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1. INTRODUCTION

D. A. Pope and M. L. Stein in [4] desc;ibed an algorithm for multiple-
precision division in which trial quotient digits, relative to any base, are
generated by dividing the two leading digits of the dividend by the one leading
digit of the divisor. They showed that the trial quotient digits so obtained
are never too small and that, if the divisor is normalized so that the leading
digit is at least half the base, then the trial quotient digits are too large by
at most two. In the Pope-Stein algorithm, the divisor is multiplied by the
trial quotient digit, shifted, and subtracted from the dividend. If the result
is non-negative, the trial quotient digit is correct; other wise it is too large
so the divisor is shifted and added to the negative result. If this result is
non-negative, the trial digit is one too large, while if it is still negative the
trial digit is two too large and the divisor must be shifted and added a second
time. Because an error in the trial digit entails so much additional computation,
it is of interest to determine the respective probabilities, pi of the possible
errors i (i = 0,1, 2). These probabilities, which are functions of the base b
and the number n of digits in the divisor, are computed in Section 3 of this
paper. It is shown, in particular, that for n z 2 the limiting values, as b
becomes large, are P, = (77 - 61n2)/108 = .6745~-, P, = (13 + 61n2)/54 = .3178~
and P, = (5 -61n2)/108 = .0078~ .

Although these results reveal the Pope-Stein algorithm as being more
efficient than one might have believed, we hasten to call attention to still more

efficient division algorithms. Collins in [1] and [2] describes an algorithm



for which the trial quotient digit is either correct or one too large, in which
pl < 38/b. This method uses a double-precision approximation to the inverse
of the two leading digits of the divisor. Knuth in [3] describes another algo-
rithm which is both simpler and more accurate. In the Knuth algorithm one
starts with the Pope-Stein trial digit and makes a correction which is deter-

mined by the first three digits of the dividend and the first two digits of the

divisor. The result is either correct or one too large and 1ol < 3/b.

2. PROBLEM FORMULATION

m i n-1 i " . .
let u= S0 Y b" and v = Sie0 Y b" be positive integers in base b
radix representation, where b is a large positive integer, n = 2 and Vn—l > 0.

Actually we require only that b > 6, but since our main interest is in the case
where b is (or is close to) the largest fixed point integer that can be stored
in a single computer word, we will assume b is large and express most of
our results in order notation.

We wish to compute g = [u/v] and r=u-qv. If d is any positive

integer, W=du and ¥V =dv, then gq=[U/7] and r= (U - av)/d. Ii we take

~1 — —
= [b/(vn_l+ 1)] as in [3], then [b/2] b’ = T<b, i.e. V is normalized

so that Vn__L > [b/2]. For simplicity we henceforth assume b is even and we
may therefore assume also that v has been normalized so that Vool > b/2.

m i , A
We may assume Siem-n M b~ < bv, since otherwise we could set u = 0,

m+1
m“

i . . ,
iz " qi b~ and it suffices to determine g

replacing m by m+l. Then g= 3 m-n

since subsequent quotient digits will be determined in the same way (e.g. the

process for e SN will be the same after u is replaced by u-v - g b

-1



_[ i
where this new u will automatically satisfy zr.n ui b1 <bv), If m> n

i=m-n~1
m-n
]

then, as observed in [3], a__ = [a/b =[ [u/v]/em ™ =] [up™ ™M,
so it suffices to assume m = n and determine q = [u/v] where g < b.

In the Pope-Stein algorithm, the trial quotient, q', is computed by the

formula

1.

q' = min(b-1, [(un b+ u 1)/v

n-1
pi is then the probability that ¢' - g = i. These probabilities are not well-
defined until we have defined a probability space. Our space E consists of

the set of all triples (u, v, q) such that bn/Z s v< bn, 0=qg<b and [uw/v] =g4g.
Each point in E has probability |/N where N is the number of points in E .
Thus it is assumed that all possible normalized dividend-divisor combinations

are equally likely.

