
Information Processing Letters 20 (1985) 83-85 15 February 1985
North-Holland

ON T H E C O R R E S P O N D E N C E BETWEEN T W O CLASSES OF R E D U C T I O N S Y S T E M S

Satish R. T H A T T E

Department of Computer and Communication Sciences, 2500 East Engineering, University of Michigan, Ann Arbor, MI 48109,
U.S.A.

Communicated by G.R. Andrews
Received 26 January 1984
Revised 12 June 1984

Kevwords: Term-rewriting, constructors, semantics

1. Introduction and preliminaries

Equationally specified reduction systems [4,7,10]
are a model of computat ion that is rather attrac-
tive for certain applications, e.g., for defining
primitive functions for new types in applicative
programming. At least two distinct classes of such
systems have appeared in the literature. Huet and
Levy [4], O'Donnell [7] and Rosen [9] deal with
what we call class C I systems (Ci-systems, for
short), while the programming language HOPE [1],
and the work in [6,10] exemplifies class C n sys-
tems (Cn-systems , for short). C I is designed to be
as inclusive as possible while ensuring that its
members satisfy the Church-Rosse r property [9].
The notion of constructors, on which C n is based,
is akin to a similar notion in algebraic specifica-
tions [2]. On the face of it, class C I seems to be
strictly larger than class C n, and in a sense it is.
However, it turns out that there is a natural corre-
spondence between the two classes which permits
any C i-system to be embedded without change of
behavior into a C n-System, as shown in this article.
We believe that difficult problems such as sequen-
tial evaluation strategies and construction of
semantic models can be solved more easily for C n,
but the solutions are applicable to C x via the
transformation.

A reduction system is based on a non-empty
ranked alphabet ~ =2g0U . - . UY.,, which con-

tains all function symbols in the system. T x de-
notes the set of all (ground) terms formed with
symbols in Z. In addition, terms may include
nullary variables. Given a term f(tl, . . . , tk), the
occurrences of function symbols in ta , t k are
said to be inner occurrences in relation to this
term. A term is said to be linear iff no variable
occurs more than once in it. A reduction system R
is simply a set {E x E m } of equations, where
each E i is an ordered pair (f i , ri) of terms. A path
p in a term t is a possibly empty string of integers.
We say that p reaches subterm t / p in t. The empty
string A reaches the term itself, the string " k "
reaches the kth argument, " k m " reaches the mth
argument of the kth argument etc. Finally, t[p = w]
denotes the term obtained by replacing t / p at p by
w. The first-order unification algorithm [9] is de-
noted by UNIFY. The reduction relation ---, and
its reflexive transitive closure ~ * have their usual
significance in the context of term-rewriting sys-
tems. Our main result is concerned with the not ion
of the 'meaning' of functions in ~, as determined
by R. The following definition expresses the most
comprehensive operational meaning of a function
in a reduction system. Let ~ (S) denote the
powerset of S. For a reduction system R operating
in Tx, the meaning function ~R maps each symbol
f ~ Y'k to a function ~tR(f):(Tx) k ~ (T x) , such
that

~tR (f)(t 1 , tk) = {y [f (t l , . . . , tk) ---) * y in R }.

0020-0190/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 83

Volume 20, Number 2 INFORMATION PROCESSING LETTERS 15 February 1985

2. Main definitions and results

The two classes of reduct ion systems of interest
to us are def ined by distinct sets of restrictions.
Actually, three of the four restr ict ions are c o m m o n
to both, and only the four th restrict ion dis-
t inguishes them. The three c o m m o n restrictions
are the following.

K1. Each fi, 1 ~< i < m, mus t be linear.

K2. Each variable that occurs in r i must also
occur in d i , l ~ < i ~ < m .

K3. Given any i , j such that l ~ < i , j ~ < m , if
UNIFY(ffi, Ej) succeeds yielding o~, then ri(x = rj(x.

The four th and last restr ict ion for a Ci-sys tem
is the following.

I(4. If u is a sub te rm of d i, u #: d i, and u is not a
variable, then UNIFY(U, 6) fails for 1 ~<j ~< m.
Note: i = j is possible.

In these and all future uses of UNIFY we assume
that the variables used in the two terms are dis-
joint . This may be accompl ished by renaming
wi thout loss of generality.

In order to def ine C n we need a prel iminary
definit ion. In our system R, let d i = f i (t i l , tin~),
1 ~< i ~< m. Let F = {fi I1 ~ i ~ m) . The last restric-
t ion for a C n-System is the following.

K5. No symbol in F occurs in any t ij, 1 ~< j ~< n i,
l~< i~<m.

The symbols in Y. - F, i.e., those not def ined by
equations, are called constructor symbols . The strict
division be tween cons t ruc tor and noncons t ruc to r
symbols in Cn-sys tems resembles the strict divi-
sion between predicate and func t ion symbols in
logic p r o g r a m m i n g [5].

It is easy to show that K5 implies K4, i.e., that
C n is a subset of C I. We wish to show that, for
every system R in C I, there is a cor responding
system R** in C n such that the behavior of R**
parallels that of R within the d o m a i n of discourse
for R.

To show this, suppose R belongs to C r With
each f ~ F associate a new (constructor) symbol cf.
Let Y.# = E t3 (cf If ~ F}. Let t' denote the term t
with every inner occurrence of f ~ F replaced by cf
and t" the term with all occurrences so replaced.
R # is the smallest system which satisfies the fol-
lowing two assertions:

(1) If (d , r) ~ R, then (d ' , r) ~ R #.
(2) Whenever u = f(t I tk), f ~ F, is a

proper subterm of a lef t -hand side in R, (u' , u")

R #

Example (Equat ions are writ ten as d = r for read-
ability). Let R be:

(1) f(g(con(nil), x))= r l ,
(2) f(g(con(f(nil)), x))= r2,
(3) g(nil, x) = r3.

