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Abstract
Bertossi and Bonuccelli [2] proved that the Hamiltonian Circuit problem is NP-Complete even
when the inputs are restricted to the special class of Undirected Path graphs. The corresponding
problem on Directed Path graphs was left as an open problem. We use a characterization of
Directed Path graphs due to Monma and Wei [8] to prove that the Hamiltonian Circuit problem

and the Hamiltonian Path problem are NP-Complete on Directed Path graphs.
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1. Introduction

The Hamiltonian Circuit problem on general graphs is a well-known NP-Complete problem.
It is known to be NP-Complete even when the inputs are restricted to several interesting special
classes of graphs. For example, it is NP-Complete on planar cubic 3-connected graphs [4], bipartite
graphs [1], edge graphs [3}, and chordal graphs [5] (see [7] for a summary of these results). Bertossi
and Bonuccelli [2] proved that the problem of finding a hamiltonian circuit is also NP-Complete on
several interesting classes of intersection graphs. They proved that the hamiltonian circuit problem
is NP-Complete on undirected path graphs, double interval graphs, and rectangle graphs, all three
of which are generalizations of interval graphs. They left unsolved the problems of determining
whether the hamiltonian circuit problem is NP-Complete on directed path graphs and circular-arc
graphs.

In this paper we answer one of the open questions posed by them. We prove that the hamilto-
nian circuit problem on directed path graphs (HCDPG problem) is NP-Complete too. Our proof

uses techniques similar to those used in [2]. We also use a theorem due to Monma and Wei [8],
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which characterizes directed path graphs in terms of its cliques. The reduction is carried out from
the hamiltonian circuit problem on bipartite graphs with maximum degree 3 (HCBGD3 problem),

which was proved to be NP-Complete by Itai, et al. [6].

2. Directed Path Graphs

We will use the same notation and terminology used in [2]. A Hamiltonian circuit of a graph
is an ordering of the vertices such that every two cyclically consecutive vertices are joined by an
edge. The Intersection graph for a family of sets is obtained by associating each set with a vertex
of the graph and joining two vertices by an edge exactly when their corresponding sets have a
nonempty intersection. We will be interested in classes of intersection graphs arising {rom families
of simple vertex paths in a tree. Here we assume a vertex path to consist of the set of vertices
on it. Undirected Path graphs are intersection graphs of paths in a tree. Directed Path graphs are
intersection graphs of directed paths in a directed tree.

The transformation from an instance of HCBGD3 problem to an instance of HCDPG problem
is described below. Given a bipartite graph B(M, N, E) with maximum degree 3, an instance of the
HCBGD3 problem consists of determining whether the graph B has a hamiltonian circuit. Without
loss of generality, we assume that the vertex sets M and N both have n vertices and that B has no
vertex with degree 1, since otherwise B has no hamiltonian circuit. Let M = {mq1,m2,.. ., My} and
N = {n3,na,...,n}. We show how to construct an instance of the HCDPG problem by showing
how to construct a directed path graph G(V, A) such that B has a hamiltonian circuit if and only
£ & has a hamiltonian circuit. We describe G by describing all its maximal cliques. Note that
describing all the maximal cliques of a graph fully defines the graph itself. Corresponding to vertex
m; € M, construct a clique K; = X;U {As; : (my,n;) € E}. Corresponding to each vertex n; € N
with degree 3, construct cliques K5 =Y;U{4y: (ms,n;) € E}and K = Z;U{A;j : (mi,nj) € E}.
Corresponding to each vertex nj € N with degree 2, construct a clique K P =Y;U {Aqj : (my,m ) €
E}. Finally construct one large clique Ko = {Aij : (mi,n;) € E}.

Note that the cliques mentioned above are the only maximal cliques (or maximal completely

connected subgraphs) in G. Hence it is clear that
V(G) = {X1,.... Xx} U {Ys,. LY, U{Z; : degree(n;) = 3} U {Ayj : (mi,n;) € B}

We first prove that the resulting graph G is a directed path graph. Then we show that the
transformation described above is a polynomial-time reduction from the HCBGD3 problem to the

HCDPG problem.



