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A Data Structure for Dynamic Range Queries

Abstract

Given a set of points in a k-dimensional space, an
orthogonal range query is a request for the number of points
in a specified k-dimensional box. We present a dynamic data
structure and algorithm which enable one to insert and
delete points and to perform orthogonal range queries. The
worst-case time complexit§ for n operations is O(n log® n);
the space used is O(n log™"~ n). (O-notation here is with
respect to n; the constant is allowed to depend on k.) This
is faster than the best previous algorithm by a factor of
log n; the data structure also handles deletions in a more
general context than previous fast algorithms. '

1l. Introduction

A number of highly efficient data structures have been
devised which make it possible to manipulate a set of
records with totally ordered keys. For example, suppose one
wishes to be able to insert, delete, or locate a given
record in a set of n elements. These operations can all be
performed in an average of 0O(log n) time per operatioh
through the use of binary search trees [K73, AHU74];‘ by
using 2-3 trees, AVL trees, or trées of bounded balance, the
time bound can be improved to worst-case O(log n) [AL62,
K73, NR73, AHU74]. These trees also allow more general
operations to be performed [see C72, K73, AHU74].' For
example, we may w;sh to perform a "range query," that is, to
determine the number of keys in the range [a,b]; it is not
hard to devise a worst-case 0O(log n):algorithm to do this

using any of the three balanced schemes mentioned above,

provided each node has a field'containing its number of
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descendants.

Now suppose each key is a vector of length k; more
complex queries become pessible. For example, weemay wish
to specify a range for each component of the key and ask how
many keys have all components in the desired range. This
corresponds to counting the number of elements in some
k-dimensional box; Knuth [K73, pp. 554-555] calls this an

orthogonal range query; unfortunately, he observes that for

this problem "No really nice data structures seem to be
available.” (An interesting special case of range queries 1is
partial match queries; these have been investigated by a
number of researchers, with considerable success. See

[R76].)

Since then, a substantial amount of progress has been
made. In order to discuss it, some terminology will be
useful. Suppose we have n points in k-space and wish to
perform operations, such as insertions and queries, on them.
Let S(n) denote the total amount of space used; let Q(n)'be
the time required to respond to a single query; . finally let
P(n) denote the total amount of time spent processing the
insertions (and deletions, if any). If all of the points
must be presented before any queries are presented, so that
the set of points is not allowed to change, we say the data
structure ie static; in this case it does‘not even make
sense to discuss deletions. If queries may be interspersed
'with insertions (and deletions, if allowed) we say that the.

data structure is dynamic. 1In the dynamic case it is more
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convenient to let n be the number of dperationé we perform
on the data Structure. ©Note that the number of elements
present at any time is bounded by n. Finally, it‘is useful
to discuss a generalization of the problem discussea above.
Sdppose that instead of merely’wishing to know the number of
fécords.in a given range, we wish to know some function of
thét set of records. Sﬁppose that in addition to a
k-dimensional key, each record in oﬁr data structure has a
field VALUE, and that we wish to f£ind the sum of the VALUE
fields of all records Qith keys in the specified range.
More generally, suppose'that we wish to find the result of
combining the VALUE fields under spmé o?erator O. For
example, to find the minimum salary of peéple in some age
range,'we could let [I be the operator min. If O is
commutative and associative, caﬁ be cémputed in Q(l) time,

and wbrks on objects which can be represented in 0(1) space,

we will call it an admissible operatdr;' Note for example

that the operators "+" and "min" are admissible.

One data structure which has been proposed for handlihgb

range queries is the quad tree [FB74]. A k-dimensional quad

tree is much like a binary search tree, except that each
node has up to 2k children; thus when a new node is
inserted, its relation to its parent can depend on the

outcome of comparisons of all k components of the keys. ‘A

closely related data structure called a multidimenéional

binary search tree has been introduced [B75); this data

structure also allows one to perform orthogonal range

queries. It has been shown that for eithef-data‘stfuCture,
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if the trees involved are balanced, an orthogonal range

query can be performed in a worst case time of O(nl'l/k)

" [BS75, LW77]; analysis of the average petformance’appeafs

to be more difficult.

