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PACKING ITEMS FROM A TRIANGULAR DISTRIBUTION+ 

Kadri Krause* 
Larry Larmore 
Dennis Volper 

Department of Information and Computer Science 
University of California, Irvine 

Irvine, CA 92717 

Introduction 

We are interested in the optimum packing of triangular distributions. We call a 
probability density function, f(x), forward triangular if f(x) = m(x - a), x E [a,b] and 
is 0 elsewhere. For a forward triangular function, the equations J: f(x)dx = 1, and 
f(a) = O, require f(x) = 2x/(b - a) 2 - 2a/(b - a) 2 , x E [a, b], yielding an expectation of 
a+ 2(b - a)/3, that is two-thirds of the way from a to b. Backward triangular functions 
of the form f(b) = O, f(x) = m(b - x) have the corresponding property of having an 
expectation one-third of the way from a to b. We give results only for forward triangles. 
However proofs for backward triangles are almost identical. We define the optimum 
packing ratio of a distribution as the limit as the number of items drawn approaches 
infinity of the expected number of bins required to optimally pack the items divided by 
the expected total size of the items. 

Because bin packing is NP-complete [3], much work has been done on algorithms 
which are not guaranteed to give the exact optimum. Here we mention a few of the papers 
most related to our problem, namely determining when the optimum packing ratio is one. 
Frederickson [2] analyzed the First-Fit-Decreasing Algorithm for distributions uniform 
over [O, 1] and showed that it wastes only an average of O(n213) space. Knodel [5] and 
Lueker [7] designed algorithms for such functions that waste 0( y'n) space. Lueker [7] also 
showed that the wasted space in an optimal packing of such a function is, in fact, E>( y'n). 
Furthermore, he showed that the First-Fit-Decreasing and Best-Fit-Decreasing Algorithms 
waste only this amount of space. Karmarkar [4] analyzed the Next-Fit Algorithm under a 
distribution uniform over the interval [O, a] and explained some empirical results. Knodel 
[5] and Loulou [6] showed that for uniform density functions symmetric about 1/p, where 
pis an even integer, the optimum packing ratio is one. Lueker [8] showed that for uniform 
density functions symmetric about 1/p, where p is an odd integer, the optimum packing 
ratio is one. Karmarkar [4] attributes to Karp the problem of determining for what a and 
b the uniform distribution over [a, b] allows an optimum packing ratio of one. Lueker [8] 
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determined the packing ratio for a large subclass of these intrevals. Shor [11] has been 
able to provide constructive packing strategies which show that, for many other classes of 
intervals, the packing ratio is one. Using nonconstructive methods, Rhee and Talagrand 
[10] have shown that the optimum packing ratio is one for all of the intervals not covered 
by [8]. 

There has also been some work on non-uniform distributions. Knodel [5], Karmarkar 
[4], and Loulou [6] have established that decreasing density functions on the unit interval 
have optimum packing ratios of one. Rhee [9] has provided a characterization of the 
class of distributions which allow a packing ratio of one. This characterization does not, 
however, appear to be easy to apply. Rhee and Talagrand [10] also provide a sufficient 
condition, which is easily applied, which shows that, for a large class of nonuniform 
distributions, the packing ratio is one. In particular, the triangular densities which we 
discuss here meet this condition. Their proof, however, is not constructive: unlike the 
proof we provide below, it does not yield a concrete strategy for the packing. 

Our packing strategies involve assigning items of differing sizes to classes of bins 
in a probabilistic manner. For example, an item of size x may be assigned to a bin 
of class 1 with 50% probability, to a bin of class 2 with 30% probability and to a 
bin of class 3 with 20% probability. Our packing strategies can be represented by 
partitioning the original probability density function into regions. Each region represents 
the conditional probability density function for the assignment of an item into a bin 
of a certain class. In general, more than one region may be associated with a given 
class, in which case we will attempt to fill bins of that class by assigning them one item 
from each region. In the case of the triangular density function, it is sufficient that we 
consider only regions of triangular shape. Since only the density matters, the regions 

[7 and~ 
represent the same conditional probability density function. 

