The Incompleteness
of Misra and Chandy’s Proof Systems

Van Nguyen

TR 84-634
September 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

The Incompleteness of Misra and Chandy's Proof Systems

Van Nguyen
Computer Science Department

Cornell University

ABSTRACT

In this paper we show that Misra and Chandy’s proof systems for networks of communicat-

ing processes ([1, 2]) are incomplete.

1. Introduction

In [1, 2], proof techniques for networks of processes in which component processes communi-
cate exclusively through messages are given. A process is specified solely by its input-output
behaviors. This makes proofs and proof rules simple, since internal details of a network are
ignored. The proof technique in [2], an extension of that in [1], allows specification of liveness

properties.

We give a simple example to show that these proof systems are incomplete. That is, there
exists a specification that is true but not provable in the systems. The example is not contrived

but very natural.

2. The proof systems

We assume familiarity with the proof systems in [1, 2], but provide a small introduction. In

[1], a specification of a process h has the form r |h |s. Formally, this means:
. ' -
(i) s holds for the empty trace;

(i) if r holds up to point k in any trace of h, then s holds up to point (k+ 1) in that trace,

forall £ > 0.
The proof rules can be conveniently stated in one rule:
It (i) r |b s, 1=1,2,..
(i) A,s, = s
(i) Ay, Ar = A,
then r | h |s holds, where h is the network formed from the A,’s. 7

The proof system in [2] is similar, except that there is one more assertion in the specification
and two more conditions in the proof rule. This extension makes it possible to specify and prove

(some) liveness properties.

A specification has the form r |i |s. Formally, this means:
q

(i) s holds for the empty trace;

(i) if r holds up to point k in any trace of h, then s holds up to point (k+ 1) in that trace,

forall £ > 0;

(iii) if r holds at all points of a trace t of h and q holds for t then there exists a trace t’ of h

that is an extension of t (i.e. t’ is t followed by an event).

The proof rule is:
h
It (Q)r |q—’|s,, i=1,2,..

(i) A3y = 8
(lll) ASs Ar = Ar
(iv) Avss A g = Vig

(v)A,ss A g = Y (trace length of h,)<F(trace length of h) for some function F

then r| L |s.
q

3. Proof of incompleteness

We now give a simple example to show that the proof systems in [1, 2] are incomplete. We

first show that the proof system in [1] is incomplete.

Let process id have one input port and one output port. Process id iteratively reads values
from its input port and writes them on its output port. Let id, and id; be two copies of id. Let

H be a network formed by running id, and id, in parallel, as shown in Figure 1.

Figure 1

Let r |H |s be a specification of H, where

r = i1 =i=j,=J=]| (i.e. the trace is empty)
s = (iy=i=7,=7Jo=]]) (i.e. the trace is empty
V (|5]=1 A ((e=71=72=])) or consists of one input value at i,
V (Jiz]=1 A (i:=51=72=]))) or consists of one input value at 15)
Here, [y, . . ., an] denotes the sequence with elements a,, ..., 8, and | i| denotes the

length of the sequence i.

It is clear that r |[H |s is a valid specification. However, it is not provable in the proof sys-
tem.

Suppose, on the contrary that, r |H is is provable. Then tt;ere exist ry, 8;, ro, 8o such that

(i) rq]id, |5y, rolid,|s, are true

() s; A s = s

(i) s;, AsgAr = riAr,

This implies that either s, = trace is empty or s, = trace i3 empty, since s means that
the trace has at most one (input) value. (s; cannot refer to iy, jo. Similarly, s, cannot refer to
i, 71. If s, says (among other things) that under some condition ¢, the trace has at least one ele-

ment then s; A s, says (among other things) that under the condition ¢, A g, the trace has at

least two elements. Clearly, this does not imply s.)
‘Neither $, nor s, can be F (false) because they hold for the empty trace.

But if s, = trace is empty, what can r, be? r, can only be F, by the interpretation of the
specification. So ry A r, = F. From (iii), it follows that s; A s, Ar = F. s; A s, A r can-

not be F, since s,, s, r all hold for the empty trace. This leads to a contradiction.

A similar argument holds for the case s, = trace is empty. So the proof system of (1] is

incomplete.

The same example is used to show that the proof system of [2] is incomplete. r | TH |s is

rue

true but not provable in the system (where r, H, s are as above). For, if it is provable then by

comparing the two proof rules, it is easy to see that r |H [s is provable in the system of [1], which

is a contradiction.

The problem with these proof systems seems to be that an assertion on the whole network

cannot be decomposed into a conjunction of assertions on the component processes in general.

One way to make the proof system of [1] complete is to add the rule

If True |h |s then r [h |s A (the trace minus its last element satisfies r)
Clearly, the above rule is valid. Here is a sketch of the proof of its completeness:

Let there be a set of primitive processes {P,} together with their precise specifications
True | P, | s,. (A specification r |h |s is precise if s is the strongest postcondition with respect to
r,i.e. if r |h |s’ then s implies s’.) Let H be a network formed from primitive processes P,, i =

1,.., n and let r |H |s be a valid specification. Then
True |H | A, s, is valid and is precise.

Sor |H|A,s, A (the trace minus its last element satisfies r) is also valid and precise, as can
be verified using the model of traces in [1]. This implies that the postcondition of the last

specification implies s. So r |H |s is provable in the system. The system is complete.

Unfortunately, the expression ‘‘the trace minus its last element’’ is complicated and difficult
to express formally, since one cannot refer to the whole trace in the assertions, i.e. variables are
not allowed to range over traces. The only way to refer to a trace is through port variables and

the ‘‘precedes’ relation on the elements of the trace. This makes the proof rule look artificial.

Acknowledgement

I wish to thank Professor David Gries for a careful reading of the manuscript and Professor

Susan Owicki for valuable discussions.

References
[1] Misra, J., and Chandy, K.M. Proofs of networks of processes, [IEEE Trans. Soft. Eng. SE-7,

July 1981, 417-426.

[2] Misra, J., Chandy, K.M. and Smith, T. Proving safety and liveness of communicating
processes with examples, SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, Aug 1982, 201-208.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif

