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A Data Structure for Dynamic Range Queries

Abstract

Given a set of points in a k-dimensional space, an
orthogonal range query is a request for the number of points
in a specified k-dimensional box. We present a dynamic data
structure and algorithm which enable one to insert and
delete points and to perform orthogonal range queries. The
worst-case time complexity_for n operations is 0(n log'̂ n) j
the space used is 0(n log^"^ n) . (0-notation here is with'
respect to n; the constant is allowed to depend on k,) This
is faster than the best previous algorithm by a factor of
log n; the data structure also handles deletions in a more
general context than previous fast algorithms.

1. Introduction

A number of highly efficient data structures have been

devised which make it possible to manipulate a set of

records with totally ordered keys. For example, suppose one

wishes to be able to insert, delete, or locate a given

record in a set of n elements. These operations can all be

performed in an average of O(log n) time per operation

through the use of binary search trees [K73, AHU74]; by

using 2-3 trees, AVL trees, or trees of bounded balance, the

time bound can be improved to worst-case O(log n) [AL62,

K73, NR73, AHU74]. These trees also allow more general

operations to be performed [see C72, K73, AHU74]. For

example, we may wish to perform a "range query," that is, to

determine the number of keys in the range [a,b]; it is not

hard to devise a worst-case O(log n) algorithm to do this

using any of the three balanced schemes mentioned above,

provided each node has a field containing its number of
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descendants.

Now suppose each key is a vector of length k; more

complex queries become possible. For example, we may wish

to specify a range for each component of the key and ask how

many keys have all components in the desired range. This

corresponds to counting the number of elements in some

k-dimensional box; Knuth [K73, pp. 554-555] calls this an

orthogonal range query; unfortunately, he observes that for

this problem "No really nice data structures seem to be

available." {An interesting special case of range queries is

partial match queries; these have been investigated by a

number of researchers, with considerable success. See

tR76J .)

Since then, a substantial amount of progress has been

made. In order to discuss it, some terminology will be

useful. Suppose we have n points in k-space and wish to

perform operations, such as insertions and queries, on them.

Let S(n) denote the total amount of space used; let Q(n) be

the time required to respond to a single query; finally let

P(n) denote the total amount of time spent processing the

insertions (and deletions, if any). If all of the points

must be presented before any queries are presented, so that

the set of points is not allowed to change, we say the data

structure is static; in this case it does not even make

sense to discuss deletions. If queries may be interspersed

with insertions (and deletions, if allowed) we say that the

data structure is dynamic. In the dynamic case it is more
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convenient to let n be the number of operations we perform

on the data structure. Note that the number of elements

present at any time is bounded by n. Finally, it is useful

to discuss a generalization of the problem discussed above.

Suppose that instead of merely wishing to know the number of

records in a given range, we wish to know some function of

that set of records. Suppose that in addition to a

k-dimensional key, each record in our data structure has a

field VALUE, and that we wish to find the sum of the VALUE

fields of all records with keys in the specified range.

More generally, suppose that we wish to find the result of

combining the VALUE fields under some operator D. For

example, to find the minimum salary of people in some age

range, we could let D be the operator min. If D is

commutative and associative, can be computed in 0(1) time,

and works on objects which can be represented in 0(1) space,

we will call it an admissible operator. Note,for example

that the operators "+" and "min" are admissible.

One data structure which has been proposed for handling

range queries is the quad tree [FB74]. A k-dimensional quad

tree is much like a binary search tree, except that each

node has up to 2^ children; thus when a new node is

inserted, its relation to its parent can depend on the

outcome of comparisons of all k components of the keys. A

closely related data structure called a multidimensional

binary search tree has been introduced [B75]; this data

structure also allows one to perform orthogonal range

queries. It has been shown that for either data structure.
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if the trees involved are balanced, an orthogonal range

query can be performed in a worst case time of 0(n^~^/'^)

[BS75, LW77]; analysis of the average performance appears

to be more difficult.

Recently significant advances have been made in the

development of orthogonal range query algorithms and data

structures. (For all of the data structures in this '

paragraph, we are allowing insertions and queries, but not

deletions. However, it has been observed [B78b] that if •

is an admissible operator which admits inverses, the

following simple scheme enables one to simulate deletions.