This paper is organized as follows. First we will give a packing strategy for a 
triangular function whose expectation is 1/3 that achieves an optimum packing ratio of 
1. Then we show the same ratio for triangular functions whose expectations are 1/4 and 
1/5. Finally we will use these packing strategies to show that any triangular function 
with an expectation of 1/p, p integer, and p ~ 3 has an optimum packing ratio of 1. 

Triangles with expectation of 1/3 

Lemma 1: For a triangular density function with expectation c, and k ~ 1, we can 
divide it into 32k congruent subtriangles which can be partitioned into 32k-l sets of three 
triangles each such that the sum of the expectations of the subtriangles in each set is 3c. 

Proof: We will show the lemma by using induction on k. To facilitate the induction, 
we add to the inductive hypothesis the assertion that all three subtriangles in each 
set have the same orientation, i.e. either all are forward triangles or all are backward 
triangles. 
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First we will show that for k = 1, we can divide the triangle into 32 = 9 smaller ones, 
such that there exist three sets of three subtriangles with the desired result. 

a x1 x2 
Figure 1. 

Let wo be the length of the base of the original triangle, so wo = b - a. Divide the 
base into thirds, where the intervals [a, x1], [xi, x2], and [x2, b] have equal lengths. Divide 
the triangle into nine congruent triangles, as in Figure 1. Let w1 be the length of the base 
of one of the smaller triangles, so w1 = wo/3. 

The expectation of the original triangle is c, two-thirds of the way between a and b, 
that is at x2. We can rescale and translate the triangle, so that without loss of generality, 
we will assume x2 = 0 and w1 = 3. Under these conditions, the desired sum of the 
expectations in each set is 0. There are nine subtriangles with five different expectations 
as summarized in Table 1. 

expectation 
-4 
-2 
-1 
1 
2 

Table 1. 

number of 
subtriangles 

1 
1 
2 
2 
3 

These triangles may be partitioned into three sets of three triangles as follows. As 
Set 1, take the triangles whose expectations are {-4, 2, 2} (labeled 1 in Figure 1). Set 2 
is {-2, 1, 1} (labeled 2). Set 3 is {-1, -1, 2} (labeled 3). The sum of the expectations in 
each set is O, each subtriangle in a set has the same orientation, and we have used every 
subtriangle. 

For any k greater than 1 we assume we have a subdivision for k - 1 which satisfies 
the hypothesis. For any given set of three forward trangles at k - 1 level, k is formed 
by partitioning each of the three triangles into 9 small triangles in the same manner 
as was illustrated for k = 1 and forming these 27 small triangles into 9 sets 81, ... , 89 
of 3 subtriangles as shown in Figure 2; there 8;. can be found by selecting the three 
subtriangles that are labled i. 
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X21 X22 

Figure 2. · 

The sum of the expectations of a set of these smaller triangles is 
x12 + 01 + x22 + 02 + x32 + 03 where x12, x22, and x32 are the expectations of the 
larger triangles and 01, 02, and 03 are the displacements of the expectations of the smaller 
triangles from the expectations of the larger triangles to which they belong. For 81 
(assuming the same normalization as in the case of k = 1), 01 = -4, 02 = 2, and o3 = 2. 
The sum of the expectations of this set is x12-:- 4 + x22 + 2 + X32 + 2 = x12 + x22 + x32, which, 
since the triangles are congruent, is three times the expectation of the large triangles. 
This implies the expectation of 81 is the same as the expectation of the large triangles. 
The sum of the expectations of any of the sets is, in general, the sum of the expectations of 
the larger triangles plus the sum of the offsets from the different expectations. Therefore, 
by choosing each of the sets of smaller triangles such that 01 + 02 + 03 = O, we can form 
level k. The nine subsets shown in Figure 2 are chosen so that this is the case. 

xu X12 X21 X22 

Figure 3. 

This construction can also be used· if the three triangles are backward, as in Set 2 of 
Figure 1. To form the new sets, we flip the triangles about their means and change the 
signs of the offsets and form the 9 sets as shown in Figure 3. Again, the sum of the offsets 
for each of the sets is zero so the expectation of each set is the same as the expectation of 
the original three triangles. 

Observe that each set contains either three forward or three backward triangles. Thus, 
we have constructed a subdivision for k which satisfies the inductive hypothesis (and the 
assumption that each set contains triangles of the same orientation). Finally we note that 
the width of the base of each of the 27 smaller triangles is 1/3 of the three triangles from 
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which they were formed, so w1c = w1c-if 3, that is, w1c = wo/3/c. 

Thus for a translated triangle, we can produce 32/c-l sets of three triangles such that 
the sum of the expectations in each set is 0. Reversing the translation yields a sum of 

3c. • 
The previous lemma gives a method for packing a triangle with expectation 1/3 into 

bins of size 1 + 2w1c; we just blindly pick one item from each member of any set formed 
and pack the items together into one bin. We will call this a packing strategy. However, 
the bin size is more than what we are allowing, namely unit capacity. The next lemma 
shows how to get around this. 

Lemma 2: The items drawn from a triangular distribution with expectation 1/p, 
p = 3, have an optimum packing ratio of one. 

Proof: We will use "p" instead of "3" in the following argument because most of 
it will generalize for other p. For a fixed k, using the recursion shown in the previous 
lemma, the sum of items drawn one from each member of a set where the sum of the 
expectations is cp = 1 cannot exceed the sum of the expectations plus p times 2/3 of the 
width of the subtriangles (w1c). For p = 3, this is equal to 1+2w1c. However for a packing 
to be legal, we must reduce this sum to one. This can be done as follows. Instead of 
packing using the strategy of the original triangle R with an expectation of 1/p with base 
[a, bJ, pack using the strategy defined by the new triangle L which is a translation of R 
by 2w1c/3 to the left, as shown in Figure 4. 

Figure 4. 

The expectation of triangle L is l/p - 2w1c/3. By the previous lemma and reasoning 
analogous to the above, the maximum sum of one item from ·each triangle in any set 
formed is p(l/p - 2w1c/3) + 2w1c = 1 (since p = 3). 

Suppose we have n items independently drawn according to our triangular distribution. 
For arbitrarily small E and arbitrarily large k, the value of the maximum number of items 
in any subtriangle is bounded above by (1 + E)n/p2lc, except with exponentially small 
probability [1]. Let Ao be the event that the maximum number of items obeys this bound, 
and Ai be the event that it does not. 

First assume that Ao holds. To pack the items in LnR, choose one (arbitrary) item 
from each of the p triangles that form a set according to the strategy of packing L together 
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into one bin. Since the items are generated by R, but we are using the packing strategy 
of L, the subtriangles along the hypotenuse of L will have fewer items expected. If we run 
out of items in a particular subtriangle before we have finished packing all the items in 
that set, either because the expected number of items was less for that subtriangle than 
for the others, or because the number of items in that subtriangle doesn't correspond to 
the expected number of items, we just continue packing but with less items per bin. Since 
we have at most (1 + e)n/p2k items per triangle, we need at most (1 + e)n/p2k bins per 
set. We have p2k-l sets, so to pack L n R, we need at most (1 + e)n/p bins. 

Now consider L n R, that is the area of R that is not in L. This strip is a subset of the 
union of the triangles in the rightmost portion of R, i.e. over [b- wk, b]. We can overcount 
the number of items in L n R by counting the number of items in this column of triangles. 
We have pk +pk - 1 = 2pk - 1 triangles in the column. Pack all the items found in this 
column individually in bins. This uses a maximum of (1 + e)n(2pk - 1)/p2k bins. Hence, 
when event Ao holds, the total number of bins is bounded by (1 + e)n(l/p+ (2pk -1)/p2k). 

When event A1 holds, we will use n bins and pack one item per bin. Since A1 holds 
with exponentially small probability, for large n, a bound on the expectation of the total 
number of bins used over all events is (1+2e)n(l/p+ (2pk -1)/p2k). Since e can be chosen 
arbitrarily small, and k can be chosen arbitrarily large, we get the optimum packing 
ratio arbitrarily close to one by dividing by the expected total size of the items, that is, 
dividing by n / p. • 

Triangles with expectation of 1/4 

Using reasoning similar to the case for p = 3, we can optimally pack a triangle with 
an expectation of 1/4. A partition of 42 = 16 subtriangles at each level of the recursion is 
used. 

Lemma 3: For a triangular density function with expectation c, and k ~ 1, we can 
divide it into 42k subtriangles which can be partitioned into 42k-l sets of four triangles 
each such that the sum of the expectations of the subtriangles in each set is 4c. 

a Xl X2 

Figure 5. 
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Proof: Again without loss of generality, we will deal with the translated triangle, 
setting x2 = 0 and w1 = 3. Under this translation, we desire the sum of the expectations 
of the subtriangles to be zero. The k = 1 level of the recursion is illustrated in Figure 
5. The subtriangles with their expectations are shown in Table 2. The sets whose 
expectations sum to 0 are: {-6,0,3,3} (Set 1), {-4,-1,2,3} (Set 2), {-3,-1,2,2} (Set 
3), and {-3, O, O, 3} (Set 4). Again, as in Lemma 1, we have used every triangle. 

expectation 
-6 
-4 
-3 
-1 
0 
2 
3 

Table 2. 

number of 
subtriangles 

1 
1 
2 
2 
3 
3 
4 

The recursive step works in a fashion analogous to Lemma 1, provided that all 
four triangles have the same orientation, i.e. either all are forward triangles, or all are 
backward triangles. Notice that we may have three backward triangles and one forward 
triangle (Sets 2 and 3), or vice versa, or two forward and two backward triangles at deeper 
recursion levels. However this method of packing still works, provided we can partition 
the 64 subtriangles into sets of four with each set having an expectation of 0. 

To form a set we must choose one subtriangle from each of the four triangles, so that 
the sum of the expectations is 0. For the partition to work, we must use each subtriangle 
in exactly one of the sixteen sets. Table 3 summarizes the shifts in expectation of the 
sub triangles. 

expectation 
-6 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
6 

subtriangles of 
forward triangle 

1 
1 
2 

2 
3 

3 
4 

Table 3. 
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subtriangles of each 
backward triangle 

4 
3 

3 
2 

2 
1 
1 



A correct partition for one forward and three backward triangles is: {-6, -3, 3, 6}, 
{-4,3,-3,4}, {0,6,-3,-3}, {0,-3,6,-3}, {2,4,-3,-3}, {2, -3,4,-3}, {-1, 1,-3,3}, 
{-1, -3, 1, 3}, {3, -2, -2, 1} twice, {3, -2, 1, -2}, {3, 1, -2, -2}, {-3, 3, O, O}, { -3, O, 3, O}, 
{O, O, O, O}, and {2, O, O, -2}. In the above notation, the first member of the set is the 
expectation of the subtriangle chosen from the first triangle and so forth. The first 
member of the partition is from the forward triangle and the last three members are each 
from the three different backward triangles. Note that each subtriangle from each triangle 
is used exactly once and the sum of the expectations of each set is zero. 

The case where three triangles are forward and one triangle is backward is symmetric. 
We just flip the signs of the offsets in the list for combining triangles. 

The case where two triangles are forward and two triangles are backward is simple. 
Pair a forward and a backward triangle. Match each subtriangle of one triangle with 
expectation e with a subtriangle of the other triangle with expectation -e. Put any two 
such pairs together into a set. • 

Lemma 4: The items drawn from a triangular distribution with expectation 1/p, 
p = 4, have an optimum packing ratio of one. 

Proof: We proceed as in Lemma 2. The maximum sum of items drawn one 
from each member of a set where the sum of the expectations of the set is one is 
cp + 4{2w.1,:/3) = 1 + Bw.1,:/3. 

Shift Triangle Lover to the left 2w.1,:/3 units. The maximum sum of one item from 
each triangle in any set formed is p(l/p - 2w.1,:/3) + 8w.1,:/3 = 1. The rest of the argument 
for p = 4 is exactly the same as for p = 3. • 

Triangles with expectation of 1/5 

Lemma 5: For a triangular density function with expectation c and k ~ 1, we 
can divide it into 52A: subtriangles such which can be partitioned into s2k-l sets of five 
triangles each such that the sum of the expectations of the subtriangles in each set is Sc. 

Figure 6. 
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Proof: Again without loss of generality, we will deal with the translated triangle, 
setting x2 = 0 and w1 = 3. Under this translation, we again desire the sum of the 
expectations of the subtriangles to be zero. The k = 1 level of the recursion is illustrated 
in Figure 6. The subtriangles with their shifts in expectation are shown in first two 
columns of Table 4 and the sets whose expectations sum to zero are: { -8, -3, 3, 4; 4} 
(Set 1), {-6,-5,3,4,4} (Set 2), {-5,-2,1,3,3} (Set 3), {-3,-2,0,1,4} (Set 4), and 
{-2, O, O, 1, 1} (Set 5). 

expectation 
-8 
-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
8 

subtriangles of 
forward triangles . 

1 
1 
2 

2 
3 

3 
4 

4 
5 

Table 4. 

subtriangles of 
backward triangles 

5 
4 

4 
3 

3 
2 

2 
1 
1 

The recursive step works analogously to that in Lemma 1, provided again that all 
five triangles have the same orientation, i.e. either all are forward triangles, or all are 
backward triangles. 

For the other combinations we will proceed as in Lemma 3. Table 4 gives the 
shift in expectation for each of the subtriangles. It suffices to choose sets of five 
subtriangles each such that each subtriangle is in exactly one set, each set contains 
one subtriangle from each of the five triangles, and the shifts in expectation for 
each set sum to zero. If two triangles are backward and three triangles are forward, 
e.g. Set 1, then we can combine the subtriangles in the following manner (Again, 
the first element is from the first triangle and so on. The first three members 
are from the forward triangles and the last two members are from the backward 
triangles.): {-8, -8, O, 8, 8}, {O, -6, -6, 6, 6}, {-5, O, -5, 5, 5} twice, {-2, 4, -8, 3, 3}, 
{-6, -3, 3, 3, 3}, { 4, 3, 1, -4, -4} four times, {3, 1, 4, -4, -4}, { 4, 4, -2, -3, -3}, 
{-3,-5,4,2,2} twice, {3,4,-3,-3,-1}, {3,-2,3,-1,-3}, {-2,4,4,-3,-3} twice, 
{3, -2, -3, 0, 2}, {1, -3, 3, -1, O}, {1, -2, 3, -1, -1}, {O, 1, -2, 2, -1}, {1, 1, -2, O, O}, 
{1, 1, O, -1, -1}, and {O, 0, O, O, O}. The case where two triangles are .forward and three 
triangles are backward is done similarly; we just flip the signs of the offsets in Table 4 and 
in the sets derived from them. 
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The case where four triangles are forward and one triangle is backward is again 
done similarly. Combine the triangles in the following sets (Again, the first element is 
from the first triangle and so on. The first four members are from the forward triangles 
and the last member is the backward triangle.): {-8,-8,4,4,8}, {4,4,-8,-6,6}, 
{-5,4,4,-8,5}, {-5,3,-6,3,5}, {3,-6,3,4,-4}, {-6,3,3,4,-4}, {4,-5,4,1,-4} 
twice, {4,4,1,-5,-4}, {1,4,-5,3,-3} twice, {3,1,4,-5,-3}, {-2,-2,1,4,-1} 
twice, {4,l,-2,-2,-1}, {0,3,3,-3,-3}, {3,-3,-3,0,3} twice, {-3,3,0,-2,2}, 
{-3,0,3,-2,2}, {0,0,-2,3,-1}, {1,0,0,-3,2}, {.....:2,1,1,0,o}, {1,-2,0,1,0}, and 
{O, 1, -2, 1, O}. The case where four triangles are backward and one triangle is forward is 
done analogously, again by flipping the signs of the offsets and the signs inside the sets. 
The above partitions exhaust the cases which can occur in the recursive step. • 

Lemma 6: The items drawn from a triangular distribution with expectation l/p, 
p = 5, have an optimum packing ratio of one. 

