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Fix a number K, of colors. We consider the usual backtrack algorithm for the decision problem of K-colorability of a graph 

G. We show that the algorithm operates in average time that is O(l), as the number of vertices of G approaches infinity. For 

instance, a backtrack search tree for 3-coloring a graph has an average of about 197 nodes, averaged over all graphs of all sizes. 
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Consider the following NP-complete problem: 

“Given a graph G and a positive integer K. 
Can the vertices of G be properly colored in 

K (or fewer) colors?” 

We will show that the backtrack search tree for 
this problem has an average of O(1) nodes, as 
V = IV(G)1 grows without bound. Therefore, the 
NP-complete problem can be solved by an algo- 
rithm that certainly delivers the correct answer, 
and that does so in an average of O(1) time in V. 

ing to every proper coloring of H,(G) in K colors. 
A node v’ at level L is connected by an edge of the 
search tree to a node v” at level L + 1 iff the colors 
of vertices 1, 2,. . . , L are the same at v’ and v”. 
Level 0 contains a single root node, corresponding 
to the empty coloring. 

If, for example, G is the graph given in Fig. 1, 
then the complete backtrack search tree for G, in 
colors 1, 2, 3, is as shown in Fig. 2. This search 
tree has 46 nodes. 

This means, of course, that typically the algo- 
rithm will never even look at most of the input 
data and will halt with “no”. While it is clear that 
this must happen frequently, it is noteworthy that 
it happens often enough that the few cases of 

exponentially long search time do not disturb the 
conclusion that the average search tree if of 

bounded size. 

Among all graphs G E 9” the complete graph 
K, has the smallest search tree, and it has 

f,(K)=l+K+K(K-l)+K(K-l)(K-2) 

+ ... +K! 

nodes, if n 2 K. 
Again, among all graphs G E 9”, the com- 

pletely disconnected graph K, has the largest 

We will write H,(G) for the subgraph that is 
induced by vertices 1, 2,. . . , L of the vertex-labelled 
graph G. 99’” will denote the set of all such graphs 
G of n vertices. By the search tree of G we mean 
the tree whose nodes are on levels L := 0, 1,. . . , V, 
and in which there is a node at level L correspond- 
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search tree, and it has 

F,,(K)=l+K+K’+ . ..+K” 

nodes. 
Hence, for all graphs G E 3,, the number 

P(G) = P(G ; K) 

Proof. Suppose that the color classes of C have 
cardinalities s,.. ,sK. A graph G of L vertices 
admits C as a proper coloring iff the edges of G 

run between different color classes. The number of 
edges that G might have is therefore 

. i K \ 

of nodes in the backtrack search tree of G satisfies 

f,,(K) < P(G) < F,(K). and the number of G that admits C is exactly 

Note that F,(K) grows exponentially fast with n, 
but that f,,(K) = O(1). 

So much for the extremes. Now the question is, 
on the uoeruge, how big is P(G) for G E 9,,,? 

Theorem. If p,, = P,(K) is the wet-age of p(G) over 
ull G E 9,, for u fixed K, then 

lim /3, = h(K) < ~1) (1) 
n 

This is maximum when all s, are equal to L/K, 
and therefore the number of such G cannot exceed 

Q(L). 0 

exists for ever)- K = 1, 2,. . 

Lemma 2. If P(K, G) is the number of proper 
colorings of the oertices of G in K colors, theta for 

the sum M,,(K) of P(K, G) over all gruphs G of L 
vertices we huve the estimute 

To prove this theorem, we first have the follow- 
ing. M,(K)< KL2L’(I l/U,>, 

Lemma 1. Let C he one of the KL possible assign- 
ments of K colors to L abstract ‘vertices 1, 2,. . , L. 
The number of graphs G of L vertices such thut G 
admits C us u proper vertex coloring cannot ex-teed 

Proof. Define a function f on each pair (C, H) 
consisting of one of the KL K-colorings. C. of L 
abstract ‘vertices’, and a graph H of L vertices. as 
follows: f(C, H) = 1 if C is a proper coloring of H 
and = 0 otherwise. 

120 



Volume 18, Number 3 INFORMATION PROCESSING LETTERS 30 March 1984 

Then we have 

M,(K)= c P(K, H) 
H E 8, 

=X{ c f(CH)) 
C HEgL 

G KLmax 
C 

( c f(Ct “I}. 

HE9L. 

Hence M,(K) is at most KL times the maxi- 
mum number of graphs that can belong to any 
given coloring of 1,. . . , L in K colors, and the 

result follows by Lemma 1. q 

Proof of the theorem. Now we prove the theorem. 
For the average search tree size we have 

p, = 2-(3x P(G) 

9” 

= 2-‘;‘c i P(K, HL(G)) 

L=O HEFYl 

( c pw, “I). 
H,(G)=H 

Consider the innermost sum. How many graphs 
G of n vertices have a given graph H, of L vertices, 
as their H,(G)? Of the in(n - 1) possible edges of 
G, f L(L - 1) of them are determined by H. Hence 

there are exactly 

2(n(n-1)/2-L(L-1)/2) 

such graphs G. Hence we have 

P, = 2-‘;’ i c p(K, H)$-‘9 
L=O HESS 

Now if we use the result of Lemma 2, we get for 
the average number of nodes in a backtrack 
search tree, an ‘exact formula’ and an estimate, 
namely 

B, = c 2-‘:‘M,(K), 
L<ll 

(2a) 

(2b) 

The proof of the theorem is complete, since the 
infinite series is clearly convergent, and from (2a) 
the monotonicity of { B, > is clear. q 

The first few values of h(K), computed from 
(2a), are approximately 2.64, 13.9, 197, 7733, 
755000 for K = 1,. . ,5, respectively. 

Remark. The estimation of M,(K) in Lemma 2 
was inspired by the work of Read [l] and Wright 
[2], who studied the function M,(K) (“the number 
of K-colored graphs on L labeled nodes”) above 

and estimated its growth with much ‘more preci- 
sion than we needed for our present purposes of 
algorithmic analysis. 

In a forthcoming paper, to be published 
elsewhere, E.A. Bender and the present author 
investigate in more detail the properties of the 
distribution of search tree sizes. 
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