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Summary

In [8] de Bakker and Zucker proposed to use complete metric spaces for the semantic definition of program-
ming languages that allow for concurrency and synchronisation. The use of the tools of metric topology
has been advocated by Nivat and his colleagues already in the seventies and metric topology was successfully
applied to various problems [11,12]. Recently, the question under which circumstances fized point equati-
ons 1nvolving complete metric spaces can be (unigquely) solved has attracted attention, e.g. [1,10]. In [1],
a criterion for the existence of a solution, namely the contractiveness of the respective functor, is provi-
ded. Contractiveness together with an additional criterion, the hom-contractiveness was shown in [1] to

guarantee uniqueness. The problem of uniqueness is the topic of our contribution.
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1. Mathematical Preliminaries

A  metric space is a pair (M,d) with M a set and d a mapping,
d: M x M — [0,1] which satisfies (%) '

(a) Ve,ye M (d(:c,y):0<:>:c:y),

(b) Vz,ye M d(z,y)=d(y, =),

(¢) Ve,y,ze M d(z,y) <d(z,z)+d(z,y).

A sequence (z;) in a metric space (M,d) is a Cauchy sequence, whenever Ve > 0

N €N VYn,m > N d(zn,zm) < €. The metric space (M,d) is called complete if
every Cauchy sequence converges to an element of M .

Let (Mi,di), (Maz,d2) be metric spaces. A function f : M; — M, is called
non—distance—~increasing, if Vz,y € M,

d2(f (), f()) < di(z,y) .
f is called (isometric) embedding, if Vz,y € M;

da(f(z), f(y)) = di(z,y) .
f is called an isometry, if f is onto and an (isometric) embedding.

It is well known, [4], that every metric space (M,d) can be embedded into a “unique”
“minimal” complete metric space, called the completion of (M, d).

Let M denote the category that has metric spaces as objects and non—distance-increasing
functions as arrows. Let C denote the category that has complete metric spaces as

objects. The arrows in C are the non-distance—increasing functions. Let M;, M, be

complete metric spaces, and let
1: My — M2 be an embedding

and j: M2 — M; be a non-distance-increasing function.
7 is called a cut for i if 505 = idp;, ¥ . For embedding i : M; — M, with cut j we
put ¢ = (¢,7) and write M; —* M, and define

8(e) = sup {du,(z,1(5(z)))}

z€EM2

We say that a functor F : C — C preserves embeddings iff Fe is an embedding for every
embedding e. A functor F: C — C that preserves embeddings is called contracting if
there exists an ¢, 0 < e <1, such that forall D—*E € C, .= (3,5),

S(Fe) <e-6(2)
where Fi = (Fi, Fj).
Please note that we have modified the definition of [1] slightly, just in order to be able
to include the empty space as an object.

0 < d(z,y) <1 can be always obtained for an arbitrary metric d:MxM— R by
substituting c?(a:,y) by &L—(‘-if%.
Throughout this text the composition fog of functions stands for Az.g(f(z)).
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2. The problem setting

In [3] de Bakker et al. proposed a promising approach to the definition of semantics
for programming languages based on complete metric spaces as follows: the meaning
function Me maps a program P (in a language £ ) to its meaning Me[P] which is an
element of a certain complete metric space constructed for the language £ as a solution
of a certain fixed point equation FX = X .

This technique has been successfully applied [3,17] e.g. to different variants of Hoare’s
communicating sequential processes [8]. Ever since, the question of existence and uni-
queness of solutions of such fixed point equations as well as the connection to other
models for semantics, e.g. the denotational approach based on CPO’s (complete partial
orders) [5,13,14,15,16], has attracted interest. The latter question has been partly inve-
stigated in [6,9,17]. Recently, [1,10] have developed general criteria to ensure existence
and uniqueness of solutions of equations FX = X, where F is an endofunctor in a
category of complete metric spaces. In particular in [10] two different criteria, each of
which guarantees the existence and uniqueness of fixed points are presented. In addition
in [10] an interesting example of a fixed point equation is discussed that cannot be solved
by standard techniques. In [1] it is shown that a functor that is contracting (as defi-
ned above) has a fixed point. It is then shown in [1] that contractiveness together with
hom-contractiveness guarantees that the fixed point is unique (up to isometry). Here we

discuss the problem of uniqueness.
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3. Fixpoints of contracting functors

In this section we deal with the problem how the fixed points of a contracting functor are
related. In particular we show that every contracting functor has a unique “minimal”
fixed point and that every contracting functor F with |F0| = 1 has a fixed point that
is unique up to isometry.