Maintain two data structures, one containing all records

which have been inserted, and one containing all records

which have been deleted. Respond to a query by returning

the "difference" under • of the responses to the two data

structures.) in [BS77] a static structure is presented which

makes it possible to perform range queries, assuming the

desired response is simply a count of the number of records

in the specified range? the performance measures are

P(n) = S(n) = 0(n log*^"^ n)

Q(n) = 0(log'^ n)

A key idea used in that paper is multidimensional

divide-and-conquer; see [B78a,BS76] for a thorough

discussion of several applications of this fundamental

technique. In [B77] a very elegant approach to a variety of

searching problems is developed. The notion of a
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decomposable searching problem is defined, which encompasses

a large number of problems. (Range queries with admissible

operators are a special case of the notion of decomposable

searching problems.) Techniques are developed by which

one-dimensional range restrictions can be added to any data

structure for a decomposable problem, while increasing the

space and time complexity by at worst a factor of O(log n).

This enables one to immediately obtain the result of [BS77]

quoted above, but for any admissible operator. Also

presented is a technique for converting a static structure

into a dynamic structure without increasing the storage

space, and with only a factor of O(log n) increase in the

time complexity. This result, combined with the bounds

previously mentioned, enables one to produce a dynamic data

structure for range queries with

P(n) = p(n log*^ n)

S(n) =0(n log"^"^ n) ^ ( l)
Q(n) = Odog"^"*"^ n)

These are the previous best known bounds for arbitrary

dynaihic range query problems. However, if it is known in

advance that either insertions will be much more frequent

than queries or vice versa, it is possible to obtain faster

overall times by use of the results in [BM78], where static

data structures are presented for which

P(n) = S(n) = 0(n^"'"^)
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Q(n) = O(log n)

P(n) = 0(n log n)

S{n) = 0{n)

Q(n) = O(n^)

for any £>0„ See [BF78] for a survey of known algorithms

for range searching.

In this paper we make three contributions;

a) We show how to improve the time bound for dynamic

range searching to Q{n) = O(log'̂ n) without

increasing S or p over the bounds in (1) .

b) We develop a data structure which allows deletions

to be performed efficiently under any admissible

operator.

c) We show how the notion of trees of bounded balance

[NR73] is relevant to the problem of range

searching.

In section 2 we review the results of [B77,BS77] in somewhat

greater detail and lay the foundations for our approach. In

section 3 we show how to make the structure dynamic

efficiently in a way which allows deletions.
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2. Range trees and k-fold binary search trees

The following definition gives a convenient way of

talking about the results of [B77, BS77] .

Define a k-fold binary search tree, on a set of n

k-dimensional keys, inductively as follows. If k=l, a

k-fold binary search tree is an ordinary binary search tree;

since k=l, keys have only one component, and the tree is

ordered according to this component. In addition, when k=l,

each node has a field SUM which tells the "sum" under Q of

the VALUE field of all of the records which descend from it.

If k>l, then a k-fold binary search tree on n records is a

binary search tree organized according to the k '̂̂ components

of keys; in addition, however, each node x contains a field

AUX which points to a (k-l)-fold binary search tree

containing all records which descend from x, organized ,

according to the first k-1 components of the keys. The n

nodes in the binary tree organized according to the k '̂̂

component are called primary nodes; the nodes in all of the

other trees are called secondary nodes. If x is a primary

node in a k-fold binary search tree, we say x has dimension

k, or more briefly, dim{x)=k. An algorithm for inserting in

a k-fold binary search tree is shown below, (The set Of

descendants of x is considered to include x; it does not

include any of the nodes in AUX(x). Similar remarks apply

to the term ancestor.)
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procedure INSERT(k,K,T);
beq^i^

comment insert a key K into a k~fold binary search tree
T;

create a new node x for key K and insert it into T
according to component k, thinking of T as a binary
search tree;

for each ancestor y of x do
if k = 1

'^then SUM(y) := SUM{y) D VALUE (x)
else INSERT(k-l,K,AUX{y));

end;

Note that k-fold binary search trees may

be used as the basis of an algorithm to respond to an

orthogonal range query. First, find the set of subtrees in
4-

T which corresponds to records whose k^ component satisfies

the query; let R be the set of roots of these trees. If T

is well balanced, O(log n) is a bound on the size of R and

the time to compute R. Now sum the results of orthogonal

range queries on the remaining k-1 dimensions for the

auxiliary trees of all of the nodes in R. If T is well

balanced, an easy induction shows that this algorithm runs

in Ollog*^ n) time. If for each node in the tree, the number

of nodes in the left and right subtrees differs by at most

one, the tree is essentially the range tree discussed in

[B77, BS77]; it is shown there that range trees can be

constructed in 0(n log"^"^ n) time; this is the method used

tnere to achieve a fast range query data structure.