Proof: The maximum sum of items drawn one from each member of a set where 
the sum of the expectations of the set is one is 1 + lOwk/3. 

Shift Triangle L over to the left 2wk/3 units. The maximum sum of one item from 
each triangle in any set formed is now 1. The rest of the argument for p = 5 is exactly 
the same as for p = 3 in Lemma 2. • 

Triangles with expectation 1/p, p ~ 3, p integer 

The following corollary is an extension of the above lemmas which will allow us some 
variation in the capacity of the bins. 

Corollary: A triangle with expectation a can be packed in bins of size pa, p = 3, 4, 5 
with an optimum packing ratio of one. 

Proof: Simply shift the coordinates for Lemmas 2,4, and 6. • 

Theorem: Any triangle with expectation 1 / p, with p ~ 3 and p integer, can be 
packed with an optimum packing ratio of. one. 

Proof: Any integer p ~ 3 can be expressed as p = 3c3 + 4c4 + 5cs with Ci a 
non-negative integer, i = 3, 4, 5. We will divide each bin into sub-bins and pack each 
sub-bin separately. 

First we will divide the triangle Tinto three smaller triangles, T3, T4, and Ts, as shown 
in Figure 7. The division is such that the areas ofT3, T4, and Ts are (c3+c4+cs)-1 times, 
respectively, c3, c4, and cs. Specifically, if T has the corners {(a, 0), (b, 0), (b, 2/(b - a))}, 
then T3 has corners {(a, 0), (b, 0), (b, kc3)}, T4 has corners {(a, 0), (b, kc3), (b, kc3 + kc4)}, 
and Ts has corners {(a, 0), (b, kc3 +kc4), (b, 2/(b-a))}, where k = 2(c3 +c4 +cs)-1 (b-a)- 1 • 

Further subdivide each triangle Ti into ci smaller triangles Ti;, i = 3,4,5, j = 1, ... ,ci 
as shown in Figure 8. Each of the triangles Ji; has expectation 1/p. These can also 
be considered conditional density functions and packed according to the strategies of 
Lemmas 2,4, and 6. Pack each of the triangles Ti; into sub-bins of size i/p, i = 3,4,5. 
The optimum packing ratio is one for each sub-bin, by the corollary. To form a bin of 
size 1, combine c3 sub-bins of size 3/p, c4 sub-bins of size 4/p, and cs sub-bins of size 5/p. 

10 



a b 
Figure 7. 

}k 

}k 
}k 
}k 

~=====--~~~----=~}k 
a 

Triangle Ti 

Figure 8. 

b 

This implies that the optimum packing ratio for the entire triangle into bins of size 1 is 
OM. • 

Triangles with expectation of 1/2 

It is easily seen that triangles with expectation of 1/2 have an optimum packing ratio 
of more than one. Note that a triangle may be either forward or backward. Observe that 
a forward triangle with expectation 1/2 has 5/9 of its area to the right of the line x = 1/2. 
This means that 5/9 of the items are bigger than 1/2, and thus no two of them can be 
placed in the same bin. Assuming that we can use the smaller items to fill the partially 
full bins without wasted space, we would still have at least 1/9 of the items packed in 
individual bins. This means that the optimum packing ratio for a forward triangle with 
expectation one is at least 10/9. A backward triangle with expectation 1/2 has 1/9 of its 
area to the right of the line x = 1 - a. This means that 1/9 of the items are so big that 
they cannot be combined with any other items and still fit into one bin, so they must 
be placed into individual bins. Even if the other items could be packed without wasted 
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space, these items packed individually are enough to make the optimum packing ratio 
more than one. 

Conclusion 

We have shown strategies which achieve the optimum packing ratio of one for items 
drawn from triangular density functions with expectation 1/p for any integer p ~ 3. 

Open Questions 

How can we use this theorem to construct optimum packing strategies for triangular 
functions with other expectations? Initial investigation suggests that this can form a 
basis for the determination of optimum packing ratios for classes of intervals, [a,b], for 
triangular functions in general, much like Lueker and Shor did for the uniform density 
case. 
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