AN IMPROVEMENT TO
IMMEDIATE ERROR DETECTION IN STRONG LL(1) PARSERS
by

J. Mauney
C. N. Fischer

Computer Sciences Technical Report #392

July 1980

An Improvement to
Immediate Error Detection in Strong LL(1) Parsers

Jd. Mauney
C. N, Fischer
University of Wisconsin-Madison, Madison, WI 53706, USA

parsing, LL(1), syntactic error detection, error correction
l. Introduction

Many error—correction methods [2,3] require that the

associated parser possess the immediate error detection pro-

perty; that is, that any error is announced as soon as the
erroneous symbol is encountered. Strong LL{(l) parsers do
not have the immediate error detection property and may per-

form incorrect parsing actions before an error is announced

[1].

A simple and efficient algorithm for immediate error
detection in a subset of Strong LL(l) grammars has been pre-
viously presented [4]. 1In this paper we extend the tech-
nique to provide immediate error detection for any Strong

L(1) grammar.
2. Immediate Error Detection

As in [4], we note that the only incorrect moves a

Strong LL(l) parser can make are a series of predictions

*
Research supported in part by National Science Founda-
tion Grant MCS78-@2570

with the net effect of deriving)\ (where)\ denotes the empty
string). Immediate error detection is provided by checking
such predictions before they are performed, to insure that
the input symbol will be accepted by some symbol lower on
the stack. 1In [4], grammars were restricted, so that any
derivation of)\ occurred in one step. We now extend the

method to all Strong LL(l) grammars.

Lemma 2.1. 1In a Strong LL(l) parser, the only moves an
error symbol, a, can induce are predictions of the form

A --> d where d ==§ N

Proof. Clearly, the only moves an error symbol can induce
are predictions. By construction of Strong LL(l) parsers, a
production of the form A --> d, where =¥=§ N, can only be
predicted for an input symbol, a, if a € First(d). But this
means that o ==§ aB, and such a prediction 1is obviously

correct. X

Lemma 2.2. In a Strong LL(l) parser, assume an input sym-
bol, a, induces a prediction of a production A --> |, where

q ==3 N. Then a € Follow(A) if and only if a § First(d).

Proof. {only if) Assume a € Follow(A) and a € Pirst(d).
Then for some X, such that d ==§ Xdq', there must be two pro-
ductions X --> Y and X --> 8§, with 8q° ==3 \ and VY ==3 ay'.
Therefore a € First(YFollow(X)) || First(8Follow(X)) (since a
€ Follow(X)), and the grammar cannot be Strong LL(1l).

(if) If a § Follow(A) and a & First(d) then the parse table

entry for (A, a) should be 'error', not 'predict'. [X

Lemma 2.2 tells us that if A is the current stacktop,
and a is the next input symbol, then A can derive)\ (in this
context) only if a € Follow(A). Furthermore, if
a € Follow(A) then A must derive W (directly or indirectly).
In the case that a is an error symbol, an incorrect predic-
tion A --> d can only occur 1if ==§ N (Lemma 2,1) and
a € Follow(A) (Lemma 2.2). Thus if the Strong LL(l1) parse
table entry for the pair (A,a) is "predict A --> d" and
o ==§ N and a € Follow(A) then we need to check that the
prediction 1is correct; in all other cases the parse action
indicated must be correct. When a Strong LL(l) parse table
is constructed, we mark those predictions that require spe-
cial checking (for example, an entry, +p, can denote a pred-
iction of production p without a mark, and -p can denote a
prediction of p with a mark). Algorithm 2.3 is a Strong
LL (1) parser, modified to check for marked productions.
Before a marked prediction is performed, Algorithm 2.4 is
invoked. This algorithm checks that the prediction is
correct by verifying that after A (and possibly other non-
terminals) derives)\, a will be matched, or derived by, some

deeper stack symbol. Both algorithms are adapted from [4].

We note that a single input symbol may induce a number
of parse actions before finally being matched., However,

after Algorithm 2.4 has been run it is guaranteed that the

symbol will be accepted (or that it is an error symbol) . We

can exploit this by setting a flag when Algorithm 2.4 1is
called. As long as the flag remains set, we needn't perform
the check again. The flag 1is cleared whenever a symbol is
matched. As noted in [4], this modification allows us to

guarantee a linear-time parse.

Algorithm 2.3. (A parser for Strong LL(l) grammars).
{Assume Xp +++ Xy 1s the parse stack with X the top ele-
ment. Let a be the current input symbol. T is the parser
action table}
flag := false;
loop { forever }
case T[Xm,a] of
POP: Pop Xm from parse stack;
flag := false;
read next input symbol;
ACCEPT: Terminate parser;
ERROR: Invoke error recovery;
PREDICT: {assume prediction is Xm --> d}
if not Marked(T[Xm,a]) cor flag cor CheckPrediction
then Pop Xm from stack;
Push o onto stack
else Invoke error recovery;
£fi;
end; { case }

end; { loop }

Note that we use the conditional or operator, cor, to

insure that CheckPrediction is invoked only when necessary.

Algorithm 2.4.

(check whether a marked prediction is correct)

function CheckPrediction : boolean;

{x

motee XQj is the parse stack, a is the input,
Xy is the end-marker}
for i := m-1 downto 0 do
case T[Xm,a] of
POP, ACCEPT: flag := true;
return(true);
ERROR: return(false);
PREDICT:
if not Marked(T[Xm,a]) then
flag := true;
return(true)
{ else continue forloop }
f£fi;
end; { case }

end; { for }

end; { function CheckPrediction }

20

Conclusion

We have presented an improvement to the method of [4]

which provides immediate error detection for all Strong

LL(1) grammars. The method is very simple to use in Strong

LL(1l) parsers. 1In practice it requires no increase in parse

table size, and no appreciable decrease in parsing speed.

4. References

[11 A.V. Aho and J.D. Ullman, The Theory of Parsing, Trans-
lation and Compiling, Vol. 1 (Prentice Hall, Englewood
Cliffs, NJ, 1972) Section 5.1, 334-361.

(2] C.N. Fischer, B.A. Dion and J. Mauney, A Locally
Least-cost LR Error-Corrector, TOPLAS, to appear,

[3] C.N. Fischer, D.R. Milton and S.B. Quiring, Efficient
LL(l1) Error Correction and Recovery Using Only Inser-
tions, Acta Informatica 13 (1988), 141-154

(4] C.N. Fischer, K.C. Tai and D.R. Milton, Immediate Error
Detection in Strong LL(l) Parsers, Information Process-
ing Letters 5 (1979), 261-266

