
Information Processing Letters 26 (1987 /88) 321-324
Nonh-Holland

25 January 1988

ON ESTIMATING TIIE COMPLEXITY OF LOGARITHMIC DECOMPOSITIONS

MarcBEZEM

Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Jan VAN LEEUWEN

DeptlTtment of Computer Science, University of Utrecht. P.O. Box 80012, 3508 TA Utrecht, The Netherlands

Communicated by T. Lengauer
Rec.eived 11 April 1987

In the theory of dynamic data structures, one frequently encounters estimates of the type [f](n) =I:;:. oh; f(2i). where
... J>ib1bo is the binary representation of n and f is a (nondecreasing) function. We argue that •smoothness' of f, i.e.,
f(O(n)) = O(f(n)), does not play a role in estimating [f](n), contrary to the suggestion in some references. Moreover, we give a
number of useful general bounds.

Keywords: Analysis of algorithms, computational complexity, data structure

1. Introduction

A data structure S(n) is generally termed static
if it only supports insertions and deletions at high
cost. In order to dynamize S(n), a number of
techniques have been developed, which are based
on the idea that it can be a lot cheaper to maintain
a dynamic system of smaller data structures S(ni)
with Ei ,. 0n i = n. Insertions and deletions now
operate on much smaller component structures
and. presumably, the overhead required for main
taining the system of data structures is on the
average very limited per instruction. If a searching
problem is decomposable (as defined by Bentley
and Saxe [2]), then it is often sufficient to design a
good static data struct..ire for it and rely on one of
the available techniques to immediately obtain a
competitive dynamic data structure (see [2,4,3] for
a detailed account of the theory).

One common technique of dynamizing static
data structures is known as the logarithmic decom-

position (after Bentley (1)). It is based on decom
posing a set of n elements into a collection of
1 + Llog nj subsets, each statically structured and
containing ni = bi2i elements (0 ~ i ~ Llog nj),
where ... b2 b1 b0 is the binary representation of n.
In estimating the effic:ency of operations which
take f(n) time on S(n), one naturally arrives at
expressions of the form [f](n)=I:i;a.obif(2i) in
estimating the efficiency of these operations on
the logarithmic structure. Assuming only that f is
nondecreasing, it is dear that [f)(n) = O(f(n) log n),
but sometimes better bounds can be derived. In
the literature on dynamization, several conditions
for f can be found which supposedly imply the
(interesting) bound of [f](n) = O(f(n)).

In this article we discuss some common f alla
cies in estimating [f](n), which hopefully leads to.
greater care in deriving bounds. We also give a
number of useful techniques for estimating [f](n).
which improve on the O(f(n) log n) bound in some
cases.

0020-C190/88j$3.SO © 1988, Elsevier Science Publishers B.V. (North-Holland) 321

Volume 26. Number 6 INFORMATION PROCESSING LETIERS 25 January 1988

2. Simple bounds

Let us first consider the (simple) problem of
bounding [f}(n) for all 'common' functions. It is
helpful to make some general observations first.
We only consider functions with positive real val
ues.

2.1. Lemma. For all functions f(n) and g(n):
(i) If f(n) .i::;; g(n) for all n, then [f](n) .i::;; (g}(n).

(ii) If g(n) = Q(l) and /(n) = O(g(n}), then
(f}(n) = 0([g1{JI)}.

Proof. (i) is trivial
To prove (ii), note that, by definition, there are

a constant c and an integer n 0 such that f(n) ~
cg(n) for all 11 ~ n 0• Thus, for n ~ n 0 one has:

crJ(n) ~ I: b; r(i > + c I: bi8c2i >
O~i<i;llog n 0 J i;i.O

=O(l)+c(g](n)=O([gl(n)). 0

2.2. Lemma. For all functions f(n) and g(n):
(i) {fg](n) ~ [f)(n)[g](n).

(ii) If g(n) is nondecreasing, then [fg](n) ~
[f}(n)g(n).

Proof. (ii) is trivial, by term-wise estimating [fgKn).
To prove (i), observe that

[rgJ<n> = :E bJ(i)g(i > == E {bJ(2i }big(2i >}
i~O i;i.O

because the b;'s are 0-1 valued, and apply the
common product inequality for sums with non
negative terms. o

It so happens that many bounding functions
which arise in the analysis of algorithms are prod
ucts of a limited collection of •standard' functions.
Products are handled by Lemma 2.2. and a repre
sentative set of standard functions i~ given in Fig.
1. (By Lemma 2.1 we do not have to worry about
constant factors.)

