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In the theory of dynamic data structures, one frequently encounters estimates of the type [f](n) =I:;:. oh; f(2i ). where 
... J>ib1bo is the binary representation of n and f is a (nondecreasing) function. We argue that •smoothness' of f, i.e., 
f(O(n)) = O(f(n)), does not play a role in estimating [f](n), contrary to the suggestion in some references. Moreover, we give a 
number of useful general bounds. 
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1. Introduction 

A data structure S(n) is generally termed static 
if it only supports insertions and deletions at high 
cost. In order to dynamize S(n), a number of 
techniques have been developed, which are based 
on the idea that it can be a lot cheaper to maintain 
a dynamic system of smaller data structures S(ni) 
with Ei ,. 0n i = n. Insertions and deletions now 
operate on much smaller component structures 
and. presumably, the overhead required for main­
taining the system of data structures is on the 
average very limited per instruction. If a searching 
problem is decomposable (as defined by Bentley 
and Saxe [2]), then it is often sufficient to design a 
good static data struct..ire for it and rely on one of 
the available techniques to immediately obtain a 
competitive dynamic data structure (see [2,4,3] for 
a detailed account of the theory). 

One common technique of dynamizing static 
data structures is known as the logarithmic decom-

position (after Bentley (1)). It is based on decom­
posing a set of n elements into a collection of 
1 + Llog nj subsets, each statically structured and 
containing ni = bi2i elements (0 ~ i ~ Llog nj), 
where ... b2 b1 b0 is the binary representation of n. 
In estimating the effic:ency of operations which 
take f(n) time on S(n), one naturally arrives at 
expressions of the form [f](n)=I:i;a.obif(2i) in 
estimating the efficiency of these operations on 
the logarithmic structure. Assuming only that f is 
nondecreasing, it is dear that [f)(n) = O(f(n) log n), 
but sometimes better bounds can be derived. In 
the literature on dynamization, several conditions 
for f can be found which supposedly imply the 
(interesting) bound of [f](n) = O(f(n)). 

In this article we discuss some common f alla­
cies in estimating [f](n), which hopefully leads to. 
greater care in deriving bounds. We also give a 
number of useful techniques for estimating [f](n). 
which improve on the O(f(n) log n) bound in some 
cases. 
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2. Simple bounds 

Let us first consider the (simple) problem of 
bounding [f}(n) for all 'common' functions. It is 
helpful to make some general observations first. 
We only consider functions with positive real val­
ues. 

2.1. Lemma. For all functions f(n) and g(n): 
(i) If f(n) .i::;; g(n) for all n, then [f](n) .i::;; (g}(n). 

(ii) If g(n) = Q(l) and /(n) = O(g(n}), then 
(f}(n) = 0([g1{JI)}. 

Proof. (i) is trivial 
To prove (ii), note that, by definition, there are 

a constant c and an integer n 0 such that f(n) ~ 
cg(n) for all 11 ~ n 0• Thus, for n ~ n 0 one has: 

crJ(n) ~ I: b; r(i > + c I: bi8c2i > 
O~i<i;llog n 0 J i;i.O 

=O(l)+c(g](n)=O([gl(n)). 0 

2.2. Lemma. For all functions f(n) and g(n): 
(i) {fg](n) ~ [f)(n)[g](n). 

(ii) If g(n) is nondecreasing, then [fg](n) ~ 
[f}(n)g(n). 

Proof. (ii) is trivial, by term-wise estimating [fgKn). 
To prove (i), observe that 

[rgJ<n> = :E bJ(i )g(i > == E {bJ(2i }big(2i >} 
i~O i;i.O 

because the b;'s are 0-1 valued, and apply the 
common product inequality for sums with non­
negative terms. o 

It so happens that many bounding functions 
which arise in the analysis of algorithms are prod­
ucts of a limited collection of •standard' functions. 
Products are handled by Lemma 2.2. and a repre­
sentative set of standard functions i~ given in Fig. 
1. (By Lemma 2.1 we do not have to worry about 
constant factors.) 

Note that types I, II. and III and types VI, V, 
and IV (in this order) are symmetrically related by 
~unction 'inversion': if f belongs to one type, then 
f defined by 

f(n) = min{m I f(m) ~ n} 
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I. Super-exponential functions: 22', 222"··· .,2• 0 , 

where 2*n is defined recursively by 2*6 =I 
( l •n ' 2* n+ > = 2<2 >. and Aclcennann's function 

Ack(n, n. n). 