Remark 1
Let (M,d) be a complete metric space. Let

pc(M)={U C M : U is non-empty and closed}

and let dj; denote the Hausdorff metric on pc(M), ie. for z,y € M, X,Y € p.(M)
let

Az, Y) = ylg, d(z,y)

dy(X,Y) = max{:gg{A(a:,Y)},:lélg{A(y,X)}} .

It is well-known that (p.(M), JM) 1s a complete metric space, see e.g. [4].

Let now D —* E € C, v = (3,5). In particular D is isometrically embedded into E
via ¢ and we can view D as a closed subset of E, i.e. an element of 9:(E). Let dg
be the Hausdorff metric on p.(E) then we can talk about

dg(D,E)

or

d(D, E)

for ease of notation, considering D and E as elements of p.(E). ()

Remark 2
Let D —-*Ee€C, .=(,j). fVzeFE

dg (z,i(j(z))) < p

then

dD,EY< .

This can be easily seen by the definition of the Hausdorff metric.

Strictly speaking the “distance of D and E as elements of g:(E)" also depends on the
choice of the embedding 7. But as this choice will always be clear from the context, we
omit its indication.
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Remark 3
Let D —* E € C then
d(D, E) < §(:)

by the above remark and the definition of 6(.).

Theorem

Let F:C — C be a contracting functor and let §§ denote the empty space.

a) There is a fixed point My of F that can be embedded into any other fixed point
M of F.

b) if |FB) =1 then there is a unique fixed point of F up to isometry.

Proof

a) If FO = 0 the statement is trivial. Let now F@ # 0 .Clearly 0 is initial in the
categories M and C. In particular there is a unique embedding

/\0(0——»]-'(0

By iteration we get A; = F¥(Ao) : F*0 — F**10, i > 1, is an embedding. Let |JF*0
denote the direct limit of this sequence in M. Then the completion of | J F*0, which
we denote by m, is the direct limit of the sequence in C. Let [, : 70 — m
be the canonical embeddings, 1 >0, i.e.

(1) : li=Molin
Let us now choose an arbitrary one element space {z¢}. Clearly there is an embed-
ding
eo : {zo} — FO
as FO # 0. Moreover, there is a unique embedding
7:0 . 0 — {IBQ}
and we have
(II) /\0 = io S -1]
as (0 is initial. Let now o; : F*{zo} — Fi*1{zo}, i > 0, be defined as
(III) 0’0:600.7:1:0
oy =Foi_1, 12>1

Clearly, o; is an embedding from F*{zo} to F*+*{zq}. Let |JF{zo} denote the
direct limit in M with respect to {o;}.

We are now going to embed F*{zy} into m in a way that is compatible with
o; . Let in particular

€g 0 11 : {mo} — Uf"@
Fiegoliy :.’Fi{a:g}-——»Ufi@ fori> 1.
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8. Fizpoints of contracting functors

These embeddings of F'{zo} into |JF@ are compatible with the embedding
o; : F{zo} — Fit{z.} as

egoly =ogo(Fegoly)
by equations (I), (II), (III). And in general

(IV) Flegoliys = Flegodiproliyr by (1)
= Flego Fitl)g 0 lita by Def.
:;Fieoofi+1ioof“i+leooli+2 by (I11)
=Fogo F*legoliyy by (III)
=0, 0F egoly; by Def.

