changing
(6.6) to ‘
n2/3 Ol — itlt/3 .

-y +Olla—itln'l?). (7.2)
The result, since 3 = a — it, is to multiply the formula for fo°° an(A)dX by n1/3 and to
change the constant of proportionality by replacing s by s? in the denominator of (6.8).
Thus the expected value of 3I(I — 1) is of order n1/2; the standard deviation is therefore
asymptotically proportional to n!/4, somewhat greater than the mean.

In general, if we have a bgf of the form

)
Cii(w,2) = ——Z&)——k Vwalw s 3 , ‘ (7.3)
(1 - T(wz)) 2

where ! is fixed as n — oo, the resulting value of f0°° ci,k,n(2) dX will be of order n(2¥-3)/6,
by the same argument. '

Therefore we can grind out more facts by setting up appropriate bgfs. Let us introduce
(temporarily) a trivariate generating function

l
Dl((v w, Z) = T%)‘ eU(wz)/w ’ (74)

in which the coefficient of (#w™2"/n! is the number of stopping configurations with cycles
of length > ! having m edges and n vertices, with j vertices in the cyclic component. If
we take the partial derivative with respect to ¢ and then set ¢ =1, we get a bgf for the
.expected value of j, namely |

' - T(wz)“’l ! 1 wz)/w
Prilhnz) = (1 - T(wz))* (T(U’Z) 1z T(wz)) el (75)

(This follows from the well-known relation

T(2)

T(z) = z(1-T(2))’

(7.6)

a consequence of (2.4).) Another derivative gives the expected value of J(7 —1) and in-

troduces another (1 — T(wz))2 in the denominator. Therefore (7.3) applies and we can
state:
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Corollary 1. The expected size of the first cyclic component in an evolving graph on

n vertices is asymptotically proportional to n!/?, and the standard deviation is of or-
der n7/12,

Proof. Take ! =1 in (7.4) for the uniform model and ! = 3 for the permutation model; use
k =3 in (7.3) for the mean and k = 5 for the variance. N

A similar derivation, with T(¢w2)T(wz)'eV(¥?/¥ /(1—T(wz)) in place of (7.4), shows
that the expected number of vertices in the tree that leads into the first vertex z,, of the
first cycle is the same as the expected length of that cycle. The same holds for any
individual tree in the cyclic component. Thus the cyclic component consists of ©(n1/%)
trees, on the average, each of which has ©(n'/®) vertices, on the average; a dependency
between these two statistics causes the overall expected size to be O(n!/2).

We can find the limiting distribution of the number of vertices in the first cyclic
component by considering the coefficient of {7 in (7.4). Indeed, we have

. ad .
in I

and we can write this as a function of w and T(wz) by using identity (2.4), which says
that wz = T(wz)e~T(¥?), Our general method now tells us to evaluate the integral

f(ze—z).; - nh(z) dz

asymptotically as n — oo. We find as before that the only relevant contributions occur
when A < 1, and an argument like that of Theorem 2 shows that a proper probability
distribution appears in the limit:

Corollary 2. For fixed j as n — oo, the random graph evolution procedure generates a
first cyclic component of size j with probability

Oin = 2],/ Nlem AT - XdA +0(n~ 1/") i>1, (7.7)

in the uniform model, and with probability

éjn — 1 3~ ’G = 1)(.7 —2) / A1 -—;,\+A/2+,\z/4\/_d,\
' 2
+O(™%), i3, (7.8)
in the permutation model. |
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These limiting probabilities g; and §; sum to 1. We have, for example,

Su-3 58 [ e
]>l

i1

=l/o —I(Z(J"e ) )\/—d,\

721

-1 T(he™) 1 _ _
2/0 A e VI = AdA = -/0(1-,\) 1245 =1.

Both ¢; and §; are of order j~%/4 as j grows; indeed, the substitution A = 1 —
V/2t/n shows that ¢; = ¢j =34 + O(j~7/4) and §; = €3/4¢j~3/* + O(j~7/4), where ¢ =
2-7/47=1/21(3). We have seen in Corollary 1 that the expected value of the component
size is unbounded. Here is a table of approximate probabilities when j is small:

q = .23096 s = .01804
g2 = .09501 s = .02181
g3 = .05649 gs = .02153
q4 = .03909 de = .02015

qi0 = 01214 61-0 =.01436

g20 = .00504 d20 = .00754

The value of ¢, is 3 + 1e~!y/Tierf(s), according to MACSYMA.
To get the expected value of m, the number of edges, we can use the fact that n — m
is the number of acyclic components. The relevant trivariate generating function is

— T(wz)‘ (U(wz)/w
Ez(C,w,z) = 1— T(wz) € ’ ' (79)
and we have
Ei(1,u,2) = L2 B(1,w,2)
_ 1 T(U)Z)l+l T(wz)'+2/2 U(wz)/w
T w 1 - T(wz) (7.10)

The factor w™? contributes a factor of n/) to the corresponding function ey ,()), according
to (3.13), hence we have

ern(\) = ; (sm,,,(i)- i'-ﬂé"-(-’\—)) . (7.11)

The integral [ s1,,(A)dA/X is of order n=1/8, by the results of Section 4, and we have in
fact

/ms, 21 L —~—— d\ + O(n"1/8). (7.12)
o "X T2 ), Viea

Therefore the waiting time has a simple relatxon to cycle length probabilities:
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Corollary 3. The expected number of edges When an evolving graph obtains its first cycle
is 3n + O(n%/®), in the uniform model. It is s(1—ps)n+ O(n5/6) in the permutation
model, where p3 is the constant in (5.13).

Proof. Take =1 and I = 3 in (7.11), getting n(P>1,n — $P>2,n) or n(P>3 n = -;-AZ.;,,.) +
O(n%/%) as the expected va.lues of n—m.

The variance can be shown, similarly, to have the respective values

31 n?, 2+3ps— P} —Ps 11/6
n?) + O(ni!/8). (7.13)

45" 4

We will examine another way to compute the expected waiting time in Section 10 below.
Finally, let us investigate the number of vertices that remain isolated when the first
cycle appears. The relevant trivariate generating function is '

Tw,z‘ wi)—wz+lwz)/w
F}(Caw’z)_—'—l__(—T(Ezz—)e(U( ) ¢ )/ ’ (7.14)

since we put the { marker on the unordered components of size 1. In this case we find
Fi(1,w,2) = 28 (w,z) = w™! T(wz) e~ T3 g(w, z). (7.15)

Corollary 4. The expected number of isolated vertices when the first cycle appears in an
evolving graph is

n 1 e 2d\
3 /0 m+0(n5/6) (7.16)

in the uniform model, and

1142 -A/2+A’/4
g / ’\—‘i—l\/=_-/\-- d) + O(n®/%) (7.17)
0 —

in the permutation model.