II. Exponential functions: c<,..1• for constants c > 1 
and8>0. 

m. Polyoomial functions: nk. for eonstant It "'1. 

IV. Sub-polynomial functions: rf. for constant ~ with 
0 <e<l. 

V. Polylogarithmic functions: (log n)5, for constant 
8>0. 

VI. Sub·log11rithmic functions: log \og n. \og log log n, 
... , log* n, where log* n is defined by log• n .. 
min{m 12.m ;i. n), and a(n) is defined by a(n)-= 
min{ m J Ack(m, m, m) ;i. n}. 

Fig. 1. Some standard bounding functions encountered in the 
analysis of algorithms. 

belong:; to the related type. 
We need the following useful concept. 

2.3. Definition. A function f is said to have cost 
factor cj>, with et> some function. if [f](n) = 
O(f(n)q,(n)). 

2.4. Lemma. If f(n)/g(n) is nondecreasing and g 
has cost factor cp, then f has cost factor cp as well. 

Proof. Write f(n) as g(n)f(n)/g(n) and apply 
Lemma 2.2(ii). o 

2.S. Lemma. Let f be a standard function from 
Fig. 1. 

(i) If f is of type 1, II. III or IV, then f has cost 
factor 1. 

(ii) If f is of type V or VI, or is a constant > 0, 
then f has cost factor log n. 

Proof. (i) First suppose f(n) = nt, for constant e 
with 0 < e < 1. Then 

[r](n) = E b,(2i, ·"' I: c2•)i 
i;i.O Oo1;i~tlognJ 

= (2r(l+(log 0 "-1)/(r -1) 

:i;;; (2"n' -1)/(2' - 1) 
-o(n•) = O(f(n)). 
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For functions f of type I, II, or III we can apply 
Lemma 2.4, since f(n)/n' is nondecreasing for 
suitable £ with 0 < £ < 1. 

(ii) Trivial. D 

Clearly, the functions with cost factor 1 are the 
most interesting in the theory of dynamic data 
structures, because they suggest that no increase in 
complexity is incurred by the logarithmic decom­
position. For other functions it is of interest to try 
and improve on the worst-case bound of log n on 
the cost factor, for a similar reason. (One easily 
verifies that for the standard functions of type V 
and VI the cost factor of log n is attained in­
finitely often.) The following result, easily derived 
from Lemmas 2.4 and 2.5, seems to oe the only 
result that is actually applied. 

2.6. Corollary. Let f be nondecreasing. If f(n)/n8 

is nondecreasingfor some constant a> 0, then [f](n) 
= O(f(n)), otherwise [f](n) = O(f(n) log n). 

We shall see in the next section that log n is not 
the only alternative to a cost factor of 1, although 
it clearly is for the standard bounding functions. 

While the proof of Corollary 2.6 is merely an 
exercise, its precise formulation is not apparent in 
various source references on dynamization ( cf. 
[ 4]). At least in a number of cases one finds 
formulations like: if f is a 'well-behaved' function, 
then [f](n) = O(f(n)) if f(n) = g(n8 ) for some a> O 
and, otherwise, [f](n) =Of f(n) log n). We shall 
argue that these formulations are not correct un­
der the assumptions usually made for 'well-be­
haved' functions, summarized in the following def­
inition (cf. (3, p.9] or (4, p.6]). 

2.7. Definition. A function f is called smooth if 
f(n) is nondecreasing and f(O(n)) = O(f(n)). 

We -;how that smooth functions which satisfy 
f(n) = O(n8 ) for some a> 0 can 'accumulate' a 
surprisingly large cost factor in some cases, con­
trary to the suggestion in some references. 

2.8. Proposition. There exist smocth functions f 
with f(n) = O(n) such that [f](n) * O(f(n)). 

Proof. For k ~ 0 let t(k) = !k(k + l) denote the 
kth triangular number. Let lt(n) be the unique k 
such that 21!k- II~ n < 2•<k>. Consider the function 
f defined as follows: 

{
z1<kJ if lt(n) = k is even, 

f(n) = 2t<k-l)+2([log nf+l-t<k-1)) 

if lt(n) = k is odd. 

