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In one of the most exciting developments in the 
theory of program correctness, Clarke and Emer­
son [1] and Queille and Sifakis [4] developed sys­
tems which automatically check whether a given 
finite-state concurrent program satisfies a given 
temporal formula. These systems allow us to verify 
the correctness of various nontrivial concurrent 
programs automatically. For example, automatic 
verification of correctness of the alternating bit 
protocol on the system of [2] took just over 19 
seconds of CPU time. 

An obvious limitation of these systems comes 
from the fact that only finite-state programs can 
be checked for correctness. Although many inter­
esting concurrent programs are in fact finite-state, 
they are often given schematically in terms of a 
parameter n, representing the number of concur­
rent processes. Such a schematic program really 
represents an infinite sequence of uniformly de­
fined finite-state programs. Consider, for example, 
solutions to the mutual exclusion problem. A solu­
tion for n processes competing for access to a 
critical section is to be correct for any value of 
n;;;,: 2. To check correctness of such a solution 
using the systems of [1,2,4] (provided, for each 
n ;;;,: 2, the solution uses only a finite number of 
states), one would have to verify the solutions for 
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2 processes, 3 processes, etc. obtained from the 
schematic one by plugging in the values 2, 3, etc. 
for n. This cannot be done in finite time. An 
obvious question is whether the systems of [1,2,4] 
can be extended to handle schematic programs. 

We show in this short article that in general 
such an extension cannot exist. The proof of this 
fact is obvious and the main difficulty lies rather 
in a satisfactory formalization of the problem. In 
subsequent considerations we abstract from the 
particular representation of the finite-state pro­
grams and from the particular form of the tem­
poral logic considered. all functions considered 
are unary unless stated otherwise. 

Let P, <J> denote (codes of) total recursive func­
tions which for each n produce a finite-state pro­
gram P(n) and a temporal formula <j>(n) in a given 
temporal logic, respectively. We call the pair (P, <I>) 
a verification problem. 

A typical example of a verification problem is 
the following (incomplete) solution to the mutual 
exclusion problem for n processes: P(n) is the 
schematic program [P1 II ... II Pnl where for i = 1, 
2, ... , n, P; is the program 

Z; := t; 
while true do 

od 

while i * min{j I zi = j} do skip od; 
CS;; / * critical section*/ 
z;:=n 
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and <jl(n) is the temporal formula 

/\ zi = 0--> /\ o,(at CSJ' at CSJ. 
1 ~i::i;:,;;;n 1 ~i<j~n 

Here, CSi for i = L 2, ... , n is a further unspeci­
fied finite-state program which does not modify 
z1 , ... , z0 • Observe that, for each n, P(n) is a 
finite-state program satisfying <j>(n). 

Let R be any recursive set of pairs of codes 
(P, cj>) of total recursive functions containing all 
pairs of finite-state transducers. Let QR be the 
relation 

{
\in (P(n) satisfies <ji(n)) 

QR(P,<ji)= if(P,<ji)ER, 
false otherwise. 

We now show that QR is not semi-decidable. In 
fact, the following stronger result holds. 

Theorem. Any relation QR is IT?-complete (in the 
terminology of Rogers [5]). 

Proof. By the results of [1,2,4] there exists an 
algorithm whose running time is polynomial in the 
number of states and the length of the temporal 
formula which allows us to decide whether a given 
finite-state program satisfies a given temporal for­
mula. (Clarke et al. (1,2,4] use branching time 
logic, but the Theorem holds for any temporal 
logic for which this validity problem is decidable.) 
Thus, QR is in rr?. To show that QR is rr?-hard, 
let M be an arbitrary Turing machine with no 
input, and let P(n) be the following finite-state 
program: 

begin 
flag:= false; 
for i := 1 to n do 

simulate one step of M 
od; 
if M has not yet halted then flag:= true 
end 

Then the final value of the Boolean variable flag 
is true iff M has not halted within n steps. Thus, 
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,HALT(M) = 'v'n P(n) satisfies the formula 

o( at end --->flag) 

= (P, o(at end~ flag)) E QR, 

where D stands for the usual 'always' operator of 
linear temporal logic. We can also write 

,HALT(M) = 'v'n P(n) satisfies the formula 0 flag 

= (P, ()flag) E QR, 

where () stands for the usual 'eventually' operator 
of linear temporal logic (see, e.g., [3]). 

Under a suitable encoding, P can be computed 
by a finite-state transducer, since it need only 
attach a bounded integer counter to a description 
of M; and the function <P is constant. This proves 
the Theorem, since --, HALT is rr?-complete. D 

Note that we have in fact proved that there is a 
fixed formula <P such that the relation QR(·, <1>) is 
rr?-complete. 

The proof does not make use of parallelism; for 
each n, P(n) is a sequential program. By using 
instead of P(n) a parallel program [P(n) II ... II P(n)] 
consisting of n identical components, we get the 
same result addressing parallel programs ex­
plicitly. 

The Theorem shows that even very simple tem­
poral properties of schematic finite-state programs 

·are not semi-decidable. Clearly, the result does not 
depend on the logic chosen. Indeed, for the case of 
deterministic programs, linear and branching time 
temporal logics coincide. The program properties 
considered in the proof can also be expressed in 
Hoare's logic, dynamic logic, or any other rea­
sonable for formalism appropriate for studying 
program correctness. 
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