3. Algorithms with partially balanced trees

In this paper, we will not require that the trees be

balanced as strictly as in [B77,BS77]. We begin by showing that

if keys are inserted at random according to algorithm INSERT
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above, T will be fairly well balanced«

Theorem 1. Assume the components of keys are chosen

independently and randomly, in such a way that all keys are

distinct in each component, and in each component the

permutation required to sort the keys is equally likely.

Then the expected time to insert n keys into a k-fold binary

Ic
search tree is 0(n log"^ n) .

Proof. We use induction on K. For k=l, clearly

T(h,k)=0(n log n). Now let k>l. Since the expected

internal path length of T is 0(n log n), the expectation of

the total number of records inserted in auxiliary trees of

primary nodes of T is 0(n log n). By the induction

hypothesis, the time to insert m keys in one of these

auxiliary trees is 0(m log*^"^ m) , which is 0(m log*^"^ n) .

Thus the time for all of the 0(n log n) insertions must be

0(n log^ n) . []

Now we will introduce a data structure which makes it

possible to perform a sequence of n insertions, deletions,

and orthogonal range queries in worst-case 0(n log*^ n) total

time. The basic idea is to use a balanced tree scheme. A

problem that arises is that rebalancing a node may require

the associated auxiliary tree to be completely restructured;

this can be expensive for large trees. We would like to

guarantee that this will happen only very rarely for trees

with many nodes. Below we will show how trees of bounded

balance [NR73] can be used to produce the desired data

structure.
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Let the rank of a node x, written rank(x), be one more

than the number of nodes which descend from x. The balance

of a node x, written jo(x) , is the ratio of the rank of the

left child of x to rank(x). A node x is «<-balanced if

p(x) C [ot,l-o<] .

In [NR73] it is shown that if a tree on n nodes is

o<-baianced for some positive then the height of the tree

is O(log n) . It is also shown that, assuming o<< 1- /2,

balance in a tree may be maintained through the use of some

simple rebalancing operations, so that insertions and

deletions can be done in O(log n) worst-case time per

operation. (We henceforth assume o^<

In order to cast the results of [BS77] in terms of

bounded balance, we say a k-fold binary search tree is a

k-fold BB(o<) tree if the balance of each primary or

secondary node is in [o^,l-e<] . It is easy to see that for

such a tree,

Q(n) = O(log'^ n)

S(n) = 0(n log'^"l n) .

Next we discuss the cost of insertions and deletions.

Lemma 1. Insertion or deletion of a node in a binary

search tree on m records can change the balance of the root

by only 0(l/m).
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The proof is easy and is omitted»

The algorithm INSERTB for insertion in a k-fold BB(o^)

tree is given below; deletion can be handled similarly.

(In this algorithm we have not explicitly shown the updating

of the SUM fields; this can be done in a manner similar to

that shown in the INSERT procedure above.)

procedure INSERTB(k,K,T);
begju)

comment insert key K into a k-fold BB(o<) tree T,
rebalancing as needed to maintain the BB(i^) condition;

if k=l

th^ insert K in T using the standard bounded balance
insertion procedure

else

end:

LiCL
insert a new node x for key K into T according to

component k of K, thinking of T as a binary
search tree;

for each ancestor y of x do
INSERTB(k-l,K,AUX(y)); '

i^ some node on the path from the root of T to x
has balance outside of [oi'fl-<<] then

REBALANCE; be^in
locate the first node y on the path from the

root of T to X for which ^(y) ^ ;
replace the subtree rooted at 'y by a range

tree for all of the records stored in that
subtree;

end;
end;

Theorem 3. In the worst case, INSERTB uses 0(n log'^ n)

time for n insertions.