3. PROBLEM SOLUTION

Letting Ei be the set of points in E such that @' - g =1i, and Ni the
number of points in Ei , we have pi = Ni/N . It will suffice to determine N,

NO and NZ’ since p, = 1 - Py = P We will assume n = 2 since trivially

5

= = = = 1,
p 1, P, =P, 0 when n

0
To compute N , the number of points in E, we note that the condition

os[fj—]<b (1)

is equivalentto 0 = u < bv, since u,v and b are integers. Thus for each

value of v there are bv values of u such that (1) holds. Therefore

o]

b -1 3
N = bv='§b

v=bn/2

ntl

2n+l b . (2)

1
4



To compute N, the number of points in E/ = {(uv,q) €E: g =q), we

first assume [u/v] =g = b - 2; then we must have

in order for (u,v, q) to be in EO. Equivalently,

-1
q= [u/bn ]/vn_l<<q + 1,

or

-1 -1
qv__ b7 =u<(ar) v BT (4)

From [u/v] = g we also have qv = u < (g+l)v; both this and (4) will be

satisfied by u's which satisfy

-1
av s u< (@+hv_ | ptTe . (5)

-1
Let c=b" and v = jc +k (where b/2 < j<Db and 0= k < c¢). Then

for a given v and g, the number of u's satisfying (5) is

-1
max (0, (g+l) Vn—l T - av) = max (0, (g+1) jc - a(jc+k)) = max (0, jc - gk).

Thus there are at least
b-1 c-1 Db-2

> s max (0, jc - gk) (6)

Nog, 7. 2 z
j=b/2 k=0 g=0

points in .EO . But we must also consider the case where g =b - 1. Here,

(3) is not required to hold; we know that q::< = [(unb + un—l)/vn-l} >b -1,
and hence q' = min (@¥, b-1)=q evenif g*# b - 1. Thus we require only
that [u/v] =b -1, i.e. v(b - 1) 2 u<vb, and obtain vb -v(b-1)=v
points in BO for each v, for a total of

-1 3 .2 1
N = 5 v o= 'é‘bn'zb . (7)

02
v=b"/2



We now proceed to evaluate (6) in order to obtain NO = NOL + NOZ .

In order to dispose of the max function in (6) we want to restrict the

ranges of summation so that jc - gk :is always non-negative. To do this

¢

conveniently, and for later use, we introduce the sum NOl to be the same

as NOl except that b - 2 replaces b -1 as the upper limiton j . Also

wereverse the order of the g and k summations. Thus

b-2 c-l n-1
NOl = NOl + v s {(b-1)b - gk}, (8)
g=0 k=0
Nor = Ngyp ¥ Ngypo
b-2 3§ c-l
NOH” > 3 = (jc-gk),

j=b/2 q=0 k=0

b-3 b-2 [jc/d]
Nyj,% = X 5 (jc - ak) .
j=b/2 q=j+1 k=0

Evaluation of the sum in (8) and of N is a straightforward application of

011

the formulas z?:o i= —;-n('m-l), Z?:O :‘L2 = é-n(m-l)(ZnH). We obtain
Ny, = Ny i—bzn r o™ h (9)
NOH: 3_75 b2n+l _ _i_b;Zn+ O(bZn-l) (10)
The formula for NOll in (10) holds only for n > 2; for n =2 we have
instead N | = = p2ott %2’ b*™ + 0" . To evaluate N, , we

first perform the k summation (using a formula for the sum of an arithmetic
L
series, zr;_o (a+id) = (n+1)(a+ > dn) ), and reverse the order of the g and j

summations:



b-2

Noyiz = 2

6

-1 . .
e nte - 1 ()

q=b/2+! j=b/2

Now, using the properties of the "floor" function [x] ,

x -1 < [x] = x< [x]+1,
we let
a-t je e}
S (a) = (T )Y(c-za (7))
l( ) j=§/2 a @ q
q-1 jc , 1 jc
S, = = +1)(Jc-zq(&"~l))
j=b/2
so that
b-2 b-2
Z 5@ <Ny, < by 5,(a) (L1)
a=b/2+1 q=b/2+1
We have
c2 q-1 2
S{@ = 5= % ]
9 j=p/2
2
b b
T2 [a -1 a2g-1)-(3-1)5 (-]
c2 1
= 17 L@-hHqg-1) - Zq (b -2)b(b-1)] (L2)
We first find
b-2
7 3 35 2
5 (a-Da-1= 730 - ZZ b +0(b) . (13)
a=b/2+1
Then, letting Hn = Z?——l i—l and using the approximation