MACSYMA finds the integral in (7.16) to be —e™! \/7 ierf(i); the coefficient of n is
therefore ~ 0.53808. The corresponding coefficient in (7.17) is &~ 0.42046.

8. Cycle lengths versus edges. Let us now try to study the joint distribution of !
and m, the cycle length and the number of edges when the evolution procedure of Section 1
is applied to n initially disconnected vertices. The corresponding probabilities will be called
Pi m,» in the uniform model and ﬁz,m,,, in the permutation model.

We can express these probabilities directly from univariate generating functions, in-
stead of using the more elaborate machinery of Theorem 1. Let Ci,m,n be the number of
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stopping ‘configurations in which the process can stop with a cycle of length I and with
m edges on n vertices. Then there are n — m components in the acyclic part, and we have

Clamn = T ("] T()' U ()" 81

n!
(n—m)

These numbers, incidentally, satisfy the recurrences

Cl+1,m,n = Z (1’:) kk_lCl,m—k,n—k; . (82)

k>1

k>1

(n— m)Cg,m,n = z (Z) kk—ZCI,m+1;k,n_k . (8.3)

The corresponding probabilities, as we have seen in Section 3, are

2™ (m —1)!
P‘)m»" = 752"‘ ) Cl,rn,n H (8.4)
- 1 _
Pypn = 2_((71—’:W'2) Cimn = em/ntmn? P+ 0(n71). (8.5)
m(\*" ! :

Let us set A = 2m/n. Erdés and Rényi [ER60] observed that an evolving graph on
n vertices changes its character dramatically when m grows so that A passes the critical
value A = 1. It turns out that, for sub-critical graphs (A < 1), the quantity P5{,m,n behaves
very much like the function s;,,()) in Lemma 1, except for a factor 2/n (which corresponds

to d\):

Theorem 4. If 2m/n =X <1 asn — co, where § < A <1 -6, we have

| Pz,m,n=31i§(1+o(f-)+o< 1 )) (8.6)

né nl/2§3/2
uniformly iné§ > 0 and [ > 1.

Proof. = We will apply the saddle point method to estimate the coefficient of z" in
T(2)'U(z)*™/ (1 = T(2)), thereby obtaining an asymptotic value of C>i,m,n. Again we
replace z by ze™* in order to obtain a simpler integral:

1 T(Z)Iu(z)n—m dz _ 1 f { 2 n-m _nz iz_
2m']( A-T(z) e 2m ) ° (z=2/2)""e™ 2

= -1— 2'e™™® 4z (8.7)
2me
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where in this case we have

A(z)=z~3 Inz+ (1- ) (- 1), (8.8)
M(z)=1- % - fT’;; (8.9)
R(z) = % (ziz - (—22-_::?) . (8.10)

There are two saddle points, at z = A and z = 1, just as we observed for a different function
h(z) in Section 4. (Is there an “obvious” reason why this should be true?) Again we have
h"(X) > 0 and A"(1) < 0, so we want to integrate on the circular path |2] = A.

The real part of h(\e?) is now

Acosf — 1 AIn )+ (- NInL, L=1+ 1A% — Xcosé, (8.11)

and its second derivative is

A 2-2A A(2 - )\)sin? 9
Z(cos@(-L——4)— : T2 )

This is negative when cos8 > 0, because

22 22 1-2
=L i< =L _4=-4 (=2,
I ~‘SaaeeEt 4(2-—A)

Therefore we can restrict attention once again to the neighborhood of § = 0, and the
result is '

— n! 1 l_nh(z)
CZl,m,n = (n — m)' omi fz [ dz

n! Alenh(2) n-—-m

B (n—m)! \L2rn(1=X) m

(o (ma=) o (mrt—m))

M nle® V2r(n —m) (n—m)*~™ em2—m
- V1= V2rnnr-2m  (n—m)! en—m V2rmmm

x (1+0(BPn~167Y)) + O(n~1/2673/%))

{ 2m
- \/1*_)\. o (14 0(Pn'671) 4 O(n~2/26=2/)) (8.12)
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Now we can use (8.4) to conclude that

/\l—l
PZI,m,n ~ \/—1_._-:\-7;’ (8.13)

as desired. §§

Theorem 4 gives us the ﬁromised “physical” interpretation of the parameter A in the
machinery of Theorem 1: The running time m of the random process is represented by
% An, at least when A < 1. Thus, Figure 2 shows the approximate distribution of running
times in the uniform model, when n = 20 and n = 40. A similar statement holds for
the permutation model; but in that case we should consider the graph of s3 ,(A)e*/2+A/4
instead of 33 n()), because of (3.14) and (8.5).

It is interesting to note that, for fixed ratio A = 2m/n < 1 and for varying | < /n,
the distribution of cycle lengths over all graphs whose first cycle occurs at time m is
approximately geometric in [, with parameter A, except for a normalization factor.

If we set I = 3 in (8.13) and apply (8.5), we get

Pr(Graph with n vertices and m edges has no cycle)

=2 B ; / X gy
C&T T VIsX

= VI= XeM2HA/4 (8.14)

if limp—co 2m/n = X < 1, a classic result of Erdés and Rényi [ER60, Theorem 5b).

The situation changes when m > 1 n; in this “supercritical” case the ratio 2m/n no
longer represents the parameter A in Theorem 1 and Figure 2. (We might expect the
relationship to break down when ) is large, because the evolution process always stops
with m < n; the A of Theorem 1 and Figure 2 is a continuous parameter that defines a
positive but exponentially small function as A — 00.) We can use the method of Theorem 3
when A > 1, integrating on the circle |z| = 1, to deduce that

e—n(A-1) Am+1/2

n //\ -1 (2 — /\)n—m+1/2 )

(Compare with (4.18).) The probability P; m n is obtained if we insert the factor (1-2)
into the contour integrand; this introduces the factor -;—02 at the saddle point 8§ = 0, and
the result is

Pyt,mn ~ 1+6<A<2-6. (8.15)

1 1

~ —— _—— < )AK2-4. .16
Ptm,n v —1) L 2hmn = ooy Poimn, 14852528 (8.16)
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The method of Theorem 1 seems preferable to working directly with the actual prob-
abilities P; , , for m > %n, because s;,()) is a “smooth” function of A by which we can
use uniform methods like Lemma 3 to span the critical region near A = 1.