Recently significant‘advances have been made in the
development of orthogonal range query aigofithms and'data'
structufes. (For ail of the datavstfuctures‘in.this
paragraph, we.afe allowing insertions and_qﬁeriés,-bht not
deletions. However, it has been observed [B78b] that iflE]
is an admissible operator which,admits inverses, the
followiné simple scheme enables one to simuléte deletibns.
Maintain two data structures, one containing all records
Awhich have been inserted, and one containing all records
which h;ve been deleted. Respond to a query by returﬁing-'

the "difference" under [J of the kesponses to the two data

‘structures.) In [BS77] a static structure is presented which

makes it possible to perform range queries, assuming the
degsired response is simply a count of the number of records -

in the specified range; the performance measuresaaref
P(n) = S(n) = O(n logk~l p)
Q(n) = 0(logk n)

A key idea used in that paper is multidimensiohal

diVide-énd—cdnquer; see'[BTSa,BS76] for a thbrbugh

discussion of several applications of this fundamental

technique. In [B77] a very elegant approach to a variety of

searching problems is developed. The-notion‘bf'a



- Page 5

decomposable searching problem is defined, which-encompasses:

a large number of problems. (Range gqueries with admiSSiblé
operators are a special case of the notion ofAdecomposabief“
searching problems.) Teéhniques are deVeloped by which
one-dimensional range,restrictiohs can beladded to any data
structure for a'decomposable problem, while incfeasing the
space and time complexity by at worst a factor of O(log'n).
This enables one to immediately obtain the result bf [BS77]"
quoted above, but for any admissible opérator. Also
presented is a technique for converting a static Stfucture
intova dynamic structure without increasing the storage
space, éqd with only a’féctor ofxo(log h) increase‘in‘the
time complexity. This result, combined with,the bounds
previously mentioned, enables one to produce a dynamic data

structure for range queries with

k

P(n) = O(n log n)
S(n) = 0O(n logk'lin) ( 1,)
S

Q(n) = 0(log

These'are the previous:best known boundé for‘érbitré:y
dynamic range qguery problems. Howe#er, if it ié knowﬁ in
advance fhat either inserﬁions will be mﬁch mdré-frequeht
than queries or vice versa, it isupossible to thainvfaster
overall times by use of the résults in [BM78], where static

data structures are presented for which

.
1+€,

P(n) = S(n) = 0(n
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| Q(n) = O(log n)
‘or, alternatively,
P(n) = C(n log n)
S(n) = O(n)
Q(n)‘ - 0(n€) |

fér any £€>0. ’See [BF78] for a survey of known algorithms

for range searching.

In this paper we make three contributions:

a) We show how to improve the time bound‘for dynamic

range searching to Q(n) = O(log n) without
1ncrea51ng S or Pu;ver tnemgeund; in (1)“

'b) We develop a data-structure wh;ch allows deletions
to'be per formed efficientiy under any-admissiblex

operator.

Cc) We show how the notion of trees of bounded balance

[NR73] is relevant to the problem of ranée

searcnlng.

. In section 2 we rev1ew the results of" [B77 BS77] 1n somewhat

greater detail and lay the foundations for our’ approach In'

sectlon 3 we show how to make the structure dynamlc

efflclently in a way which allows deletlons;”
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2. Range trees and k-fold binary search trees

The following definition gives a convenlent ‘way of

talking about the results of [B77, BS77]

‘n‘Define a k-fold binary search tree, on a setsof n .
k—dimenSional keys; inductitely as follows, If k=1, a
* k=fold binary search tree is an ordinary'binary,search tree})
 since k=1, keys have only one component,dand theftreefis
ordered according to this component.LvIn addition) when k=l,:
each node has a field SUM hich tells the sum" under E] of
the VALUE field of all of the records which descend from 1t'
If k>1, then a k fola binary search tree on n records is a’
binary search tree organized according to the kthvcomponentSj
of_keys;; in addition, however, each nodehm'contains'a field7
~AUX which‘points‘to a (k—l)?fold;binary search tree
h containing all,records which descend~§rombk;'organized;fﬁ
lacCording to the first k-1 components.of the’keys; lThemn
nodes in the b1nary tree organized accordlng to the kth
component are called primary nodes, the nodes in all of thei‘
other trees-are called secondarz nodes.y_If X is:a primary
‘node 'in ‘a k fold binary search tree, we say X has dimen51on
'k, or more briefly, dim(x)—k. An algorithm for 1nsert1ng 15',
a k-fold binary'search tree is shown below.” (The set of
:descendants of X is con51dered to. 1nc1ude x-' 1t does not

.1nclude any of the ‘nodes in AUX(x) ~ S1m11ar remarks apply

'fh to the term ancestor )
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procedure INSERT(k K,T):
begin

comment insert a. key K into a k= fold b1nary search tree
T; '

. 'create a new node x for key K and 1nsert it into T
according to. component k, th1nk1ng of T as a blnary
search tree;

for each ancestor y of x do
1f Kk 1 -
then SUM(y) := SUM(y) T0 VALUE(x)-

_ else INSERT (k-1,K,AUX(Y)); ’

end;'

Note that k-fold binary search trees may
be used as the basis of an algorithm to respond to an
'orthogonal range query. F1rst, find the set of subtrees 1n
-T wh1ch corresponds to records whose kEh component satlsfles
the query; 1let R be the set of roots of these trees; IfT
~is well balanced O(log n) is a bound on the size of‘R‘and
the time toﬁcompute R. Now sum the results of orthogonal
range’queries on the remaining-k-l dimenSLOns for the
auxlllary trees of all of the nodes in R.\ If T is well
balanced an easy 1nduct10n shows that this algorlthm runs

k

1n O(log n) tlme.. If for each node in the tree, the numberﬂ

of nodes 1n tne left and rlght subtrees dltfers by at most

one, the tree is essentlally the range tree dlscussed in

lB77, BS77] it is shown there that range trees can be

k-1

constructed 1n O(n log n) time- thls is the method used

- there to achleve a fast range query data structure. .