Note that f has the (constant) value 21!k> for n 
from 21<k- I> to 21!k> and k even, but climbs from 
21<k>+ 2 up to and including 21<k+ 2>- 1 for n from 
21<k> to 21<k+IJ in the next interval of triangular 
powers of 2. One verifies that f is nondecreasing 
and that f(n) ~ f(2n) ~ 4f(n). It follows that f is 
smooth. Clearly, f(n) = O(n). To prove that (f](n) 
-:/= O(f(n)) we evaluate {f](n) for n = 21<k> - 1, k 
even: 

[f](n)= L f(i} 
0 "'i"' t(k)-1 

~ (t(k) - t(k - l))f(21(k)-l) = kf(21<k) - 1) 

= kf(n) = O(f(n)Jlog n ). 

As this holds for infinitely many n, it is clear that 
[f](n) <!- O(f(n)). D 

The function f constructed in the proof above is 
also interesting because one can show that [f](n) = 
O(f(n) log n ), which means it has cost factor 

log n (see Corollary 3.2 below). 

3. A general bounding technique 

We now present a general technique of estimat­
ing [f] in terms of other characteristics of the 
function f. Let f be nondecreasing and f(n)-:/= 0(1). 
It follows that for all m there exists an n > m such 
that f(n) > f(m). Define the sequence of "jump' 
points {j;};;. 1 as follows: 

jl = 1. 

j;.q = min{n I f(n) > fU;)} for i ~ l. 

The sequence {j;}; .~ 1 is strictly inaeasing and 
infinite, and consists precisely of the arguments 
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where f 'increases' in value. Define the sequence 
of consecutive increments { u i } ; -. 1 as follows: 

Ui = f(h), 

U;+1 = f(h+i)- f(j;) for i ;;d. 

For i ~ 1 we also need the quantities Pi defined 
by: Pi ="the number of powers of 2 among the 
integers from ji to ji+ 1 ". One easily verifies that 

Pi= llog(h+1 - l)j - flogj;l + 1. 

The crucial point to observe is that 

[f](n) .i;; p1u1 + p2(u1 + u 2) + · · · 

+pk(U1 + " .. +uk), 

where k = k(n) is such thath .i;; n <h+ 1 (i.e., k(n) 
= max{i ui ~ n}). 

3.1. Theorem. If there are a constant c > 1 and a 
function cj> such that u i + 1/u i ;;;i. c for all i and 
Pi ~ cj>(n) for all n and 1 ~ i ~ k(n}, :hen f has 
cost factor cj>. 

Proof. We have 

[f](n) ~ P1U1 + P2(u1 + u2) + · · · 

+pdu1 + ··· +ud 

= U1(P1 + · · · +pk) + U2(P2 + · · · +pk) 
+ · · · +ukPk· 

l!sing that ui ~ c- 1ui+I for i ;:i.1, whence ui ~ 
c•-kuk for 1 ~ i ~ k = k(n). and Pi~ cj>(n) for the 
same range, we obtain 

~ f(n)ct>(n) E ic-i = O(f(n)ct>(n}). 0 
i;;a.1 

3.2. Corollary. If there are a constant c > 1 and a 
function cl> such that ll;+ 1/u; ;;;i. c for all i and 
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j;+ 1/j; .i;; 2<1><n> for all n and I~ i .i;; k(n), then f 
has cost factor <j> + I. 

Proof. The proof immediately follows from Theo­
rem 3.1 by observing that 

i); ~ 1+log(j;+ 1/j;)~1 + cl>(n). D 

Both Theorem 3.1 and Corollary 3.2 show the 
relation between the 'growth' of a function and its 
cost factor, and can be used for instance to prove 
that the function f constructed in the proof of 
Proposition 2.8 has cost factor Jlog n (take c = ~ 
and cj>(n) = 1 + J2 log n ). The condition on the 
sequence { u; } ; ,. 1 clearly restricts the application 
to functions f with increments which grow at least 
exponentially. 

There are various other bounds which can be 
derived along similar lines, starting from the basic 
estimate 

[f](n) ~ P1U1 + P2(u1 + u2) + ... 

+pk(u1 + · · · +ud 

or, equivalently, 

(f]{n) ~ U1(P1 + · · · +pk) + U2(P2 + · · · +pd 
+ · · · +ukpk 

with k = k(n). We leave this to the reader. 
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