
Information Processing Letters 22 (1986) 307-309
North-Holland

30May1986

LIMITS FOR AUTOMATIC VERIFICATION OF FINITE-STATE CONCURRENT SYSTEMS

Krzysztof R. APT * and Dexter C. KOZEN **
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

Communicated by David Gries
Received l May 1985
Revised 29 July 1985

Keywords: Logics of programs, program verification, concurrency

In one of the most exciting developments in the
theory of program correctness, Clarke and Emer­
son [1] and Queille and Sifakis [4] developed sys­
tems which automatically check whether a given
finite-state concurrent program satisfies a given
temporal formula. These systems allow us to verify
the correctness of various nontrivial concurrent
programs automatically. For example, automatic
verification of correctness of the alternating bit
protocol on the system of [2] took just over 19
seconds of CPU time.

An obvious limitation of these systems comes
from the fact that only finite-state programs can
be checked for correctness. Although many inter­
esting concurrent programs are in fact finite-state,
they are often given schematically in terms of a
parameter n, representing the number of concur­
rent processes. Such a schematic program really
represents an infinite sequence of uniformly de­
fined finite-state programs. Consider, for example,
solutions to the mutual exclusion problem. A solu­
tion for n processes competing for access to a
critical section is to be correct for any value of
n;;;,: 2. To check correctness of such a solution
using the systems of [1,2,4] (provided, for each
n ;;;,: 2, the solution uses only a finite number of
states), one would have to verify the solutions for

* On leave from LITP, Universite Paris 7, 75251 Paris, France.
** Present affiliation: Computer Science Department, Cornell

University, Ithaca, NY 14853, U.S.A.

2 processes, 3 processes, etc. obtained from the
schematic one by plugging in the values 2, 3, etc.
for n. This cannot be done in finite time. An
obvious question is whether the systems of [1,2,4]
can be extended to handle schematic programs.

We show in this short article that in general
such an extension cannot exist. The proof of this
fact is obvious and the main difficulty lies rather
in a satisfactory formalization of the problem. In
subsequent considerations we abstract from the
particular representation of the finite-state pro­
grams and from the particular form of the tem­
poral logic considered. all functions considered
are unary unless stated otherwise.

Let P, <J> denote (codes of) total recursive func­
tions which for each n produce a finite-state pro­
gram P(n) and a temporal formula <j>(n) in a given
temporal logic, respectively. We call the pair (P, <I>)
a verification problem.

A typical example of a verification problem is
the following (incomplete) solution to the mutual
exclusion problem for n processes: P(n) is the
schematic program [P1 II ... II Pnl where for i = 1,
2, ... , n, P; is the program

Z; := t;
while true do

od

while i * min{j I zi = j} do skip od;
CS;; / * critical section*/
z;:=n

0020-0190/86/$3.50 ® 1986, Elsevier Science Publishers B.V. (North-Holland) 307

Volume 22. Number 6 INFORMATION PROCESSING LETTERS 30 May 1986

and <jl(n) is the temporal formula

/\ zi = 0--> /\ o,(at CSJ' at CSJ.
1 ~i::i;:,;;;n 1 ~i<j~n

Here, CSi for i = L 2, ... , n is a further unspeci­
fied finite-state program which does not modify
z1 , ... , z0 • Observe that, for each n, P(n) is a
finite-state program satisfying <j>(n).

Let R be any recursive set of pairs of codes
(P, cj>) of total recursive functions containing all
pairs of finite-state transducers. Let QR be the
relation

{
\in (P(n) satisfies <ji(n))

QR(P,<ji)= if(P,<ji)ER,
false otherwise.

We now show that QR is not semi-decidable. In
fact, the following stronger result holds.

Theorem. Any relation QR is IT?-complete (in the
terminology of Rogers [5]).

Proof. By the results of [1,2,4] there exists an
algorithm whose running time is polynomial in the
number of states and the length of the temporal
formula which allows us to decide whether a given
finite-state program satisfies a given temporal for­
mula. (Clarke et al. (1,2,4] use branching time
logic, but the Theorem holds for any temporal
logic for which this validity problem is decidable.)
Thus, QR is in rr?. To show that QR is rr?-hard,
let M be an arbitrary Turing machine with no
input, and let P(n) be the following finite-state
program:

begin
flag:= false;
for i := 1 to n do

simulate one step of M
od;
if M has not yet halted then flag:= true
end

Then the final value of the Boolean variable flag
is true iff M has not halted within n steps. Thus,

308

,HALT(M) = 'v'n P(n) satisfies the formula

o(at end --->flag)

= (P, o(at end~ flag)) E QR,

where D stands for the usual 'always' operator of
linear temporal logic. We can also write

,HALT(M) = 'v'n P(n) satisfies the formula 0 flag

= (P, ()flag) E QR,

where () stands for the usual 'eventually' operator
of linear temporal logic (see, e.g., [3]).

Under a suitable encoding, P can be computed
by a finite-state transducer, since it need only
attach a bounded integer counter to a description
of M; and the function <P is constant. This proves
the Theorem, since --, HALT is rr?-complete. D

Note that we have in fact proved that there is a
fixed formula <P such that the relation QR(·, <1>) is
rr?-complete.

The proof does not make use of parallelism; for
each n, P(n) is a sequential program. By using
instead of P(n) a parallel program [P(n) II ... II P(n)]
consisting of n identical components, we get the
same result addressing parallel programs ex­
plicitly.

The Theorem shows that even very simple tem­
poral properties of schematic finite-state programs

·are not semi-decidable. Clearly, the result does not
depend on the logic chosen. Indeed, for the case of
deterministic programs, linear and branching time
temporal logics coincide. The program properties
considered in the proof can also be expressed in
Hoare's logic, dynamic logic, or any other rea­
sonable for formalism appropriate for studying
program correctness.

Acknowledgment

We thank Martin Abadi for helpful comments
on an earlier draft. We have recently learned that
a similar result was proved independently by
Lenore Zuck, who showed undecidability by
transforming register machine programs into sym­
metric finite-state concurrent programs.

Volume 22, Number 6 INFORMATION PROCESSING LETTERS 30 May 1986

References

[l] E.M. Clarke and E.A. Emerson, Design and synthesis of
synchronization skeletons using branching time temporal
logic, in: Logics of Programs, Lecture Notes in Computer
Science 131 (Springer, Berlin, 1982).

[2] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic
verification of finite state concurrent systems using tem­
poral logic specifications: A practical approach, in: Proc.
lOth POPL, Austin, TX, 1983.

[3] Z. Manna and A. Pnueli, Verification of concurrent pro­
grams: Temporal proof principles, in: Logics of Programs,
Lecture Notes in Computer Science 131 (Springer, Berlin,
1982).

[4] J.P. Queille and J. Sifakis, Specification and verification of
concurrent systems in CESAR, in: Proc. 5th Internal. Symp.
on Programming, Torino, Lecture Notes in Computer Sci­
ence 137 (Springer, Berlin, 1982).

[5] H. Rogers, Jr., Theory of Recursive Functions and Effec­
tive Computability (McGraw-Hill, New York, 1967).

309

