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Abstract 

We present parallel O(log(n))-time algorithms for optimal edge colouring of trees and Halin graphs with n 
processors on a a parallel random access machine without write conflicts (P-RAM). In the case of Halin 
graphs with a maximum degree of three, the colouring algorithm automatically finds every Hamiltonian 
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Abstract 

We present parallel O(log(n))-time algorithms for optimal edge colouring of trees and Halin graphs 

with n processors on a parallel random access machine without write conflicts (P-RAM). In the 

case of Halin graphs with a maximum degree of three, the colouring algorithm automatically finds 
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1. Introduction 

Many parallel algorithms are based on efficient parallel computations on trees. We describe a simple 

method for edge colouring trees and show how an optimal parallel edge colouring of trees can be 

extended to optimal edge colouring of Halin graphs. A Halin graph is planar and consists of a tree 

T with no vertices of degree two and a circuit C (called the skirt) which consists precisely of a 

sequence of all the leaf vertices of T (an example of such a graph is presented in figure 1). 

Halin graphs are related to another class of tree-like graphs: outerplanar graphs. These and Halin 

graphs fall between trees and more general graphs in that trees are reflected in their structure. A 

graph is outerplanar if it is planar and every vertex lies on the same (which we can take to be the 

external) face. We can construct a graph in which each vertex corresponds to an internal face of a 

particular outerplanar graph and which has an edge between such face vertices iff the corresponding 

faces are adjacent. The graph so constructed is a tree and is a partial dual of the outerplanar graph. 

(In fact it is the graph obtained form the dual by deleting the vertex (w, say), corresponding to the 

external face of the outerplanar graph. If we add to this tree a circuit of length degree(w), bounding 

the tree in the plane, and if we add, in planar fashion, an edge from each circuit vertex to a 

corresponding leaf of the tree then we obtain a Halm graph). It is this tree of faces which is 

algorithmically taken advantage of in [6]. Halin graphs have many interesting combinatorial 

properties, see [12]. 
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It is well known that the minimum number of colours with which it is possible to edge-colour a 
graph so that no two adjacent edges are similarly coloured is either A or (A +1), depending upon the 
graph. Here and throughout the paper A is the maximum vertex degree of the graph. The problem 

of determining whether or not a graph is A-colourable is NP- hard [7]. However it is known, for 

example, that bipartite, outerplanar and Halin graphs (except for odd cycles) are A-colourable. 

Moreover, there are polynomial-time sequential algorithms to obtain optimal (that is, using a 

minimum number of colours) colourings [2,3,5,10,12]. NC is the class of problems solvable in 

polylogarithmic (i.e.0(logkn), for some k) parallel time with a polynomial number of processors. It 

is known that the problems of optimal edge-colouring of bipartitie graphs and of outerplanar graphs 

are in NC [6,9]. We show that optimal edge-colouring of Hain graphs is also in NC. 

The problem of vertex-colouring an arbitrary graph using the minimum number of colours so that 

no two adjacent vertices are similarly coloured is well known to be NP-hard. However, 

polynomial-time sequential algorithms are known for the classes of graph mentioned earlier [11]. It 

was shown in [1] that the problem of optimal vertex-colouring outerplanar graphs is in NC. We 

observe (in Remark 2) that the problem of optimally vertex-colouring Hain graphs is also in NC. 

We take the definition of a Halin graph (sometimes called a skirted tree) from [11]. We assume that 

the Halin graph is described as a tree with its skirt C. The edges of the cycle C can be ranked and 

later (using the techniques of [13]) the sons of each vertex of T can easily be ordered according to 

the order of their leaf-descendents on C. 

2. Edge colouring trees 

Let A denote the maximum degree of the graph. We start with edge-colouring of the tree T using A 

colours 0, 1,..., A-1. Let Q = {0, 1, ..., A-1) and let x0y denote the operation (x+y) mod A. We 

will be using the following obvious fact as a basis for legal edge colourings. 

Fact 1 

For every element x in Q all the elements x, x®1, x®2,..., x®(A-1) are different. 

One of the most useful and general techniques for parallel computations on trees is the Euler tour 

technique due to Tarjan and Vishkin [13]. Using this technique the tree T can be rooted and for 

each vertex we can know its father and its sons. We can add one additional ingoing edge for the 

root and colour it using the colour 0. Hence each node v has exactly one ingoing edge (father(v),v) 

and up to A-1 outgoing edges. Let us label for each vertex v its outgoing edges (to the sons) by 

different elements from {1,..., A-1). Let F(v) be the sum (under 0) of all labels of edges on the 

path from the root to v, including the additional ingoing edge of the root. For each vertex v, in 
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parallel, we colour the edge entering v by F(v). Notice that the added incoming edge to the root 

may increase A, however we shall still obtain an optimal colouring of the original tree. 