1]

H
n

L ]
iInn+7Y+ oot O(;z)

(where VY is Euler's constant), we obtain



u
Y
!
o
[

A 1
R ST/ N S S XY

3 1 l
In2 -5 - o7+ Olgz) - (14)

From (l2-14) we have

b-2 2
7 .3 35 2 l
z Sl(q) = %2— {TZ‘ b ——g'b + O(b) - :}'(b—Z)b(b—l)(ln 2 -E?’g _E%T
q=b/2+1
1
+0(5z)) ]
_ 7-31n2  2n+l 5-ln 2 2n 2n-1
a4 b T b " 4+ O(b ) . (15)
Next we note that
g-l .
c , c
s,@=5(@+ = (2o tic-zalc-1]
j=b/2 1 4
q-1 .
=S @+ 2 (jc+zaq
ji=b/2

and thus
b-2 b-2
5 S,(a)= = 5, (a) + op™tey. (16)
q=b/2+1 q=b/2+1

We may now combine (11), (15) and (16) to conclude that NOLZ is equal to

the right member of (L5) when n > 2. When n =2 we can only conclude

743 In 2 . 2n+l 2n
that Ny, = “gs P + 0" .

Finally, we can now compute, for n > 2,



% : 77-61n2 . 2n+l 17-1n2.2n 2n-1

Ngp =Ngyy ¥ Ng 1, = T35 P " T e P tOB ),
% 3 2n 2n-1_ _ 77-61ln2 2n+l 5-1n2 _2n 2n-1
Ny, =Ny, +2b+omTT) = S22 == o™,
and
_ _17-61n2  2n+l  1+1In2  2n 2n-1
Ny =Ny #Noo =288 T Pt O )

Therefore, for n > 2,

N : .
_ N0  77-61n2 l +1Ineg -1 -2
P N T 108 + 6 b +0(b ),
while
77-61ln2 -1 _
Po = 108 + O ) for n=2.

The computation of NZ is much easier, because NZ can be shown to
e
be related in a simple way to NOL . Apoint (uv,q)e E is in EZ if and
sie
onlyif gsb-3 and q -g=2. Givena g<b~-3 anda v=jc+k

then (u, v, Q)€ EZ for u satisfying
(g+2)jesu < (qg+1)v,

and the number of such u's is max{0, {(g+l) v - (g+2}jc) = max (0, (g+l)k ~jc).

Therefore

]
™M
M
™M
3
)
X
L
o)
+
=
I
5

N>

I
™M
™M
Q
+
~
!
5

z
j=b/2 q=j k=[££]+1

b-3 b-2 c¢-l
-3 b by (jc - gk)
i=b/2 q=j+l k=[jc/q]+1

I



9

b-3 b-2 c-l
012 T 2 s 2 (jc-agk)
j=b/2 q=j+1 k=0

]
Z

b-2 bp-2 c-1
=N . _+N. - = 5 3 (jc - gk)

- *
- N01 (

1. 2n+l 2 2n-1
e R T SN

the evaluation of the last sum being siraightforward. Thus, for n > 2,

5-61n2 . 2n+l l -In2 . 2n 2n-1
N, = "5z b - == b7+ oD ),
and
N2 5_61n2 1-1n2 -1 -2
P2y T T 1os  ~ 6 b +0O(b 7).
5-61n 2 -] ,
For n =2 we have pZ = T8 O(b '} . Finally,
13+61n2 1n2 . -l -2
Py =l =Py =P =5 AR
1 -1
for n> 2 and p, = 2+6lnz O ') for n=2 .
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