Note that types I, II. and III and types VI, V,
and IV (in this order) are symmetrically related by
~unction 'inversion': if f belongs to one type, then
f defined by

f(n) = min{m I f(m) ~ n}

322

I. Super-exponential functions: 22', 222"··· .,2• 0 ,

where 2*n is defined recursively by 2*6 =I
(l •n ' 2* n+ > = 2<2 >. and Aclcennann's function

Ack(n, n. n).

II. Exponential functions: c<,..1• for constants c > 1
and8>0.

m. Polyoomial functions: nk. for eonstant It "'1.

IV. Sub-polynomial functions: rf. for constant ~ with
0 <e<l.

V. Polylogarithmic functions: (log n)5, for constant
8>0.

VI. Sub·log11rithmic functions: log \og n. \og log log n,
... , log* n, where log* n is defined by log• n ..
min{m 12.m ;i. n), and a(n) is defined by a(n)-=
min{ m J Ack(m, m, m) ;i. n}.

Fig. 1. Some standard bounding functions encountered in the
analysis of algorithms.

belong:; to the related type.
We need the following useful concept.

2.3. Definition. A function f is said to have cost
factor cj>, with et> some function. if [f](n) =
O(f(n)q,(n)).

2.4. Lemma. If f(n)/g(n) is nondecreasing and g
has cost factor cp, then f has cost factor cp as well.

Proof. Write f(n) as g(n)f(n)/g(n) and apply
Lemma 2.2(ii). o

2.S. Lemma. Let f be a standard function from
Fig. 1.

(i) If f is of type 1, II. III or IV, then f has cost
factor 1.

(ii) If f is of type V or VI, or is a constant > 0,
then f has cost factor log n.

Proof. (i) First suppose f(n) = nt, for constant e
with 0 < e < 1. Then

[r](n) = E b,(2i, ·"' I: c2•)i
i;i.O Oo1;i~tlognJ

= (2r(l+(log 0 "-1)/(r -1)

:i;;; (2"n' -1)/(2' - 1)
-o(n•) = O(f(n)).

Volume 26, Number 6 INFORMATION PROCESSING LETTERS 25 January 1988

For functions f of type I, II, or III we can apply
Lemma 2.4, since f(n)/n' is nondecreasing for
suitable £ with 0 < £ < 1.

(ii) Trivial. D

Clearly, the functions with cost factor 1 are the
most interesting in the theory of dynamic data
structures, because they suggest that no increase in
complexity is incurred by the logarithmic decom
position. For other functions it is of interest to try
and improve on the worst-case bound of log n on
the cost factor, for a similar reason. (One easily
verifies that for the standard functions of type V
and VI the cost factor of log n is attained in
finitely often.) The following result, easily derived
from Lemmas 2.4 and 2.5, seems to oe the only
result that is actually applied.

2.6. Corollary. Let f be nondecreasing. If f(n)/n8

is nondecreasingfor some constant a> 0, then [f](n)
= O(f(n)), otherwise [f](n) = O(f(n) log n).

We shall see in the next section that log n is not
the only alternative to a cost factor of 1, although
it clearly is for the standard bounding functions.

While the proof of Corollary 2.6 is merely an
exercise, its precise formulation is not apparent in
various source references on dynamization (cf.
[4]). At least in a number of cases one finds
formulations like: if f is a 'well-behaved' function,
then [f](n) = O(f(n)) if f(n) = g(n8) for some a> O
and, otherwise, [f](n) =Of f(n) log n). We shall
argue that these formulations are not correct un
der the assumptions usually made for 'well-be
haved' functions, summarized in the following def
inition (cf. (3, p.9] or (4, p.6]).

2.7. Definition. A function f is called smooth if
f(n) is nondecreasing and f(O(n)) = O(f(n)).

We -;how that smooth functions which satisfy
f(n) = O(n8) for some a> 0 can 'accumulate' a
surprisingly large cost factor in some cases, con
trary to the suggestion in some references.

2.8. Proposition. There exist smocth functions f
with f(n) = O(n) such that [f](n) * O(f(n)).

Proof. For k ~ 0 let t(k) = !k(k + l) denote the
kth triangular number. Let lt(n) be the unique k
such that 21!k- II~ n < 2•<k>. Consider the function
f defined as follows:

{
z1<kJ if lt(n) = k is even,

f(n) = 2t<k-l)+2([log nf+l-t<k-1))

if lt(n) = k is odd.

