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0. Introduction 

Given a set U of n distinct numbers, we are inter- 
ested in preprocessing them, so that subsequent rrem- 
bership queries of the form ‘Is y E U?’ can be 
answered quickly. For example, if one sorts the ele- 
ments of U, then each query can be answerred in 
pg(n + I)1 comparisons by a binary search. This may 
be contrasted with the situation where no prepro- 
cessing is done, when n comparisons are needed to 
answer the query. In general, the esta.blishment of a 
partial order over U will facilitate answering the que- 
ries. In this paper we examine the trade-off between 
the preprocessing cost and the subsequent search cost 
for each query, in a model using pairwise comparisons 
among the numbers as the basic operations. Suppose 
we wish to be able to answer any membership query 
in at most S(n) comparisons. Can we put a lower 
bound on P(n), the worst-case cost of a preprocessing 
algorithm which builds some suitable partial orders 
on U? We shall show that P(n) + n lg S(n) 2 
(1 + o( 1))n lg n for any comparison-based algorithm ’ 
This result can be extended in a straightforward man- 
ner to the case where some numbers in U may be 
identical. A simple constructive argument will also 
show that it is best possible. 

For some related work, see the papers of Detig et 
al. [l], and Munro and Suwanda [6]. 

” The notation lg denotes log to the base 2. 

1. The model 

Let Xl, x2, . . . . x, denote the numbers 6 in tb- 
U. Initially we know nothing about the relative 
ing of the xi. We will use a preprocessing algori 
discover some of these ordering relations. This . 
mation will then be made available to a search a 
rithm. Precisely speaking, it preprocessing algo: it, 
is a ‘comparison tree’ (see [4]), with each !sterr.,_ 
node containing a comparison of the form x : x’ 

(x, X’ E U). Algorithm P works by tracing a path from 
the root down, making at each internal node the spe( 
fied comparison and choosing an exit link according, 
to the result (<, or >). At each step, the results of all 
previous comparisons define a partial order c/ on U, 
which is, of course, consistent with the underlying 
linear order of the Xi. A leaf in the comparison tree 
indicates termination of the preprocessing algorithm. 
Accordingly, associated with each leaf v we have a 
partial order UV on U. These partial orders will neces- 
sarily be distinct, but may often fall into a few +so- 
morphism classes. 

Given a partial order Il, we will be interestc 2 111 
search algorithms that answer correctly the query ‘!s 
y E U?’ for any number y and any set of n distiaci 
numbers U satisfying U. Such algorithms can a!so ‘Je 
represented by comparison trees, with each internal 
node containing a comparison of the form x : X’ 

6 Although we speak of ‘numbers’, clearly the same considcra- 
tions apply to elcme;lts irom any totally ordered set. 
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(x, X’ E U u (y]). These comparisons now have 
ternary outcomes (<, =, or >). When a leaf is reached, 
the ordering information the algorithm has discovered, 
along with that implicit in U, must determine if y is 
in U. Note that we allow the search algorithm to per- 
form comparisons among elements in U. As we will 
see, our upper-bound results will remain true even 
under the condition that all comparisons of the 
search algorithm involve y. 

We must generalize this concept of a search algo- 
rithm slightly, to deal with the fact that a prepro- 
cessing algorithm can generate several different partial 
orders. For us, a search algorithm S will denote a 
table of algorithms like the above, indexed by some 
collection of partial orders. Thus the inputs to S are 
both y and the (index of the) partial order from the 
collection to be searched. We will call a pair (P, S) of 
preprocessing and search algorithms compatible, if the 
coKection of partial orders S can search includes all 
those B can generate. 

We now associate worst-case lost i_easures with 
the algorithms. The cost of P, Pienoted ,.c c(P), is the 
maximum number of comparrsons made *!uring pre- 
processing, i. e. the height of the COA ’ esponding com- 
parison tree. Similarly, the cost of a search algorithm 
S, denoted by c(S), is the maximum number of com- 
parisons made during a search, taken over all partial 
orders in the algorithm’s collection, and for each par- 
tiai order over the set of all possible paths in the com- 
parison tree. 

Note that comparisons are counted as contributing 
to preprocessing or search according to our choice in 
drawing t”ne boundary between the algorithms. For 
instant, instead of sorting during preprocessing and 
then using binary search, we could run the sort only 
up to an intermediate point, and then complete it as 
part of the search phase, before the final binary 
search. We only insist that (1) all comparisons 
involving the new element y belong to the search 
phase, and (2) that all preprocessing comparisons pre- 
cede any search comparison. 

Our main result is the following trade-off theorem 
between the two costs. 