9. Bicyclic components. Let’s turn now to a related problem that can be handled with
similar techniques. Instead of stopping the random graph or multigraph process when a
cycle appears, let’s keep it running until the first time there is a bicyclic component—
a component with more than one cycle. If the first such component contains j vertices it
will have j + 1 edges. The solution to this problem sheds more light on the generating-
function-based techniques we have been discussing.

As before, we begin by defining and enumerating all of the stopping configurations in
which our random process might terminate. The first bicyclic component can arise in one
of two ways: Either (1) the final edge lies entirely within a component that was already
unicyclic (a component that already contained a cycle), or (2) the final edge joins two
different unicyclic components.

Our experiences so far suggest that we ought to look first at the uniform model, in
which each step selects from n? ordered pairs (z,y) at random, since the uniform model
tends to give formulas that are simpler than the ones arising in the permutation model.

The generating function for unicyclic components on n labeled vertices turns out to
be
0 1 _ T(2) + T(z)? + T(z)® 4.

1-T(2) 2 4 6

V(z) = -;-1 (9.1)
Here’s why: Every cycle of length I > 3 corresponds to 2[ sequences of [ rooted trees,
because we can list the trees of the cycle by starting at ! different places and we can
traverse the cycle in two directions. Cycles of length ! < 3 have the forms (z,z) or
(z,y){(z,y); we will want to divide by 2/ in these cases also, because of the weighting
function 2™~(m — 1)! that will be applied later. (This weighting function assumes that
a given multiset of m edges containing no bicyclic components can arise in 2™~! (m -1
ways as a sequence (Z1,%1)...(Zm—1,Ym—1) of ordered pairs; but the actual number of
ways is 2™ ~1=¥(m — 1)!, where k is the number of 1-cycles and 2-cycles, so we want to
introduce a factor of 1 for every such cycle.)

In case (1) the stopping configuration consists of a unicyclic component together with
two special vertices (z,y) in that component, plus a set of any number of additional acyclic
or unicyclic components. In case (2) the stopping configuration consists of an ordered pair
of unicyclic components together with a vertex z in the first and a vertex y in the second,
plus a set of additional acyclic or unicyclic components as before.

Let ¥ = zz"; be the operator that multiplies the coefficient of z" by n. Then the egf
for stopping configurations in case (1) is (92V(2)) exp(U(z) + V(z)), and in case (2) it is
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(19V(z)) exp(U(z)+ V(z)). (The operator ¥ selects a vertex, and U (2)+ V(z) enumerates
acyclic and unicyclic components.) Using (7.6) we have

IV(2) = 1T(2) / (1-T()? ; (9.2)
PV(z) = ITE)(1+T() /(1 - T(2)* . (9.3)
Therefore the overall egf for stopping configurations comes to
aeven  T(2)(2+ 3T(z)) UG
2V (z IV (2))?)eV(@+V(2) — ( ), .
(52V (=) + OV (2))?) T (0.4

this is only slightly more complex than formula (2.7), the analogous egf for stopping con-
figurations in the first cycle problem.

Once again we need to work with bgf’s, so that we have access to the number of edges.
The appropriate bivariate generating function for stopping configurations in the uniform
model is easily deduced from our derivation of (9.4): We have

wT(wz) (2 + 3T(wz)) LU(ws) /w
4(1- T(w::))gl2

S(w,z) = (9.5)

And as in Section 3, we can state that S(w, z) expands to the sum Y omon Sm,aw™z%/n!,
where 2™~} (m — 1)!s, » /n?™ is the probability that the process stops When the mth edge
is introduced.
As a check, let’s look at the coefficients for small n:
w?+ 7w ,  4w? 4 60w + 261wt

.S'(wz)—2 z+ 5% + 16 23 +

When n = 3, the respective probabilities that we stop at time m = 2,3,4 are

2'.11.31.4 1 22-2!'3!-60_@ 23-3!-3!-261_§§
3¢.16 ~ 27° 38.16  81° 38.16 T 81’

and these sum to 1 as they should. In general, we have
®,5=1, for all n > 1; (9.6)

the operator ®, of Section 3 applies to the bicyclic problem as well as to the unicyclic
problem, and we can use the simplifications of Theorem 1 just as we did before.

Now let’s turn to the permutation model, in which cycles of lengths 1 and 2 are
forbidden. The appropriate egf for cycles is therefore
T(z) T(2)* _ 1 T(z) T(2)?

ln

V@) =Vv() - 2 & 2°'1-T(x) 2 4

(9.7)
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a formula noted by anht [Wr77]. The egf for stopping configurations in case (2) is
(19V(z)) exp(U(z) + V(z)) because we choose r and y in distinct components as before.
But in case (1) the number of ordered pairs (z, y) is twice the number of edges not already
present in the unicyclic component, so the appropriate egf for case (1) is

(92 = 30)V(2)exp(U(2) + V(2)) -
Adding these cases together and introducing w as before glves us the bgf for stopping
configurations in the permutation model:

T(wz)4 (10 - 6T (wz) + T(wz)z) oxp (U(wz) _T(wz) T(wz)z) 9.8)
4(1 - T(wz))*” v 2 4
If we write $(w, z) =3 Smnw™z"/nl, then $m n /2m ("(»=1)/2) ig the probability that

the first bicyclic component arises in the permutation model when the mth edge appears.
The coefficients for small n are

S(w, z) =

) 5 5 8 5 8 7
S(w,z)=5w z4+5w + 37w 25+5w + 9w +367wz s
2 2 4
til;s wf;in n = 6, the process stops at time m = 5,6, 7 with respective probabilities lggl,
1001 ioor- Ve have .
v, S=1, for all n > 4, (9.9

where ¥, is the operator of Section 3. Notice that the coefficient of 22 in S (w, 2) is zero;
a graph on 3 vertices never has more than one cycle, so we shouldn’t look for bicyclic
components in the permutation model unless n > 4. But when n > 4, we obtain a bicyclic
component after at most n + 1 edges have been added.