Claim I: The graph G constructed above is a directed path graph.
To prove the above claim we use a result due to Monma and Wei [8], which characterizes directed
path graphs in terms of its maximal cliques. They proved the following theorem called the Clique

Tree Theorem for directed path graphs, which we state without proof.

Theorem 1 [8]: Clique Tree Theorem for directed path graphs

Let G = (V, A) be a graph and let K be the set of all maximal cliques of G. For each vertex v € V,
let K, be the set of cliques of K containing the vertex v. Then G is a directed path graph if and
only if there exists a directed tree T' with vertex set K, such that for every v € V, T(K,) is a

directed path in T. Here T((K,) denotes the subgraph of T with vertices or edges corresponding to
Ky.

Proof of Claim 1: Let K be the set of all maximal cliques of G. Hence,
K={KJU{K;K;:i=1,...,n}U {K;" : degree(n;) = 3}

Let T be a directed graph with vertex set K. Hence T' has a vertex for each maximal clique of G.

Let the directed edges of T' be as follows:

(1(07](2_)’ Vi, 1<t<n
(I(_/j’I(O), VJ? 1< .7 <n

(KY,K%), V¥j, 1<j<mn, degree(n;)=3

T is clearly a directed tree. We now illustrate the construction using the same bipartite graph
example from [2]. Figure 1 below shows the bipartite graph B with maximum degree 3, and the
clique tree T corresponding to the directed path graph G.

Let v be a vertex of G. If v is either X, Y; or Z;, then T(K,) consists of only one vertex
and hence is a directed path of length 0. If v = A;; and degree(n;) = 3, then T(K,) consists of
the directed path (K, Ko, K}, K¥). If v = A;; and degree(n;) = 2, then T(K,) consists of the
directed path (K, Ko, K}). Hence for each vertex v € V(G), T(K,) is a directed path in T'. Hence
by theorem 1, G is a directed path graph. W

In Claim 2 we prove that the HCBGD3 problem polynomially reduces to the HCDPG problem.
Claim 2 The HCBGD3 problem can be reduced in polynomial time to the HCDPG problem.
Proof of Claim 2:  Consider the transformation of an instance of a HCBGD3 problem to an
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Figure 1: A bipartite graph B, and the constructed clique tree T'.

instance of the HCDPG problem as described above. Now, the claim is that there exists a hamil-
tonian circuit in B iff there exists one in G. Verifying one direction of the claim is easy. If B has a
hamiltonian circuit Cg, we obtain a hamiltonian circuit Cg for G as follows. If m;, n;, my are three
consecutive vertices in C'g, we obtain Cg by substituting the sequence (m;, nj, my) either with the
sequence (X;, A;;,Y;, Anj, Zj, Akj, Xi) if n; has degree 3 (in this case my, is the third vertex joined
to n; by an edge in ), or with the sequence (Xi, Aij, Yy, Akj, Xg). This results in a hamiltonian
circuit for G since all the vertices are covered and no vertex is covered more than once.
“onversely, let Cg be a hamiltonian circuit for G. The sequence of vertices in Ce must
consist of sequences of the form (X;, Aij, Y}, Anj, Zj, Arj, X&) if n; has degree 3, or of the form
(Xi, Aij, Y, Agj, Xi) if nj has degree 2. If this were not true then Z; ( if vertex n; has degree
3), and/or Y; would get excluded from the sequence of vertices forming the hamiltonian circuit,
since they are not adjacent to any other A-vertices. It is now clear that substituting either of these

sequences by the sequence (m;,n;, mi) would obtain a hamiltonian circuit in B. B

Theorem 2: The Hamiltonian Circuit problem on directed path graphs is NP-Complete.

Proof of Theorem 2: Tt trivially follows from lemmas 1 and 2. N

Just as in [2], this proof can easily be extended to prove that the hamiltonian path problem
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on directed path graphs is also NP-Complete.

3. Conclusion
The hamiltonian circuit problem remains open on the class of circular-arc graphs. It is also
open for a subclass of the class of directed path graphs, namely Rooted Directed Path graphs, which

are the intersection graphs of directed paths in a rooted directed tree.
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