3. Algorithms with partially balanced'trees

In thls paper, we w1ll not requlre that the trees be

balanced as strlctly as in [B77 BS77] ' We begln by show1ng that

1f keys are 1nserted at random accordlng to algor1thm INSERT
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above, T will be fairly well balanced.

Theorem 1. Assume the components of keys are chosen
independently and randomly, in such a way that all keys are
distinct in each compdnent, and in each component the
permutation required to sort the keys is'equallyvlikely.
Then the expected time to insert n keys into a k-fold'binary

k

search tree is O(n log n) .

' Proof. We use induction on k, For.k=l, ciearly
T(n,k)=0(n log n). ANow let k>1. Since the expected
internal path length of T is O(n log n), the e#pectation of
the total number of records inserted in auxiliary trees of
primary nodes of T is O(n log n). By the induction
hypothesis, the time to insert m keys in one of these
auxiliary trees is O(m 1ogk'l k=1

m), which is O(m log n).

Thus the time for all of the O(n log n) insertions must be

o(n logX n). o n

Now we will introduce a data structure which makes it -

possible to perform a sequence of n insertions, deletions,

and orthogonal range queries in worst-caéevO(n logk n) total-

time.. The basic idea is to use a balanced tree scheme. 'A
problem that arises is that rebalancing a node may require
the associated auxiliarf treevfo be completely restructured;
this can be expensive for large trees. We would like to
’guarantee'that this will happen onlybvery rapely for trees
with many ndées. Below we wiil show how trees of bounded
balance [NR73] can be used to producé the desired data

structure.
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Let the rank of a node x, written rank(x), be one mofe‘
than the number of nodes which descend_from x.v The balance
of a node X, written f(x), is the ratio of the rank of the

‘left child of x to rank(x). A node X is «-balanced if
P'(x) € [o]1-x].

'In [NR73] it is shown that if a tree on n nodes is,;
«-balanced for some positive o, then the height of the tree
is O(log n). It is also shown that, assuming «< 1- fE‘/z,“
balance in a tree may be maintained through the use of some
simple rebalancing operations, so that insertions‘and
ideletlons can be done in O(log n) worst- case tlme per'

operation. (We henceforth assume < 1- [2 /2 )

In order to cast the results of [BS77] 1n terms of
bounded balance, we say a k-fold. blnary search tree is a

’>k fold BB(oO tree if the balance of each prlmary or

:_secondary node is in [er,1-«] . It is easy to see that for

such a tree,
Q(n) = 0(logX n)

S(n) = 0(n loghk~l n),

Next we discuss the cost of insertions_and deieticns.'

Lemma 1. Insertion or deletlon of a node in a blnary

sedrch tree on m records can change the balance of the rootj

by only O(l/m)
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The proof is easy and is omitted.

The algorithm INSERTB for insertion in a k fold BB@x)

tree 1s given below; deletlon can be handled 51m11arly.

(In this algorlthm we have not exp11c1t1y shown the updatlng
of the SUM f1elds° this can be done in a manner s1m11ar to

that shown in the INSERT procedure above )

Erocedure INSERTB(k,K,T) ;
.begin '
comment insert key K into a k-fold BB () . tree T, .
- rebalancing as needed to maintain the BB () condltlon°
if k=1 '
) then insert K in T using the standard bounded balance
insertion procedure
else
begin ~
“insert a new node x for key K into T accordlng to
~component k of K, thinking of T as a binary
search tree; : ' Co
‘for each ancestor y of x do
INSERTB(k=-1,K,AUX(y)); -
if some node on the path from the root of T to x
“has balance outside of [o¢;1- x] then
- REBALANCE: begin

root of T to x for which /o(y) & [ 1=w] ;
replace the subtree rooted ‘at y by a range
tree for all of the records stored. 1n that'
subtree; :
end;
end;

NS

end;
b Vo P N

Theorem 3 In the worst case, INSERTB uses O(n 1ogk n)

time for n 1nsert10ns.