What is the size of the first bicyclic component? In the uniform model, the generating

function
wT((w2)(2 + 3T(Cwz))  eV(wa/w

4(1-T(¢w2))* (1 -T(wz))*?

puts {7 into each stopping configuration whose bicyclic component contains j vertices.

(9.10)

After differentiating with respect to ¢ and setting ¢ = 1, we obtain an expression for the
expected bicyclic component size:

2wT(wz)(1 + 6T (wz) + 3T (wz2)?) Uwa)/w
(1 T(w ))13/2

A similar formula, with the same denominator (1—T(wz)) 13/ 2, applies to the permutation

¢,

(9.11)

model. If the factor w weren’t present, we would have a generating function of the form
(7.3), with k = 33; the &, operator would then produce a result of order n(2¥=3)/6 = 5/3
The factor w changes the integrand by A/n, and A ~ 1 in the region where the integral
becomes unbounded; hence the w essentially divides by n, and we can state the following
result:
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Corollary 5. The expected size of the first bicyclic component in an evolving graph is of
order n*/3, The standard deviation is also of order n?/3. §

Corollary 6. The expected total length of the cycles in unicyclic components, at the
moment when the first bicyclic component appears, is proportional to n!/3,

Proof. Replace (1 — T(wz))ll ? by (1-¢ T(wz))I/ ? in the denominator of S(w, 2), differ-
entiate with respect to (,and set ( =1. §

We can find the expected waiting time m by using the trick (7.9) that led to Corol-
lary 3. In this case n + 1 — m is the number of acyclic components, so the expected value

ofn+1—m is |
&, (U(“’z)S( w, z )) or U, (U(“"’)S( w2 )) (9.12)

depending on the model. In both cases the multiplication by U(wz) = T(wz) — T(wz)?/2
yields a numerator polynomial in T'(wz) whose value mod (1 - T(wz)) is half what it was
before. Since ®,S(w,z) = ¥,5(w, z) = 1, and since division by w contributes a factor
of n, the waiting time must be asymptotically 1 3n.

10. Waiting times revisited. When our goal is to find the average value of m, we
can use another method based on generating functions for “going configurations” instead
of stopping configurations. Namely, if f,., is the number of graphs with n vertices and
m edges such that the random process is not stopped, we can use this information to
calculate the probability that the process is still going after m steps. The sum of these
probabilities, over all m, is the expected waiting time.

In the first cycle problem, a going configuration is simply a forest (a collection of edges
with no cycles); hence the bgf for going configurations is simply

n
F(w,z) = me,nwm:z_' = elU(wa/w, (10.1)

m,n

Each going configuration occurs with probability 2™m! /n*™ in the uniform model, so the
expected waiting time for a graph with n vertices is 3" 2™m!f,, ./n?™. The operator &,
of Section 3 computes 3 2™~!(m — 1)!frun/n2™, so it's almost what we want. We can
obtain the desired operator for going configurations by first multiplying by w, getting the
bgf 3, fmnw™*12%/nl; then applying ®n to get 3°2™m! f,, o/n2™*2; then multiplying
by n?. In other words, the expected waiting time in the uniform model is

n*®,wF(w,z). (10.2)
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Alternatively, we can obtain the desired operator by first differentiating with respect to w
(getting 3= mfm nw™ 127/ n!), then multiplying by 2w and applying ®,,. In other words,

2<I>nwa%F(w, z) + fon (10.3)

gives the same result as (10.2). (We must add in the term fo n, which is annihilated by |
differentiation.) Indeed, we have the operator identity
2 9
n“Pw =29, w—, (10.4)
Ow
valid when applied to any bgf with F(0,2) = 0. Since w-{_,% = 3—‘9';11) — 1, we can rewrite
(10.4) as follows:

2 |
T =t (). (105)

Comparing (10.3) with our formula (7.10) for the average of n—m yields the interesting
identity :

) 1 _pygpe) el 1, T=T 10.6
n((ﬁ_ -1+ )—Tw'—)—n" ’ = (wz), ( )

which does not obviously follow from (10.5) and any other identities that we know. It may
be possible to find a family of formulas such as this, allowing us to deduce nonobvious
relations between different statistics on random graphs.

In the permutation model, the relevant formula for expected waiting time is

0
2‘1’,;'!1)-6-5 F(w,z) + fo,n (107)

as in (10.3). There is apparently no simple analog of (10.2), although we can derive a
formula that is somewhat like (10.5):

(2 1) v, =, (w207 03

The identity analogous to (10.6) is

v, ((—1——1—T+T2—T3+T4

eU(wz)/w
=7 )5

2w

) =n-1, T =T(wz), (10.9)
valid for n > 3.
The bgf for going configurations in the problem of bicyclic components is

eU(wz)/w+ V(wz)

or  eUwa/wtV(ws) (10.10)
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depending on the model, because the process keeps going if and only if the graph compo-
nents are acyclic or unicyclic. The formulas in (9.12) now lead, via (10.3) and (10.7), to
further identities like (10.6) and (10.9):

T* 3 3—4T +6T? eU('"Vw)
— = =n; 10.
% (5 -3+ i) i=r) = (10.11)

T? 144T34+T%* —14+4T—6T2+8T3 ) eU(wz)/w—T/2-T?/4
w =n. (10.
oo (( * 8 8(1-T) =T n.  (10.12)

(Again T stands for T(wz), and the identity for ¥,, holds only when n > 3.) Is there a
simple combinatorial or algebraic principle that accounts for amazing formulas like this?

We have observed in Section 9 that the waiting time for the first bicyclic component
is approximately %n; thus, the graph tends to become bicyclic when m passes the critical
value where random graphs rapidly gain a complex structure. It is interesting to look
more closely at this transitional phase, by studying the probability that there is not yet
a bicyclic component when m = %n For this purpose we can combine the ideas used to
prove Lemma 3 in Section 4 and Theorem 4 in Section 8.

