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Abstract:

The paper presents a proof-system for partial-correctness assertions for a language for distributed programs
based on multi-party interactions as its interprocess communication and synchronization primitive. The system isa

natural generalization of the cooperating proofs introduced for partial-correctness proofs of CSP programs.
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1. INTRODUCTION

The proof-theoretical notion of cooperating-proofs was introduced in [AFR80] as a tool for the verification of
CSP distributed programs [Ho78), based on synchronous send-receive (also known as handshaking and rendez-
vous ) interprocess communication. 1t follows the structure of two-leveled proof systems as introduced in [OG76) in

the context of shared-variables concurrency. A closely-related proof system is presented in [LG81).

Since its introduction, the notion of cooperating-proofs was adapted to several contexts, capturing interpro-
cess communication constructs of increasing complexity and of varieties of structure. It was applied to remote pro-
cedure calls in (GRR82) for the DP language [Bh78), to ADA’s rendezvous in (GR84] and {BM82], to monitors in
[GR86], and 1o scripts (a communication abstraction mechanism) in [FHT86). Very good surveys of cooperating-
proofs are [dR85] and [HR86). Recently, the proof method was extended to dynamic process creation in [B87), and

to dynamic creation and destruction in [FF87].

In all the above extensions, interprocess communication can be classified as point-to-point communication,
involving two processes: a sender and a receiver. Multiple engagement is possible in some variants of a rendezvous
only due to nesting. In recent developments of Ianguages for distributed computing a new family of communication
structures has evolved, referred to generically as mulii-party interactions, involving a simultaneous activity of an
arbitrary collection of processes, usually fixed in advance (not varying during computation). Several such proposals
are: scripts (FHT86), joint-actions [BKs83), teams and interactions in Raddle [Fo87), shared-actions [RM87] and
compacts (Ch87]. These primitives enjoy a higher level of abstraction, hiding a lot of low-level details and

encourage modular programming and design.
In [EFK88] these proposals are classified into communication primitives, and communication abstractions.

In this paper, we focus on the former and propose an extension of cooperating-proofs o the language IP
(Interacting Processes) which uses the multi-party (synchronous) interaction as its sole interprocess communi-
cation and synchronization primitive. This language was introduced in [AF87], where an adequate notion of fairness
for multi-party interactions is proposed.

While we are witnessing an increasing use of this family of constructs, very little has been done on extending
the verification techniques to apply to these constructs. The main point of this paper is showing that cooperating-
proofs can be very smoothly extended to the multi-party interactions, with some natural generalization of the con-
cepts involved, but with no need for any essentially different proof-theoretic machinery. It is hoped that these gen-

eralizations, which enable formal proofs of (partial-) correctness of programs formulated by means of multi-party



231

interactions, will encourage an even more extensive usage of such primitives.

Cooperating-proofs belong to the two-leveled proof-systems, in which Iocal proofs for the distinct processes
are designed at the first stage, cmploying some assumptions about the environment’s behavior; then, at the second
stage, the local proofs are confronted for mutual consistency of all the assumptions made. As is known by now,
such two-leveled proofs, which are semi-compositional, are the best possible without extending the correctness pro-
perties and the specification language beyond the usual partial-correctness assertions {p }S {q }, where p and ¢

are state predicates.

In Section 2 the IP language and its formal operational semantics are introduced. In Section 3 Iocal proofs

are described, while the global cooperation test is presented in Section 4.

2. THE LANGUAGE IP (Interacting Processes)

In this section we present a simple mini-programming language, called /P (Interacting Processes), first
prescnted in [AF87]. The language is an abstraction and simplification of languages having multi-party interaction
as their interprocess communication and synchronization primitive, and is suitable for focusing on cooperating
proofs for partial correctness. In particular, multi-party interactions can be used as guards, thereby generalizing
both Dijkstra’s original guarded commands [Dij 76}, which have only boolean guards, and CSP [Ho 78], using
synchronous binary communication as guards. This kind of a language was already mentioned in [AFK 87}, without

details and formal semantics.

A program P:: [Pl - -+ 1P, ] consist of a concurrent composition of n21 (fixed n) processes, having dis-
Jjoint local states (i.e., no shared variables). A process P;, 1<i<n consists of a statement S, where S may take

one of the following forms:
skip: A statement with no effect on the state.

assignment X :=e : Here X is a variable local to P; and € is an expression over P; s local state. Assignments have

their usual meaning of state transformation.

interaction in [V :=¢€ ]: Here in is the interaction name and [V:=e] is an optional parallel assignment constituting

a local interaction-body (where an empty body appears as in []). All variables in V' are local to P; and different



232

from each other. The expressions € may involve variables not local o P; (belonging to other parties of that
interaction). The participants of an interaction in, denoted by PA,, , consists of all processes which syntactically
refer to in in their program. When a process arrives (during execution) to a local interaction-box, it is said to ready
the corresponding interaction. An interaction in is enabled only when all its participants have arrived (0 an interac-
tion point involving in, at which point it can be executed. Its execution implies the execution of all the parallel
assignments of all the local interaction-boxes of all participants. Every reference in the right hand side of an assign-
ment in one Iocal box to a variable belonging 1o another another participating process always means using the initial
value, i.e. the one determined by the state at the time the interaction started. In {EFK88) some more complicated
interaction-bodies are considered.