Theorem 1. Let (P, Sj denote a pair of compatible 
preprocessing and search algorithms on a set of n 
numbers U. If c(P) dent b tes the preprocessing cost of 
P and c(S) denotes the search cost of S, both mea- 
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sured in comparisons, then 

c(P) + n lg c(S) 2 (1 + o( 1 jjn lg n . 

Furthermore, this bound is best possible. 

This of course implies that the worst-case prepro- 
cessing cost P(n) of any algorithm with a compatible 
seach algorithm of worst-case cost not exceeding S(n) 
satisfies the inequality 

P(n)tnlgS(n)>(l +o(l))nlgn. 

This covers both the cases P(n) = 0, S(n) = n, and 
P(n) = n lg n, S(n) = figtn + l)] mentioned in the In- 
troduction. 

2. Upper bounds 

In this section we show that the result of Theorem 
1 is best possible by exhibiting a simple partial order 
I/ and a pair of compatible algorithms (P, S) where P 
always generates (partial orders isomorphic to) U, S 
has a prescribed search cost s = c(S) 2 [lg(n + 1 j1 and 
for which 

c(P)+nlgc(S)G(l +o(l))nlgn. (I) 

We make use of disjoint sorted lists of lengths as 
equal as possible. Suppose we use k lists, a of length 
m = [n/kl, and b of length m - 1, a, b defined by 
<am t b(m - 1) = n and a + b = k. In the worst-case, 
we must search each of the k lists using binary search, 
for a total cost of 

s=a[lg(m+ l)l+b[lgml. 

(An appropriate value of k can be computed from this 
relation, as long as s > [lg(n t 1)l.j 

For preprocessing we need to form the sorted lists, 
at a total cost of 

c(P)=arn[lgm~+b(m- l)[lg(m- lj1 

comparisons in the worst case. 
Note that 

c(S)=sEk[lg(m+ l)l, 

and so 

lgc(S)~lgktlg[lg(m+ l)]. 
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Similarly 

c(P) < km [lg ml ,, 

Using the fact that lg [lg(m + 1)1= o(lg n), we finally 
conclude 

c(P) + n lg c(S) < km [lg ml + n lg k f n o(lg n) 

= (1 + o(l))n lg n 

which gives (1). 

graph G with vertex set V = U U Iy} and edge set E = 
{{x, x’) 1 x : x’ is in a). It is easy to see that G must 
be connected, otherwise y can be equal to any ele- 
ment in a component different from the one 
searched, contradicting that y 4 U. Thus, there must 
be at least n edges in E, meaning that S makes at 
least n comparisons. This proves S(S) 2 n. 

Lemma 2. Wz have S(U) 2 w(U). 

Note that this construction attains the bound 
under fairly restricted conditions. Firstly, all partial 
orders produced by the preprocessing algorithm are 
isomorphic, and secondly, all comparisons of the 
search algorithm involve the new element y. 

Proof. Let U’ c U be any incomparable subset with 
IU’I = w(U), and U1, U2 be the sets {x I x <u x’ for 
some x’ E U’}, {x I x’ +J x for some x’ E U’}, rfispec- 
tively . Since U’ is incomparable, U1, U2, U’ are pair- 
wise disjoint. 

3. Lower bounds 

We now prove that P(n) t n lg S(n) 2 
(1 + o( 1))n lg n. First we define some terminology. 
Let U be a partial order on a set U. We shall write 
x <u x’ to denote that ‘x is less than x’ in U’. Two 
distinct elements x, x’, are U-incomparable if neither 
x <u x’ nor x’ <u x. A subset U’ c U is incolmpar- 
able if every two distinct elements in U’ are. A U- 
chain is a sequence z1 <v z2 <v l _ <v zt. A family 
of U-chains pa&ions U if every element of IJ appears 
in exactly one of the chains. The width of U is defined 
as 

Let S be any search algorithm on U using U. Let 

U’ be a partial order on U consistent with U, and such 
that x <u x’ <un ~“foranyxEU~,x’EU’,x”EU2. 
If U is known to satisfy U’ and if y is known to satisfy 
U1 < y < U2, then all comparisons except those 
between elements in U’ U iy} are not needed to 
decide if y E U. In fact, if we delete from S every 

internal node v with its comparisons not between ele- 
ments in U’ U {y}, and connect any son of v directly 
to the father node of v, the resulting tree S’ still 
decides if y E U. Since y E U if and only if y E U’ 
under the present conditions, S’ is a search algorithm 
to decide if y E U’ with empty partial order. By Lem- 
ma 1, c(S’) 2 I U’ I = w(U). Hence S(U) 2 S(U’) 2 
WJI. 

w(U) = (max i U’ 11 U’ c U is U-incomparable) . 

We need the following result due to Dilworth [3]. 