Note that f has the (constant) value 21!k> for n
from 21<k- I> to 21!k> and k even, but climbs from
21<k>+ 2 up to and including 21<k+ 2>- 1 for n from
21<k> to 21<k+IJ in the next interval of triangular
powers of 2. One verifies that f is nondecreasing
and that f(n) ~ f(2n) ~ 4f(n). It follows that f is
smooth. Clearly, f(n) = O(n). To prove that (f](n)
-:/= O(f(n)) we evaluate {f](n) for n = 21<k> - 1, k
even:

[f](n)= L f(i}
0 "'i"' t(k)-1

~ (t(k) - t(k - l))f(21(k)-l) = kf(21<k) - 1)

= kf(n) = O(f(n)Jlog n).

As this holds for infinitely many n, it is clear that
[f](n) <!- O(f(n)). D

The function f constructed in the proof above is
also interesting because one can show that [f](n) =
O(f(n) log n), which means it has cost factor

log n (see Corollary 3.2 below).

3. A general bounding technique

We now present a general technique of estimat
ing [f] in terms of other characteristics of the
function f. Let f be nondecreasing and f(n)-:/= 0(1).
It follows that for all m there exists an n > m such
that f(n) > f(m). Define the sequence of "jump'
points {j;};;. 1 as follows:

jl = 1.

j;.q = min{n I f(n) > fU;)} for i ~ l.

The sequence {j;}; .~ 1 is strictly inaeasing and
infinite, and consists precisely of the arguments

323

Volume 26. Number 6 INFORMATION PROCESSING LETIERS 25 January 1988

where f 'increases' in value. Define the sequence
of consecutive increments { u i } ; -. 1 as follows:

Ui = f(h),

U;+1 = f(h+i)- f(j;) for i ;;d.

For i ~ 1 we also need the quantities Pi defined
by: Pi ="the number of powers of 2 among the
integers from ji to ji+ 1 ". One easily verifies that

Pi= llog(h+1 - l)j - flogj;l + 1.

The crucial point to observe is that

[f](n) .i;; p1u1 + p2(u1 + u 2) + · · ·

+pk(U1 + " .. +uk),

where k = k(n) is such thath .i;; n <h+ 1 (i.e., k(n)
= max{i ui ~ n}).

3.1. Theorem. If there are a constant c > 1 and a
function cj> such that u i + 1/u i ;;;i. c for all i and
Pi ~ cj>(n) for all n and 1 ~ i ~ k(n}, :hen f has
cost factor cj>.

Proof. We have

[f](n) ~ P1U1 + P2(u1 + u2) + · · ·

+pdu1 + ··· +ud

= U1(P1 + · · · +pk) + U2(P2 + · · · +pk)
+ · · · +ukPk·

l!sing that ui ~ c- 1ui+I for i ;:i.1, whence ui ~
c•-kuk for 1 ~ i ~ k = k(n). and Pi~ cj>(n) for the
same range, we obtain

~ f(n)ct>(n) E ic-i = O(f(n)ct>(n}). 0
i;;a.1

3.2. Corollary. If there are a constant c > 1 and a
function cl> such that ll;+ 1/u; ;;;i. c for all i and

324

j;+ 1/j; .i;; 2<1><n> for all n and I~ i .i;; k(n), then f
has cost factor <j> + I.

Proof. The proof immediately follows from Theo
rem 3.1 by observing that

i); ~ 1+log(j;+ 1/j;)~1 + cl>(n). D

Both Theorem 3.1 and Corollary 3.2 show the
relation between the 'growth' of a function and its
cost factor, and can be used for instance to prove
that the function f constructed in the proof of
Proposition 2.8 has cost factor Jlog n (take c = ~
and cj>(n) = 1 + J2 log n). The condition on the
sequence { u; } ; ,. 1 clearly restricts the application
to functions f with increments which grow at least
exponentially.

There are various other bounds which can be
derived along similar lines, starting from the basic
estimate

[f](n) ~ P1U1 + P2(u1 + u2) + ...

+pk(u1 + · · · +ud

or, equivalently,

(f]{n) ~ U1(P1 + · · · +pk) + U2(P2 + · · · +pd
+ · · · +ukpk

with k = k(n). We leave this to the reader.

References

(1) J.L. Bentley. Decomposable searching problems, Inform.
Process. Lett. 8 (1979) 244-251.

(2) J.L Bentley and J.B. Saxe. Decomposable searching prob
lems, Part I: Static-to-dynamic transformations. J. Al
gorithms 1 (1980) 301-358.

(3) K. Mehlhom, Data Structures and Algorithms, Vol. 3:
Multi-Dimensional Searching and Computational Geom
etry (Springer, Berlin, 1984).

[4) M.H. Ovennars, The Design of Dynamic Data Structures,
Leclure Notes in Computer Science, Vol. 156 (Springer
Berlin. 1983).