Theorem 5. Let A = 2m/n = e~#*, where v = n=1/3. Then the probability that a
random graph with n vertices and m edges has no bicyclic component is

1 143500 2
T = / sM/2e W2 B=0)/8 gy | O(n-1/4) (10.13)
1

21l'i —300
uniformly for |u| < n1/12,
Proof. We have

n!
= (n - m)'(z)

where 17(2:) is defined in (9.7) and N = (}). Let h(z) be the function defined in (8.8);
then, as in that derivation,

"U(z)"™ V() , (10.14)

Tm,n

[z"] U(z)"""e";(') = %{ %\/1 —z e~ %/27/4 gnh(2) ii;z- . (10.15)

Let z = e(##=2)¥ A tedious but straightforward calculation shows that (10.15) equals

-1/2,-3/4~p%/6+n pl+ico
2 c / s'/2eP(m9) gg (1+O(B(a,n)v)), (10.16)
1

2r 2n—my —ico
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if we argue as in Lemma 3. Furthermore the quantity n!/(n — m)’(fx) in (10.14) can be
shown to equal

V2mn /448760 gn=m (1 L O(n~%Inn)). (10.17)
Multiplying (10.16) by (10.17) yields (10.13). ¥

When g4 — —o0, the value of Tm,n in (10.13) is exponentially small; in fact it is
O(e#*/6=8/2) because |

RP(u,1 +iy) = (#+2)(p - 1)62 — (6 = 3u)y? .

On the other hand, when s — 400 we can prove that Tm,n = 1+ O(p~?), by integrating
on the path s = u + iy/\/fi for —00 < y < 0o. For we have P(u,p + W/ \/B) = -y¥2 -
1%/(3u3/2); the integral can be restricted to lyl < Inn, in which range the integrand is
e~V"/2;idy times 1+ siyp=32 — Liyd 32 O((y* +y®)u~?). Therefore the random graph
process almost always keeps going without bicyclic components until the number of edges
is on the order of 3ne™*” & 3n — 1un?/3. If we take M large enough, the probability is
2 1 — € that the first bicyclic component occurs when -;-n -Mn?3 < m< -;-n + Mn?/3,
Informally we can say that the graph almost certainly becomes bicyclic when the number
of edges is 3n + O(n?/3),

When ) is strictly less than 1, say A < 1—6, we can show that Tmn = 1—-0(n~1§71)—
O(n~1/26=3/2) by integrating on the contour z = Ae'® as in the proof of Theorem 4. (See
[ER60, Theorem 5e].) We can now sharpen the result of Erdés and Renyi stated in (8.14):

Corollary 7. Let L be a set of pbsitive integers, and say that an L-cycle is a cycle whose
length is in L. Then

Pr(Graph or multigraph with n vertices and m edges has no L-cycle)

1
= 1—/\exp<z-;—l

>1
IgL

) +0(n~1/?), | (10.18)

if limpneo2m/n =X < 1.

(This result applies to graphs as well as multigraphs; we assume that 1 € L and
2 ¢ L when we are considering graphs. A multigraph can have self loops (1-cycles) and/or
repeated edges (2-cycles), but a graph cannot.)

Proof. The multigraph either contains a bicyclic component or it doesn’t. The first case
occurs with probability O(n~1/2). In the second case we want the probability of a “going
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configuration” that consists entirely of acyclic components and unicyclic components whose
cycle lengths are ¢ L. The number of such configurations is

1oL T,

1>1

gL
so we are able to complete the estimates by repeating almost verbatim the argument of
Theorem 4. |}

If we set L = {1,2} in (10.18), we get the asymptotic probability that a random
multigraph is a graph, namely e~M2=N/4 If we set L = {3,5,7,9,...}, we get the
asymptotic probability that a random graph is 2-colorable, namely

o\ 1/4
V1i-=Xexp(3A—-1mn(1-2?)) = G:_—i) e*?. (10.19)
Otherwise [ER60, §10], such a graph is almost surely 3-colorable when \ < 1.
Choosing L = {k+1,k+2,...} in (10.18) gives the limiting distribution of the longest
cycle in a random graph: All cycle lengths are < k with probability

k X‘ .
vI—=2X exp (Z 57) + O(n~1/?), (10.20)

=1

(An analogous result has been derived by Pittel [Pi88, Theorem 1}, for random graphs in
which each edge occurs independently with probability A/n.)

Erdés and Renyi [ER60, § 8] stated that, if 7 is any real number, the probability that
a graph with n vertices and -;-n + rn'/2 edges is non-planar “has a positive lower limit,
but we cannot calculate its value. It may even be 1, though this seems unlikely.” We can
now show that this probability is definitely less than 1. Indeed, a graph with n vertices
and 3n + rn'/2 edges has p ~ 2rn=1/% in the hypothesis of Theorem 5, so the probability
that it has no bicyclic component (and is therefore planar) approaches the limiting value
stated for 4 = 0 and a = 1. We can prove, in fact, that this limiting value =, /2,n i8 rather
large:

Corollary 8. The probability that a graph with n vertices and -;-n edges has no bicyclic
component is \/2/3 + O(n=1/3),

Proof. The contour integral in (10.15) is particularly interesting when A = 1 because it
has a three-legged saddle point. One way to evaluate it is to consider a path of the form
z =1+ te?™/3n=1/3 for ¢t > 0; this accounts for half of (10.15), and the result turns out

to be ‘
n—1/2g0-3/4

oo
t%/3 -1/3
g [ VAT 1+ 0(n7)).
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We will see in formula (A.8) below that this integral is f37r The auxiliary coefﬁcxent
- nlf(n - m)'(m) is v2mn e3/4"27/2(1 4 O(n~ 1)) when m = in. §

Erdés and Renyi [ER60] also remarked that a graph with n + w, 4/n vertices has
a cycle with any given number of diagonals, with probability — 1 when w, — +oco0 and
n — oco. However, we have just proved that this is not true when w, = n1/6. Therefore the
claim that a graph with exactly %n edges has positive probability of nonplanarity might
also be false; an explicit proof or disproof would be desirable.

11. The first k cycles. As a final example of the techniques we have been considering,
let us study the distribution of the first k cycles that appear in an evolving graph. We have
seen in Section 10 that this problem is well-defined, at least asymptotically, because the
first cycles in a sufficiently large graph will almost always occur in distinct components.

For simplicity let us once again consider the uniform model first. We will run the
random multigraph process until there is either a bicyclic component or a set of k unicyclic
components, whichever occurs first. In the latter case we let I3,ls,...,[; be the lengths of
the first k cycles, in order of appearance.