Insert Figure 1 and Figure 2. 

Such a colouring from the labelling of figure 1 is shown in figure 2. At this moment ignore the bold 

edges of the skirt and the fact that (in figure 1) the outgoing edges are labelled 1,2 or 2,1 depending 

upon the parity of their distances from the root. The example tree has A=3. For such a tree any 

labelling which initially uses 1,2 for outgoing edges will provide a proper colouring through F(v). 

However we shall see later that for A=3 it is crucial to have a labelling which allows an extension 

of the colouring of the tree edges to skirt edges. 

It follows from Fact 1 that this colouring of tree edges (for all A) is a legal edge colouring. 

Now we just have to show how the function F can be computed efficiently. We describe two 

algorithms using two classical methods: parallel prefix computation for the first algorithm and the 

doubling technique for the second. 

The first algorithm is based on the Euler tour technique. In this technique a tree T is turned into a 

directed Eulerian graph by replacing each edge of T by two antiparallel edges. Then the list 

L=(e1,e2,...ern) of directed edges is constructed in order of an Euler tour. This list can be turned 

into a vector easily using n processors in log(n) time. Each undirected edge (v,father(v)) is present 

twice on L, once as (v,father(v)) and once as (father(v),v). Let label(father(v),v) be the label 

initially assigned to the undirected edge (father(v),v) and let label(v,father(v)) = -label(father(v),v). 

Observe that the sum of labels on any cycle is zero. If the ingoing edge for the vertex is ek, then it 

is easy to see the following: 

F(v) = label(e1) ® label(e2) 0 label(e3) 	 label(ek). 

However this reduces to a prefix computation which can easily be performed in log(n) parallel time 

with n processors. The most time consuming part of the algorithm is the construction of the list L, 

however such a list should be constructed anyway to root the tree. 

In the second algorithm we introduce the table pred(v), which stands for predecessor of v. Initially 

pred(v)=father(v) and F(v)=label(v,father(v)) for each nonroot node v. The following now 

computes the value of F(v): 

repeat log(n) times 
for each nonroot node v in parallel do 

begin 

F(v)4-F(pred(v))0F(v), 

pred(v)f-pred(pred(v)) 
end 
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This finishes the description of parallel edge colouring trees in O(log(n)) time using n processors. 

Notice that while the algorithm using the doubling technique is perhaps conceptually easier, it does 

essentially involve concurrent reads. On the other hand the Euler tour method can be implemented 

on an EREW P-RAM. 

3. Edge colouring Halin graphs with ,6,4 

We proceed now to the edge colouring of Halin graphs. The algorithm will first edge colour the tree 

and then the skirt. For edge-colouring of the tree T we can use either of the two previously decribed 

algorithms. 

Any vertex of T which is of distance one from C is chosen to be the root of T. The edge 

(root',root) from the skirt C to the root is the special edge entering the root. We can image that this 

edge is temporarily removed from the tree. The colour of this edge is 0. 

After the edge-colouring of T, in the case 	the colouring can be extended to the skirt C. This 

may require recolouring some edges of T which join one of its vertices to the skirt. 

Insert Figure 3 

Such an extension is not always possible for A=3 (see figure 3). 

Theorem 1 

Every n-vertex Halin graph with 	can be edge-coloured with A colours in O(log(n)) time using 

n processors. 

Proof. 
In view of the previous section we can assume that the tree T is already coloured with A colours. 

We show how to extend this to the skirt. First we consider the case A?_5, for which a particularly 

simple algorithm is possible. However, the (more complicated) method for A=4 works also for any 

A 

Case 1: A?.5 

The edges of C are ranked, starting from any arbitrary node, and coloured in three stages. In the 

first stage all odd numbered edges except the last one, if it is odd, are coloured. In the second stage 

all even numbered edges are coloured. In the last stage the last edge, if its number was odd, is 

coloured. Each of these sets is composed of non adjacent edges, and each of these edges has at 

most four neighbouring edges. Hence each of these edges can be coloured by one colour from 

(0,1,2,3,4). Since the edges in each set are not adjacent all edges in each set can be coloured in 

constant parallel time. 
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Insert figure 4 and figure 5 