As JF{zo} is the direct limit with respect to the {o;} we conclude that there is
a unique embedding

e: Uf"{a:o} - U.’Fi(l)
such that
(V) hioe= Flego liga

where h; is the canonical embedding of F*{zo} into [JF{zo}, i > 0.
Let now N be an arbitrary fixed point of F and let A: FN — N be an 1sometry.
Cleraly, there is a unique embedding

eg: 0> N
hence
& FO—-N, i>1
(V[) Gi:]‘-é‘,‘_loh

are embeddings of Fi0 into N . We claim that they are compatible with the ), .
First we observe that

€g = /\0 o .7:60 oh
= Apoe by the initiality of §

and assuming €; = X; 0 ¢4 we get
(VII) . €¢+1:.7:E,;Oh
= f(/\,; O€¢+1)Oh

:f/\iof€i+10h

= Ait1 0642 by Definition.
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Again, as |J F*0 is the direct limit with respect to {A\;} we conclude that there is
a unique embedding

fJro-nw
such that
(VIII) e=liof
hence

eof: U.’Fi{a:o} — N is an embedding.

We now construct cuts ¢; for o; by

Co = /\(l!tvo , Co ¢ f{z:o} - {:llo}

C; = .‘/-'ci_l , 7,2 1.
If F is contracting it has been shown in [1,10] that |JF¢{zo} is a fixed point of F,
hence we put Mo = [JF*{zo} to get the desired result.
Let now in addition |[F0| = 1. Let FO = {yo}. We consider again the sequence
Fb, i> 0, with embeddings A;, i > 0, as defined in a). We define a cut for ),

1>1, by
dlz/\:c,yo

di=Fdi_y, i>2

Let now as in a) N be another fixed point of F with the embeddings ¢; : Fi0 — N
defined in (VI), that are compatible with the A; (see (VIII)). Let

g1=Az.y0 ¢1: N — {yo}
gi=h"'oFg_ 1 gi:N— FQ
where h: FN — N is isometry. Clearly g; is a cut for ¢;, and consequently
€0g;=(Fe_10h)o(h™? oFgi-1)
= F(ei—109;-1)

Clearly 6((e1,91)) <1 and

5((€i+1rgi+1) = 6('F€’l- © h) h’_l o :ng)

= :2]}\){ dy (:c,h(fﬂ (-ng(h_l(m)))))

= sup dn (h(y),h(ffi (fgi(y)))>
yeEFN

= sup d(y, Fe; Fgi(y))
YyEFN

= §(Fei, Fg:)
<e-b(ei,9:)
Hence 6((ei,9:)) < €~ with € < 1 and by Remark 3 dy ., (F*0, N) converges to

zero. Hence N is the limes of the %0 in p.(N), i > 1. As N was chosen arbitra-
rily, as the embedding sequence X; : F*0 — Fi+1Q) was constructed independently of
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N, and as the embeddings €, : F') — N are compatible with the A; , we conclude
that all fixed points coincide up to isometry.

Remark 4
Let F1 : C — C be a contracting functor, let F, : C — C be a functor such that

§(F20) <6(e)

1.e. weakly contracting, then F; o Fy and Fy o0 F;, are trivially contracting. Hence we
may start with one contracting functor F; : C — C, as e.g. the functor

Fi(X)={p}U(Ax X) A aset
in [3], where the metric d on A x X is given by

E((a’x :E)» (a/, :c/)) = { }d(m, ;c’) ;ftl‘zefw?;e

2

and d is the metric of X . Then we can construct a variety of functors with unique fixed

points using various functors in the construction process that are just weakly contracting.




4. Conclusion

4. Conclusion

We have shown that for a contracting functor F : C — C, there is a “minimal” fixed
point. This result fits in between the existence proof of [1] and their uniqueness result.
The uniqueness result of [1] is based on a change of category (instead of C the category
of complete metric spaces with a base point is considered) together with the property of
hom-contractivity, see [1], expressing a condition of F with respect to morphisms. In
contrast to this our approach to guarantee uniqueness is by satisfying that the functor
F applied to the empty set yields a one-element space. When we look at the original
paper of [3] and review the construction of spaces, i.e.

Py = {po}
Piy1 ={po}UA — p.(B x F)
- f(PZ) )

we see that we can always interprete Py as F@, i.e. the condition for uniqueness is
satisfied. In other words, we may interprete the ‘nil’ process as the result of applying F

to the empty space. The relation between hom-contractivity and the condition |Fo| =1
will be dealt with separately in a forthcoming paper.
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