A stopping configuration in the non-bicyclic case will consist of a sequence of cycles of
rooted trees, having respective lengths ({4, ..., k-1 ), together with a sequence of I rooted
trees, plus a set of any number of unrooted trees. A cycle of I rooted trees has the egf
T(z)!/2l, as discussed in (9.1). Therefore if we form the multivariate generating function

L Iy
S(z1y. .., TRy w,2) = Z T(;vlz) e T(;vlz) ' T(wz)lkxil L xlk U(wa) /w
lyeyln 21 1 k-1
= ﬁ 3l T nllws) _wwnre any
- =1 2 1-z;T(wz)/)1—z;T(wz) )

the coefficient n! [zl .. . TP w™ 2" S(a:l, .y Tk, w, 2) will be the number of stopping con-
figurations with m edges, n vertices, and cycle lengths (I,..., k).

In order to convert these coeflicients to probabilities, we need to consider how many
of the n sequences (z1,y1) ... (Zm,ym) of edges will yield a stopping configuration with
parameters m,n, ly,...,lx. For this we need a slight generalization of the argument at the
beginning of Section 3; the appropriate factor is now not 2™~!(m — 1)!/n?™ but rather

" Um -1 b bl
n2m Ly L, Ly ’

(11.2)

where
' Li=L+---+1;. (11.3)
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The reason is that the (m — 1)! permutations of the m — 1 non-final edges are not all
admissible. Exactly lx—1/Li—1 of them have the final edge of the (k — 1)st cycle occurring
after all the edges of the first k — 2 cycles; and lx—p/Li—2 of these have the final edge of
the (k — 2)nd cycle occurring after all the edges of the first k — 3; and so on.

The stopping configurations in the bicyclic case can be ignored, because we know that
this case occurs with vanishing probability as n — oco; but we might as well describe the
generating function, so that we can see how rapidly the probability approaches zero. We
mimic the derivation of (9.4): Either k > 2 and there is a unicyclic component with two
marked vertices, plus an additional set of acyclic and (at most k — 2) unicyclic components;
or k 2 3 and there are two unicyclic components with marked vertices plus an additional
set of acyclic and (at most k — 3) unicyclic components. The egf is therefore

(192‘/(2)) R E V(Z) —=7 4 (19V( ))2 U(z)z V(J)J (11.4)

J=0 Jj=0

Converting to'a bgf gives a formula like (9.5) except that it has the form

w f" (T(wz)) U(wz)/w

11.5
(1 T(wz)) (115)

where fi is a polynomial. By reasoning as we did after (9.11), we conclude that the &,
operator produces a result that is O(n~'n(®=3/8) = O(n~1/8), for every fixed k.

We can now determine the asymptotic probability that a given sequence of cycle
lengths will appear:

Theorem 6. The probability that the random multigraph process produces the first k cy-
cles in distinct components with respective lengths (li,lay. .., 1) is

21—-k
LiLy ... L,

pL, +O(n~Y%), (11.6)

for all fixed ly,...,lx > 1, where L; is defined in (11.3) and p; is defined in (5.6). The
same formula holds for the random graph process, if p is replaced by p and if we require
L ... 10 >3.

Proof. The desired probability, according to (11.1), (11.2), and (3.1), is

h I lk—1 )
| +—— 0 — [z .. S(z1,...,zk,w, 2
(L1 L; " Lo o] S, 20, w,2)
2" Ly (U(ws)/ 11.7)
— k wz)/w
T LyLy ... Ly, ‘I)n(T(wz) e )’ (11.
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plus O(n=1/8) for the probability of failure due to the early occurrence of a bicyclic com-
ponent. And &, (T(wz)' eV(*?)/*) is the probability that the first cycle has length I,
computed in Theorem 2. : : '

This proves (11.6) in the uniform model; the same ideas apply to the permutation
model, with minor changes. J |

The probability distribution in Theorem 6 was first derived by Svante Jansen [J a87],
without the error term, in the case of random graphs. We can show that the sum of
probabilities (11.6) over all (I1,...,1;) equals 1, by using the identities

oo oo
Z Pk = 2’?: ’ Z Pk = 21131 (11'8)
k=I+1 k=143 v

already mentioned in (5.8) and (5.10). Notice that the asymptotic probability in the
uniform model that the first k cycles will all be loops of length 1 is p/25~1(k — 1)! =
1/(3-5- ... - (2k +1)).

On intuitive grounds we expect the second cycle to be larger than the first, and the
third should be larger yet, because the trees that yield cycles gradually get bigger. And
indeed, this is true: '

Theorem 7. The average length of the kth cycle, for fixed k, is of order n}/ 8(logn)k-1,

Proof. 1t suffices to give the proof for the uniform model, since the other model is similar.
The basic idea is to apply the identity

z In — T k-1 Y by 2 (11.9)
(1—2‘)2 1-=2 - ) L1L2...Lk;1’ |

I3, a1

which is readily verified by induction. The average value of [ is

Y P(l,...ln), (11.10)
I,k >1

where P(ly,...,l;,n) is the probability in (11.7); thus we want to apply @, to the bgf

1 T 1\ wnyw
k1) (1= T) (ln1 T) e \WEIY (11.11)

where T = T(wz). And it should be clear from the calculations in Sections 5 and 6 that
the principal effect of each additional factor In1/(1—T) is to multiply the inner integral by
In1/(1-e=**) = (3 Inn+O0(In(1+|u|)) (1+0O(n~1/3 )). Therefore the result is ©(log n)*—!
times the result of Theorem 3. |
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In this proof we have defined the random variable It to be zero if the first k cycles
are not well separated, i.e., if they do not fall in distinct components. This seems rea-
sonable because the concept of kth cycle becomes murky when many cycles are formed
simultaneously.