Case 2: A=4 

Take any vertex v of T all of whose sons lie on C (that is, are leaves of T), sec figure 5. Assume 

that v has three sons vl, v2 and v3 (the case of two sons can be considered analogously). Let w1  

be the first vertex to the right of v3. Also let v3=w0,wi,w2,...,wk,wk+i=v1 be the sequence of 

skirt vertices between v3 and vl in anticlockwise order. Let ai  be the colour of the tree edge 

incident to wi. For each edge ei=(wi,wit+i) we construct a function fi:(0,1,2)-• (0,1,2), associated 

with this edge. If fi(x)=y, then the colouring of the edges e1_1  and ei  respectively with the colours x 

and y is legal at vertices wi  and wi+1. This assumes that the skirt edge following ei  is not coloured 

at this moment (see figure 4). 

Let F be the composition of functions flaf2•...•fk. The function F can be computed using a 

parallel prefix computation. 

We remove colours from the edges (v,v1), (v,v2) and (v,v3). Let y be the colour of the edge 

entering v. We colour the edge (v3,w1) with any colour x different from y and a1. Then we colour 

the edge ek=(wk,v1) with the colour z=F(x). We have a legal colouring. However, the edges 

outgoing from v have yet to be coloured. It is an easy matter to see that we can always extend the 

colouring to these edges, see figure 5. This additional operation requires 0(1) time. This completes 

the proof. 	 ❑ 

4. Edge colouring and finding Hamiltonian cycles for Halin graphs with A=3 

In the case A=3 the initial labelling of outgoing edges of T is crucial. Let Left(v) and Right(vI) 

denote, respectively, the left and right son of v. For each edge (u,w) of C, where u#root' and 

w=roott, we denote by LCA(u,w) the lowest common ancestor of u and w in T. Let dist(v) be the 

distance of the vertex v from the root. The structure of the algorithm is as follows: 

Algorithm EDGECOLOUR; [the algorithm edge colours Hahn graphs with 0=3) 

Step 0 
Using the Euler tour technique [13] root the tree T at a vertex root of distance one from C. Let root' 
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be the vertex on C adjacent to root. Colour the edge (root,root') with colour 0. 

Step 1 

for each vertex v#root' of T in parallel do: 

label the outgoing edges from v using numbers 1,...0-1 in such a way that if dist(v) is 

even then the label of Left(v) is 1 and the label of Right(v) is 2, otherwise the label of 

Left(v) is 2 and the label of Right(v) is 1. 

Step 2 

Edge colour T using any of the two previously presented algorithms for tree colouring. 

Step 3 
for each skirt edge (u,w) where uproot' and w*root' in parallel do: 

colour (u,w) with the colour of the edge entering the vertex LCA(u,w). 

Step 4 

Colour consistently the two skirt edges incident with root' (which is always possible, theorem 2) 

end of the algorithm. 

Theorem 2 
Algorithm EDGECOLOUR computes a legal edge colouring of any Hahn graph G with A=3 in 

O(log(n)) time using n processors. 

Proof 

Consider any tree vertex v. Let a be the colour of the edge entering v. Also let b,c be respectively 

the colours of the edges to left and right sons vl, v2 of v. Let p,w respectively be the leftmost leaf 

descendants of vl, v2. Also let u,q be the rightmost descendants of v 1 , v2. Let S(x,x') denote the 

set of colours of the edges on the branch from vertex x to x'. We refer to figure 6 for other 

notations. 

Insert figure 6 

After completing the algorithm the following invariant is satisfied (see figure 6): 

ao S(v1,u), ao S(v2,w), co S(v,p), bo S(v,q). 

Also the colour of (u,w) is the same as that of the edge entering vertex v=LCA(u,w). 

This invariant follows from our initial labelling of outgoing edges. If we have two consecutive 

edges (xl,x2) and (x2,x3) such that x2,x3 are both left or both right sons then one of these edges 

has label 1 and the other has label 2. Hence the colour of the edge (x2,x3) is the same as the colour 

of the edge entering xl, because (1+2) mode 3 = 0. This implies that on left (right) branches we 

have two colours alternating and the invariant follows by considering the sets S(v1,u), S(v2,w), 

S(v,p) and S(v,q), see figure 6. 