Theorem (Dilworth). Let U denote a partial order on 
U. Then 

Lemma 3. Let w 2 w(U), m = [n/WI, and integers a, 
bbedefinedbyamtb(m- l)=nanda+b=w. 
Then v(U), the number of linear orderings on U con- 
sistent with U is at most 

w(U) = min(k 1 3 a family of k U-chains that 

partitions U} . 

n! 

(m!ja((m - l)!)b ’ 

Let S(u) denote the minimum of S(S), taken over 
all algorithms S capable of searching U. 

Proof. By Dilworth’s theorem, U can be partitioned 
into w disjoint U-chains of lengths, say, Q1, Q2, . . . . II, 
(with Z& = n). Clearly 

Lemma 1. If U is empty, then S(U) 2 n. 

’ Proof. Let S be any search algorithm for U, and The lemma follows as the multinominal coefficient 

y $ U be any number. Consider any sequence o of achieves maximum when a of the .Pi are m and the 

comparisons made by S. Construct an undirected rest are m - 1. 
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Lemma 4. Let P be any preprocessing algorithm on U 
which produces partial orders that can be starched in 
at most s comparisons. Then c(p) 2 a lg(m?) + 
b lg((m - l)!), where m = [n/s], and a, b are defined 
byam+b(m-l)=nanda+b=s. 

Proof. At each leaf v, algorithm P must produce a par- 
tial order Qv such that S(Q,) < s, and hence w(QV) G 
s by Lemma 2. According to Lemma 3, this implies 

n! 
c;;l!r ((m - l)!)b ’ 

where m, a, b are as defmed. Since all n! linear order- 
ings on U must end in some leaf, we have 

nl(2ClP) *i 
(m!)“((m - l)!)b ’ 

This leads to 2c(fl 2 (m!r((m - l)!)be Hence the 
lemma. 

Note that the same conclusion a fortiori holds if 
we restrict the comparisons of the search algorithm 
to those involving y only. 

Proof of Theorem 1. From Lemma 4 we have 

c(P).slg((m - l)!) 

2 <i(;n - 1) lg(m/e]) 

2 (n - s) lg(n/sej, 

where we have used the easily proved inequality q! 2 
((q + 1)/e>% The above inequality can be rewritten. 
as 

c(p) + n lg s 2 n lg n - n lg e - s lg(n/se). 

Since pg(n + I)] G s G n the last term on the right- 
hand side is O(n), and so we have shown from which 
Theorem 1 follows. 

c(P)+nlgs>(l +o(I)jnlgn, 

!t may be of interest to observe that a somewhat 
weaker version of the same theorem can be obtained 
by an adversary argument. The adversary keeps mar- 
kers 1,2 , . . . . n in bins to help it organize its response 
strategy while the preprocessing algorithm runs. Bins 
are organized into an infinite binary tree, with all 
markers initially at e root. When the algorithm asks 
about xi : Xi, the adyprsary examines the current posi- 
tior;s of i and j in the bin tree. 
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Case 1. If i is in a bin to the left (right) of j’s bin 
and these bins are not on a common path, then the 
adversary answers < @). 

Case 2. if i is in a bin which is a proper ancestor of 
j’s bin (or vice versa), then the adversary moves i to 
whichever son is not an ancestor of j and answers < 
(?), if i is to the left (right) of j (symmetrically for i 
and j interchanged). 

Case 3. If i and j are in the same bin, then the 
adversary moves i to the left son, j to the right son, 
and answers <. 

In the analysis of the adversary, we give a lower 
bound for the number of markers which must lie on 
some common path in the final bin tree. Since the 
corresponding elements are all incomparable in the 
final partial order, Lemma 2 can be applied to yield a 
lower bound on the search time. The resulting inequal- 
ity is 2P(n) + n lg S(n) 2 (1 + o( 1))n lg n. 

4. Remarks and open problems 

The results of this paper extend readily to the case 
where equal keys may be present. One need only 
check that the upper-bound construction is still valid. 

There is a discrepancy between our lower and 
upper bounds in the second-order term. The upper 
bound gives a second-order term of order O(n lg lg nj, 
while the lower bound has a negative such term of 
order O(n). It may be of interest to further close this 

2ap. 
We conjecture that a similar trade-off between pre- 

processing and search costs holds under the average- 
cost metric as well. However, we have not been able 
to relate the average search cost of a partial order to 
the number of permutations consistent with it. 

Finally, we can try to generalize these results to 
‘on-line’ algorithms. In [ 1 ] an on-line data-structure, 
called binomicrl lists, is given with preprocessing cost 
O(n lg n) and.search cost 0(lg2 n) in the worst-case. 
It is also shown there that this is essentially best-pos- 
sible, if one considers only partial orders consisting of 
disjoint sorted lists. But without this restriction, no 
‘on-line lower bounds are known. 
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