A somewhat paradoxical situation arises if we ask for the conditional expected length
of the first cycle, given that the first k cycles appear in different components. For example,
suppose k = 2. Let a, be the unconditional expected length of the first cycle; let b, be the
probability that the first two cycles are well separated; and let c,/b, be the conditional
expected length of the first cycle given that the first two cycles are well separated. Then

we find

T

_ WTA+T) yiwsyjw) _ ~1/6y,
bn-—l @n(we =1 O(Tl ),

T2 .
ca= 3 hP(,lzn) =, (“ ev(m)/w) ,
11,1321 2(1 - T)2

where T' = T(wz). Since T?/(1 —T)? = T/(1 - T)? — T/(1-T), we have c, = 1(an — 1)
exactly. Thus the expected value cn/ba is asymptotically only half of an, although both
quantities represent the expected length of the first cycle, and although we are conditioning
on an event that almost surely occurs! The reason is that the distribution of first cycle .
lengths has a tail that decays very slowly; and cases when the first cycle is extremely long
are much more likely to attract the second cycle into the same component.

Similarly, it can be shown that the conditional expected length of the the first cycle,
given that the first k cycles appear in separate components, is asymptotic to 21~ *gq,,.

12. Concluding remarks. We have shown that a combination of generating functions
and contour integration can resolve problems that apparently could not be treated suc-
cessfully with the techniques that have previously been applied to random graphs. Many
of the previous techniques, like the laws of large numbers, can be based on special cases
of contour integration with the saddle point method; the approach in this paper may have
succeeded primarily because we were free to use the saddle point method in a more general
context.

It would be interesting to push the techniques further, for example by determining
the asymptotic value of L,, —~ Kn'/® when Ly denotes the expected first cycle length.
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Appendix. Evaluation of integrals. Let us complete this discussion by studying the
behavior of the integral in Lemma 3, equation (4.19), and by finding a numerical estimate
for the constant K in (6.8). This proves to be an interesting exercise in the theory of
functions.

If z is a real number, let us define

f(z) = /00 exp(—it — zt? + it%/3) dt, (A1)
9(z) = /_00 exp(izt + it%/3) dt. (A.2)

The motivation for f(z) comes from the integral in (4.19), which reduces to a multiple
of f((a + a~1)/2) under the substitions s = & — it and p# = a—al, Since our main
application of f(z) has z = (a + a~1)/2 > 1, we can assume that z 2> 1lin f(z). We can
write

f(z) = /_ ~ e cos(—t + £3/3) dt, (A3)

so f(z) clearly converges for all z > 0. We will prove that the related function ¢(z)
converges for all real z (even though the integrand in its definition always has magnitude 1).
If a is any positive number, we have

R+ia -3 a . . \3
/ exp (i:ct + %) dt| < / exp (iz(R +it) + iR—-;ﬂ) dt
R 0

— /a e-—zc~R’t+t°/a dt
0
< ea3/3+a|x| /‘l e—R’t th= O(R-2);
0

a similar bound applies if we integrate from —R to —R + ia. Hence we can shift the path
of integration upward, without affecting the value or the convergence of the integral:

9(z) = /w exp(iz(t + ia) + it + ai)*/3) dt; a>0. (A.4)

-—00

There is now a term —at? in the exponent, so g(z) must indeed converge.
In particular, we have

oo
gla®* -1) = / exp(a — 2a® — it — at? + Lit3) dt

—00

=e*"2973f(q). (4.5)
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Thus f(z) = 62“8/3"9(3:2 —1). When z is large, we have f(z) = 3z z~1/2 + O(z~3/2),
hence g(z? — 1) must be mighty small.
Another formula for g(z) can be obtained by rotating the path of integration:

g(z) = 2R /oo exp(izt — it3/3) dt
‘ 0
= 2R (( /oo exp(iz(t + i(%t%/3) dt) ,
0

= 2R (4 /0 = exp(iz(t — t%/3) dt) , (A.6)

where

= ni/6 — ﬁ l
>t 5t (A.7)

(The integral on the arc Re® for 0 < 0 < /6 is negligible for large R, because the
magnitude of the integrand is exp(—3 R%sin30 — zRsin 6).)

Equation (A4.6) will be our key to evaluating f(z) via g(z), because we can expand
exp(iz(t) into a convergent power series in t. Then we can interchange summation and
integration, evaluating the resulting integrals by using an analog of (4.14):

(e o] o0
ko—t%a gy _ k/3 —u _adu
/o te dt /0 (ua)*e §3(ua)2 73

1 o0
=3 a(k+1)/3 / W=D /3, g
0

= 3 DGk 1 1)/3) (48)
It follows that . eerbn o Tk + 1)/3)
9(z) = 373 R(ZC t*(3z) T) . (A9)
k>0

The real part of ¢¥+1* ig cos(2k + 1)r, which is respectively (3v/3,—1+/3,0) when k =
(0,1,2) mod 3; hence

9(z) =371/ %" %((% + 1)T(k + }) — 3'32D(k + 2)). (4.10)
k>0

This series converges for all z; hence 9(z) and f(z) are actually analytic functions in the
entire complex plane.
We can write (4.10) as a difference of two hypergeometric series of type o F}:

9(2) =37VT(3)F(; };32°) — 3/°aT(2)F(; §; 1a%). (4.11)
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Figure 4. The function K(u) whose integral yields the first-cycle constant K.

This representation allows us to deduce that g(z) can be expressed as an Airy function,
hence as a modified Bessel function of fractional order:

. 271/ 2.3/2
g9(z) = 27 Ai(2) = 3—1/-2—1{1/3 (32°%). (A.12)

Equation (4.24) follows from the fact that f(1) = e~1/3¢(0). In general, our derivation
leads from (4.19) to the asymptotic formula

ud/12 2
Sin(e™#) ~ E__g\/SL—wML—) nt/e (A.13)

A somewhat different approach appears to be necessary if we want to evaluate the
constant K numerically. Let us consider the value of the inner integral in (6.8),

1 1+ico P(u,s) 93 (b +28)(p —s)?
K(p) = o) 2 P(u,s) = , A.l4
() V8ri /1..;00 ¢ s (1,9) 6 ( )

for fixed p; this is the quantity that yields K" when integrated over the range —o0o < y < co.
It is plotted for —3 < p < 3 in Figure 4.
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We can argue, as we did following Theorem 5 in Section 10, that K () is exponentially
small when y — —oo, and that K(u) is of order 4~3/2 when p — +00. Our strategy for
evaluating K will be to find a reasonable way to compute K(u) when |u| is small, together
with a precise asymptotic estimate of K(u) when u is large.