Then R # is:

(1) f(cg(con(nil), x))= r l ,
(2) f(cg(con(cf(nil)), x))= r2,
(3) g(nil, x) = r3,
(4) g(con(nil), x) = cg(con(nil), x),
(5) g(con(c r (nil)), x) = cg(con(c r (nil)), x),
(6) f (n i l)= cf(nil).

R* clearly satisfies K5 since every lef t -hand side
in it is of the form t'. Moreover , it belongs to C II
since KI and I(2 are unaffected, and K3 is satisfied
since none of the new lef t -hand sides required by
assertion (2) can be unif ied with those required by
assertion (1) since R satisfies K4.

It remains to demons t ra te the equivalence of
behavior between R and R*. R # is expected to
deal with terms in Tx , which contains T x as a
subset. The map h : Tx , --, T x is defined as h(e) = d
where d is obta ined f rom e by replacing every
occurrence of cf in e by f, for every f ~ F. Clearly,
h(t ') = h(t") - - t.

Lemma 1. Given t I and t 2 in Tx, , t 1 ~ t 2 in R #
only i f h(t I) --** h(t2) in R.

Proof (sketch). If t 1 ---, t 2 by an equat ion of the
fo rm (u' , u") , then h(tx) = h(t2). If the equat ion is
of the form (d ' , r), then h (t l) ~ h(t2) by (d , r) in
R. []

84

Volume 20, Number 2 INFORMATION PROCESSING LETTERS 15 February 1985

Lemma 2. Given t 1 and t 2 E T:~, t~ ---) t 2 in R only i f
t I --)*t 2 in R #.

Proof (sketch). Suppose the equat ion E = (d, r) is
used in R to derive t 1 ---) t 2. There is a p such that
t 2 = tl[p = ra], and t l / p = v = dot. If / contains
any proper subterms that satisfy assertion (2)
above, then the corresponding subterms of v can
be reduced using the equations in t roduced by that
assertion in an innermost first fashion until the
reduced version of v becomes an instance of / ' .
The equation (d ' , r) can then be used to obtain t 2.
[]

Recall that R # operates in T:~,, in the context of
the definition of meaning functions. In the Theo-
rem below, h has been extended pointwise to act
on sets of terms.

Theorem. For all f ~ Zk, 0 ~< k ~ n, p.R(f) c:: h ×
~R,,(f) in the sense that, for each (t 1 t k) ~
(T~) k,

t tR(f)(t l tk)---- h(~ta, , (f)(t l , . . . , t k)) .

Proof. We have

~tR(f)(t 1 tk) _C h(~tR~ (f)(t 1 tk))

by Lemma 2,

~tR(f)(tl, . . . , tk) _~ h(l~R,,(f)(tl, . . . , tk))

by Lemma 1. []

3. Conclusions

We have demonst ra ted the possibility of simu-
lating any Cx-system with a Cu-system, The con-
struction is useful in many practical situations
where only a small number of lef t-hand sides
violate I(,5, and hence the size of R # increases only
modest ly over that of R. In the worst case, if all
the original lef t -hand sides are m a d e up almost
entirely from symbols in F, the size of R # could be
quadrat ical ly larger than that of R. However, R #
is not always the smallest Cn-s imulat ion of R. For
instance, in the Example illustrating the construc-
tion of R #, equations (4) and (5) could be replaced

with the single equation

g(con(x) , y) - cg (con(x) , y) ,

considerably reducing the size.
The equations of the form (u' , u ") are obvi-

ously responsible for the expansion of the size of
R # over R. The terms u' are pat terns for what
Hof fmann and O'Donnel l call ' root-stable ' terms
[3]. Root-stabili ty of a term t means t cannot
become a redex. This situation is easy to detect in
sequential evaluation, hence in the sequential case
the equations (u' , u") can be dispensed with. The
question of optimal simulation of Ci-systems in
the nonsequential case is still open.

Acknowledgment

I would like to thank Michael O'Donnel l and
Fritz Ruehr whose comments on previous draft of
the paper led to a considerable improvement of
the presentation.

References

[1] R.M. Burstall, D.B. MacQueen and D.T. Sanella, HOPE:
An experimental applicative language, in: LISP-80 Con-
ference, Stanford, CA, 1980.

[2] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wrigh t ,

Abstract data types as initial algebras, and correctness of
data representations, in: Proc. Conf. on Computer Graph-
ics, Pattern Recognition, and Data Structures, 1975.

[3] C.M. Hoffmann and M.J. O'Donnell, Implementation of
an interpreter for abstract equations, in: Proc. 11th POPL,
Salt Lake City, 1984.

[4] G. Huet and J.-J. Levy, Computations in nonambiguous
linear term rewriting systems, Tech. Rept. 359, INRIA,
France, 1979.

[5] R. Kowalski, Logic for Problem Solving, Artificial Intelli-
gence Series (North-Holland, Amsterdam, 1979).

[6] C.F. Nourani, Abstract implementations and their cor-
rectness proofs, J. ACM 30 (1983) 343.

[7] M.J. O'Donnell, Computing in Systems Described by
Equations, Lecture Notes in Computer Science 58
(Springer, Berlin, 1977).

[8] J.A. Robison, A machine-oriented logic based on the
resolution principle, J. ACM 12 (1965) 23-41.

[9] B.K. Rosen, Tree-manipulating systems and Church-
Rosser theorems, J. ACM 20 (1) (1973).

[10] S.R. Thatte, Algebraic types in lazily evaluated applicative
languages, Ph.D. Dissertation, University of Pittsburgh,
1982.

85