Proof. Let T(n,k) be the worst-case time required to

perform n insertions on a k-fold BB(o<) tree. It is clear

that

T(n,l) = 0(n log n).
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Now suppose k>l. Aside from the time spent in the block

labeled REBALANCE, the time bound is easy. We will use an

accounting argument to establish the time bound for the

REBALANCE block. We begin with a few definitions. For any

primary or secondary node x, let ^(x) be the distance on the

real line from the point^'(x) to the set [1/3,2/3]; that

is,

jg-lx) = max(0, ^(x)-2/3, l/3-^(x))

Let dim(x) be the dimension of the subtree of which x is a

root. Now we define the imbalance I(T) of a tree T to be

the sum, over all primary and secondary nodes x in T with

dim(x)>l, of

x) rank(x) n

We will charge each insertion operation an amount equal

to the increase it produces in the imbalance of T, before

any rebalancing is performed, in this paragraph we prove by

induction on k that a single insertion can increase I(T)

only by O(log'̂ n) . First note that by Lemma l,^^{x) fank(x)
can be seen to increase by at most 0(1) per insertion for

any node in the tree. Thus for k=2, the increase in I(T)

during an insertion is 0(log2 n), since only nodes on the

path from the root to the inserted node are affected. Now

we prove the assertion for dimension k, assuming it holds

for lower dimensions. The increase of ^(x) rank(x) for a

primary node in T is 0(1) as in the basis, so the change in

I(T) due to these nodes is 0(log n • log"^""^ n) or O(log'̂ n) .
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However, we also insert the new key into 0{log n) auxiliary

trees, each of dimension k-1. By the induction hypothesis,

the increase in I{T) for each such insertion is Ollog*^"^ n) ,

for a total of Ollog*^ n) » Thus the total increase in I(T)

for a k-fold BB(oc) tree due to a single insertion is

0{log'^ n) .

Next we show that the decrease in I(T) due to a

REBALANCE operation at node y is sufficient to cover the

cost of the operation. Note that after the operation, ^ is

0 for all primary or secondary nodes in the new subtree,

since in a range tree each node has ^ in [1/3,2/3]. On the

other hand, we are performing the operation since node y had

a balance outside [o(,l-o<]. Thus, initially, we had

^(y) > o<- 1/3.

Let r = rank(y) and d = dim(y). Then the decrease in l(T)

is at least

(o4-l/3) r log^"^ n.

On the other hand, from [B77, BS77] we know that the time

required to construct the range tree is

0(r log'^"^ r) .

Thus by choice of suitable constants in the accounting

argument, we can guarantee that the decrease in imbalance

covers the cost.
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Since the imbalance of an initial empty tree is 0, and

never goes negative, we have shown that the amount charged

to the operations covers the rebalancing costs. This

completes the proof, []

Now we briefly explain how deletions can be performed.

We use the method described for deletions from a binary

search tree described in [AHU74], followed by updates on the

AUX and SUM fields, and rebalancing. The AUX fields are

updated in much the same way as in procedure IKSERTB; when

a node is inserted (respectively deleted) at some point in

the tree, a corresponding insertion (respectively deletion)

must be made in the AUX fields of all of its ancestors. It

is tempting to saiy that deletion of a node x which descends

from a node y, with dim(y)=l, should be followed by the

operation

SUM(y) ;= SUM(y) • VALUE(x) -1

This is disallowed, however, since we have no guarantee that

Q admits inverses. Instead, we calculate SUM(y) by

combining the SUM fields of the children of y under •. An

argument much like that used for insertions can now be used

to show that the time bound still holds.

4. Conclusions

We have presented an algorithm for dynamic range query

problems which is faster than the previous best known

approach by a factor of log n; it also allows deletions to
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be handled readily. Unfortunately, our approach is somewhat

more ^ hoc than that used in [B77] f we have not developed

a general transformation which can be used to add range

restriction capability to an arbitrary dynamic data

structure for a decomposable problem. We plan to address

this topic in another paper. '

It should be noted that although we used trees of

bounded balance, the rebalancing operations discussed in

[NR73] are not essential to our data structure. When

rebalancing a node of dimension greater than 1, we

completely restructure the tree; further, for trees of

dimension one, we could use any balanced tree scheme which

guarantees logarithmic behavior.
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