Let u2, w2 be respectively the father of u,w. The colour of the edge (ul,u), (w,wl) is respectively 

the same as the colour of the edge entering the vertex u2, w2. However the colours of edges 
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entering u2 and w2 are, respectively in S(v1,u), S(v2,w). According to the invariant none of these 

sets contains the colour a. Hence none of the edges (ul,u) and (w,w1) has colour a. This proves 

that the colour a of the edge (u,w) is locally legal. The same reasoning applies for each skirt edge 

not incident with root'. If v=root then we have now pl=q1=root', see figure 6. The edge (p,root') 

can be coloured with c and the edge (q,root') can be coloured with b. This proves that the colouring 

of step 4 is possible. This completes the proof of theorem 2. 	 0 

Theorem 3 

Assume that A=3. Then a Hamiltonian cycle of a given Halin graph G can be found in 0(log(n)) 

time using n processors. After executing the algorithm EDGECOLOUR the set of edges coloured 

by 0 or by 1 gives such a cycle. 
Proof 

It is enough to prove the second statement. Assume that G is a Halin graph with A=3 and is 

properly coloured using three colours. Let C(a,b) be a component of G containing all vertices 

reachable from the root by edges coloured a or b. First we prove the following: 

Claim: 

For every two different colours a and b, the component C(a,b) contains all vertices of the graph. 

The proof of the claim is by induction on the number n of vertices. The smallest Hahn graph with 

0=3 has four vertices and it is a wheel with three vertices on the skirt. It is easy to see that the claim 

holds for such a graph. 

Assume now that n>4 and that the claim is true for Halin graphs with n-1 vertices. Let G be an 

n-vertex Hahn graph with A=3 which is properly coloured. There is an internal vertex v*root such 

that both sons vl and v2 of v lie on the skirt. Let us contract the triangle [v,v1,v2] into a single 

vertex u. The new vertex is adjacent to all vertices adjacent to any of v, vl, v2 and the colours of 

the edges are preserved. The resulting graph G' is a Halin graph with n-1 vertices. The colouring 

of G gives also a proper colouring of G', because the three edges connecting the triangle [v,v1,v2] 

to other vertices of G are coloured by three different colours. By an inductive argument all vertices 

of G' (including the vertex u) are in C'(a,b), where C'(a,b) is the set of all nodes reachable from 

the root in G' by edges coloured a or b. This proves that all vertices, except perhaps v, vl and v2 

are in C(a,b). It is enough to prove that the vertices v, vl and v2 are also in C(a,b). However one 

of the vertices v, vl, v2 is in C(a,b) because u is in C'(a,b). It is easy to see that if any vertex of a 

triangle is in C(a,b) then all vertices of this triangle are in C(a,b). Hence all vertices of G are in 

C(a,b). This completes the proof of the claim. 

Let us take all edges coloured by 0 or 1. It is easy to see that each component of the resulting 

subgraph is a simple cycle (a vertex can appear only once in a given cycle). However C(0,1) 

contains all vertices of G. Hence we have only one big cycle C=C(0,1) containing all vertices. 

Clearly C is a Hamiltonian cycle. This completes the proof of the theorem. 	 0 
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Corollary 

For A=3 the algorithm EDGECOLOUR provides every Hamiltonian cycle of the Halin graph. 
Proof 
Let G be a Halin graph with A=3. A straightforward inductive argument (similar to that employed 

in the proof of Theorem 3) shows that the edge-colouring of G found by the algorithm 

EDGECOLOUR is (within a renaming of the colours) the only legal edge-colouring of G. this 

provides three Hamiltonian cycles C(0,1), C(0,2) and C(1,3). These are the only Hamiltonian 

cycles of G. Suppose that to the contrary that there exists another Hamiltonian cycle H. This would 

provide an optimal edge-colouring of G different from that provided by the algorithm 

EDGECOLOUR and so we would have a contradiction. The colouring provided by H is obtained 

by alternately colouring edges along H with 0 and 1. The remaining edges of G are then coloured 

with 2. 	 ❑ 
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Fig.3. The edge-colouring of the tree (except shaded triangle) 

cannot be extended to the skirt. 

Fig.4. fi(x) is a colour associated with the i-th skirt edge such 

that the colouring a,x, fi(x),b is locally legal 

Fig.5. For every three colours x,y,z such that xxy there are 

colours a, b and c giving a legal colouring in case A=4. 

The colour z is determined by x and functions f. 



The invariant 
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Fig.5.The invariant: the colour of (u,w) is the same as that of the edge entering 

the vertex v .-.7 LCA(u,w). There is no colour a on the branches from v to U. 

and w. The colour of (p;p1) is c and the colour of (q,q1) is b. 
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Fig.7. The edges coloured by 0 or 1 give 

a Hamiltonian cycle. 