First let’s assume that p is near zero. We have, by definition,

1 3 m 1+ico Cma24.8/a dS
= »/6 LA = zs'+57/3 2 . A.
K(w) = =z I( 2) : I(z) /1 B - (A.15)
We can argue as in (A.6) that the path of integration can be bent so that s begins at

coe™*"/3 and ends at coe**"/3; indeed, we may assume that s traverses the path

s=t+t"1 +/3i(t—t71) for 0 < t < oo.
Then the quantity u = s3/3 describes the contour
868+ 4t +4vBi(t -t 4 4t — 8473

which starts at —oco just below the negative real axis, stays below that axis and circles the
origin counterclockwise, then returns (just above the axis) to —oo. This is a contour I for

which we have Hankel’s well-known formula

1 1 e* du
= . A.
['(s) 2m /p u® (4.16)
Hence we can use the substitution s == 3!/3u1/3 to write

2/3 p\k ,,2k/3-1
0=} [t L[ CER

k>0
2mi (—3%/3z)k
3 Z;) KIT(1 —2k/3) " (4.17)

(The sums are absolutely convergent.) This is the desired formula by which we can compute
K(p) when |u| isn’t too large. It can be expressed hypergeometrically in the form

2ri 323y 31/3,2
I(z) = ._._(1.. = F(3, 1,4 2, 4,3y~ _p(I 2, i,i;_im?')), (A.18)
3 F(%) (6 131313 3 21-.(%) (6 373’3 3

Incidentally, it’s interesting to apply this same idea to the integral (4.19). We obtain
a formula that looks rather different from (A.13), namely

_ s 3-2/3 3-1/3 :
s1,n(e BY) ~ e /6\/—( ( ) (5’3"'2{)“3)— 411(1)F(%;'§';_%l‘3)) n'/s. (A.].Q)



The quantity in parentheses is a confluent hypergeometric function, '

U(%’ %” —1’13'”3) .
92/331/33/2 !

equating (A.19) with (4.13) yields a known identity between Airy functions and conflu-
ent hypergeometrics [AS64, Equations 13.1.29 and 13.6.25]. We can also prove equality
between individual “halves” of (4.11) and (A-19), using the hypergeometric identity

e~*/?F(a;2a;2) = F(;a + 3i22). (A.20)

Now let’s consider K(u) as y — co. Our experience with the similar integral (10.13)
suggests that we try integrating along the path s =y +iy/,/fi. The integral reduces to

1 ]°° e™V"/2 exp(—iy® /(3u/2)) dy
V8T u3/? J_o 1 +iy/ud/? ’
and we can obtain an asymptotic formula by expanding the real part of the integrand as

—4%/2 .- . . _ .
e~¥"/2 times a power series in y* and 1/u3. Namely, if we set v = u~3/2 for convenience,
we have : :

1 (exp(—z‘vya/s) exp(+ivy3/3)) _q1_ 186yt 40

K(u) = (4.21)

2 14y 1 -2y 18
+ 1944y* 4 648y° + 108y® + 12y10 + y12 4
1944 v
52488045 +--- + y“’v(s +o. (4.22)
524880 ' '
Placing this inside (A.21) and applying (4.14) gives
1 1 Ca C3 .
K(u)~-2#—3/2-(1—ﬁ+u—e—y—9+~“), as 4 — oo, - (A.23)
where
(1)18+(1-3)6+(1-3-5)1 17
Cc1 = 18 = —-6-’
_Q ~3)1944+(1-3-5)648+-'-+(1°3-5‘7—9-11)1 _ 1801
= 1944 -
and so on. ‘

However, we need to justify this expansion carefully because Yokso(=1)Fer/u3k is
divergent. The key is to show that (4.23) is a strictly enveloping series, in the sense
that its partial sums alternately overshoot and undershoot the true value of K (#). The
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enveloping property is not difficult to prove, because we can show that series (A.22) is
enveloping with respect to v?. If we remove all terms on the right side of (A.22) that have
degree greater than 2k in v, the resulting sum is an upper bound or a lower bound for the
function on the left side, according as & is even or odd, for all real values of v and y. This
property is not difficult to prove, because the left side is

cos(vy3/3) — vysin(vy®/3)
1+ v2y2

(A.24)

and because the power series for cosine, sine, and (1 + v?y?)~1 are strictly enveloping
[PS25, Problem 1.142).

Incidentally, one can readily verify that the coefficient cn of (A.23) can be expressed
as a rather simple sum,

2n
_ (2n + 2k)!
on = kzo on+k3K(n + k) K’ (4.25)

because each term y'v/ of (4.22) arises from precisely one term in the expansion of (A.24).
The denominator of ¢, turns out to be exactly

92n—v3(n) g(3n—vs(n))/2 , (A.26)

where vr(n) denotes the sum of the digits of n in radix-r notation.
Since the series (A4.23) for K(u) is enveloping, we can integrate it term by term to get
an enveloping series for the tail of the integral,

/MK(,;)d,WL 1- L4228 ), (A.27)
u “1/2 7“3 13p6 19119

For any fixed y this series is divergent, but we can find a “best” place to stop it (where the
terms begin to increase in magnitude). For example, when yu = 5, the sum of the terms
involving ¢i for k < 21 on the right of (A4.27) is 0.4458165587745; and the partial sum for
k < 22 is 0.4458165587784. So we know that

0.4458165587745 < / K(u)dp < 0.4458165587784. (A.28)
5

These are the best lower and upper bounds attainable from (A.27), because the next two
partial sums are 0.4458165587744 and 0.4458165587787. We obtain better accuracy as u
grows, and we get almost no information when # is too small. For example, when y = 2,
the enveloping series (A4.27) tells us only that .671 < f2°° K(p)du < .693.

The integral of K(u) from —oo to —4 is less than 10-5. A numerical integration
over the range —4 < i < 5, using enough terms of the convergent series (A.17) to ensure
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sufficient accuracy, now suffices to establish the value K a 2.0337, correct to four decimal
places, as claimed in the introduction to this paper. (Such calculations are not quite
trivial, because there is great cancellation between terms of (A.17); according to (A4.15),
the value of I(y1/2) must be extremely small when p is 3 or more, because I (1/2) must be
multiplied by e#”/6. The arithmetic leading to the stated result was done as far as possible
with rational numbers; then high-precision values of 32/3 /T(3) and 3'/3/T'(2) were used
to combine the results.)

Substantially faster methods would need to be devised if we wanted to calculate K to,
say, 100 decimal places.
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