Proof. Let T(n,k) be the worst-case~time réquired to_
perform_n insertions on a k-fold BBC&)‘treet‘ Ithis c1ear

~ that

T(n,l) ='O(n'iog‘n);

locate the first node y on the path from the
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’Now suppose k>1. Aside from the time Spentvin the block
1abeled‘REBALANCE the time bound is easy. We will use an
accountlng argument to establish the t1me bound for the

‘REBALANCE block. We begin w1th a few deflnltlons. For any
primary or secondary node x, let g(x) be the dlstance on the
real line from.the p01nt F(x) to the set [1/3 2/3], that

is,
'g(x) .max (9, /o(x) 2/3, 1/3—Io(x))

Let dim(x) be the dimension of the subtree of'which x‘is-a
root. Now we define the imbalance I(T) of a ‘tree T to be

the sum, over all prlmary and secondary nodes x in T with

d1m(x)>l, of

p(x) rank (x) 1ogdim(x)-1 o

We will charge each insertion operation an amount'equaf_

to the increase it produces in the'imbalance of'T,'beforecv

any rebalancing is performed In this paragraph we prove by:"-

‘induction on k that a 31ngle 1nsert10n ‘can 1ncrease I(T)
only by O(log n). First note that by Lemma 1 ﬁ(x) rank(x)-'}

can be seen to 1ncrease by at most 0(1) per 1nsert10n for-
any node in the tree. Thus for k=2, the 1ncrease:1n I(T)
durfng an insertion,is 0(log2 n), slnce only nodes on the
path from ‘the root to the 1nserted node are affected Nowl
B ”we prove the assertlon for d1mens1on k, assumlng 1t holds

i for 1ower dlmen51ons. The 1ncrease of ﬁ(x) rank(x)'for a ;

prlmary node in T is 0(l) as in the basis, so the change 1n

I(T) due to these nodes is O(log n ° 1ogk 1 n) or O(logk n)
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However, we also insert the new key into O(log n) auxiliary
trees, each of dimension k-1. By the induction hypothesis,

k=1

the increase in I(T) for each such insertion is O(log n),’

for a total of O(logk n) . Thus the total increase in I(T)
for a k-fold BB(x) tree due to a single insertion is

o(logk ny.

Next we show that the decrease in I(T) due to a

: REBALANCE operation at node y is sufficient to cover the
coét of the operation. Note that after the operation, B is
@ for all primary or secondary nodes in the new shbtree,
since in a range tree each node has F in [1/312/3]. On the
other hand, we are pefforming the operation since node y.had‘

a balance outside [«,1-«]. Thus, initially, we had

BY) > o= 1/3.

Let r = rank(y) and d = dim(y). Then the decrease in I(T)

is at least
(%=1/3) r 1ogd"l n.

On the other hand, from [B77, BS77] we know that the time

required to construct the range tree is
o(r logd»"l r).:

Thus by choice of suitable'qonstants in the accounting
argument, we can guarantee that the.decrease‘in imbalance

covers the cost.
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Since ‘the imbalance of an 1n1t1al empty tree is @, and
never goes negative, we have shown that the amount charged
to the operations covers the rebalanc1ng costs., This

completes the proof. . o . SN

bNow we btiefly‘explain how deletions.can'be perfotmed.

We use the method described for deletions‘from a:binary‘ .

i search‘tree described in [AHU74],'followed by updates On;the
AUX‘and SUM fields, and rebalancing; .The AUX fieldsvarei
updated in much the same way as in procedure INSERTB- 'whenv
a node is inserted (respectively deleted) at some p01nt in
‘the tree, a corresponding 1nsert1on (respectively deletion)

"must be made in the AUX fields of all.of its'ancestors,i It

is tempting to say that deletion of a node X which déScends

‘ from a node y, with dim(y)=1, should be followed by the |

_operation
. SUM(y) := SUM(y) O vALUE(x) ™

This is disallowed, howevet, since we.haVe no guarantee_that

|9 admlts 1nverses. Instead we calculate SUM(y) by |
comb1n1ng the SUM fields of the chlldren of y under - [];. Aﬁf
'argument much like that used for 1nsertions can now be used:

‘to show that the time bound still holds.

4. Conclusions“' o

We have presented an algorithm for dynamic range queryti -

‘.problems which is faster than the prev1ous best known

approach by'a factor of log n; it also. allows deletions toa o
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bé handled'readily. Unfortunately, our approach is soﬁéWhat
more ad hoc than that used in [B77]; we have not developed
a general transformation which can be used to add range
reétriction capability to an arbitrary dynamic data

structure for a decomposable problem. We plan to address

‘this topic in another paper. o

It should be noted that although we used trees of

- bounded balance, the rebalancing operations discussed in

INR73] are not essential to our data structure. When
rebalancing a.node of dimension gfeater than 1, we
completely restructure the tree; further, for trees of
dimension'one, we could use any balanced tfee scheme which

guarantees logarithmic behavior.
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