Thus, an interaction synchronizes all its participants, and all the bodies are executed in parallel. Upon termi-
nation of all bodies, each process resumes its local thread of control. Note that if the body V :=€  is empty, the effect

is pure synchronization.

sequential composition S,; So: First execute Sy; if and when it terminates, execute S, We freely use

Sy v+ 3 Sy forany k22,

nondeterministic selection | R q by; ing [V :=2;] — Si]: Here by ; iny [V :=€; ] is a guard, composed of two
=lom

pans. The part b, is a boolean expression over the local state of P;. The part in [V, =€, ] is an interaction
guard. Sy is any statement. When such a statement is evaluated in some state, the & "th guard is open if by is true
in that state and is readied at that stage. In general, several interactions may be readied by such a statement and are
said to be in conflict. Executing this kind of statement involves the following steps: evaluate all boolean parts to
determine the collection of open guards. If this collection is empty the statement fails. Otherwise a guard with an
enabled interaction is passed (simultaneously with the execution of all the other bodies in the other parties) and Sk

is executed.

nondeterministic iteration *[ [ by; ing [Vy:=€;] — S;]: Similar to the choice, but execution terminates
k=1m
once no open guards exist, and the whole procedure is repeated after each execution of a guarded command.

In both the selection and iteration constructs, identically true guards may be omitted. Note that nested concurrency

is excluded by this definition.
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We now tumn to formal definitions of the operational semantics, based on Plotkin’s transition scheme [P1 83).
In {AF87] two different semantics are defined: serialized and overlapping (compare with a similar distinction in
[GFK 84] and [BKS 85]). The distinction between them is crucial to understanding the hyperfairness notion sug-
gested in that paper. Since we are interested here only in partial com.acmess. only the serialized semantics is
presented (they are equivalent in this respect, differing on liveness properties only). Throughout we assume some
interpretation over which computations occur, and leave it implicit. The central characteristic of the semantics is
that actions and interactions take place one at a time. A configuration < [S,I! - - - IIS, ], & > consists of a con-
current program and a global state, assigning values to all variables. A configuration represents an intermediate
stage in a computation where S; is the rest of the program that process P; has still to execute, while G is the current
state at that stage. We stipulate (for facilitating the definition) an empty program E (not in the IP language) satis-
fying the identities S; E =E; S =S forevery S. A configuration < [E |l - - - IE], G > is a terminal confi-

guration. For a state O, we use the usual notions of a variant G[a/x ] and o[a/x].

We now define the (serialized) transition relation ~> among configurations.

<[yl NS M -+~ US,), 6> = <[Syl -~ NEN -+ IIS,], 6> )
forany 1<i<n i[fsi=skip.ors,~=*[ X El bj;inJ[‘T}:eTI] —)TJ]and—| \1/ b] holds in G.
J=hLn; j=la;
<ISyN - IS - 15,1, 6> <[Syll --- NEIl -+~ US,], ofole Vx] > @
for any 1<i<n iff S;=(x:=€).
IS W - S 1S NSy g1 -+ 1S5 4 1S, 118,011 -+ 1S, ], 6> ;
SISy M - NSy NS5 WS, 1+ 18,y IS 1S, 1 -~ 1S,), 0" > &

iff the following holds: There is an interaction in with a sct of participants PAy,=(P; , - - - , P, } (for some
1<k <n), and forevery i sit. P; € PA,, one of the following conditions holds:

@ S; =in[v;=¢;)and §"; =E

o S; = [j=l?‘mb~; inj[\7j:=e7j] — T and there exisis some j, 1<j<n; st b; nholds in G, in;=in and
§=T;

J

© S;=*( 0 bj;inj[Fj:=Ej] —T;] and there exists some j, 15j<n; st b; holds in O, in;=in,
=l

S',-=Tj; S,~.
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Finally, for all thesc cases, 0’=0[c[e)/V],withv= U V;ande= U e¢;.
P;ePA, P;ePA,

For any 1<i<n, if

<[SqM--US; N~ NS, ), 6> <[SIl--- US;N---1S,), 0 > @)
then

<[Syll--- US;T;1---US,],0> S <[S0--- WS ;- IIS,,].o’>
For this semantics, we define the following notions.
Definition:

(1) A (serialized) computation T of P on an initial state G is a maximal (finite or infinite) sequence of configura-

tions C;, i 20, such that:
@Co=<P,0>.
M Foralli20,C; — C; .

(2) The computation T terminates iff it is finite and its last configuration is terminal, and T deadlocks iff it is finite

and its last configuration is not terminal.

(3) An interaction in is enabled in a configuration C iff C has one of the forms in clause (3) of the definition of

* — " and all the conditions are satisfied for in.
(4) Two interactions in and in, are in conflict in a configuration C iff both interactions are enabled in C and
they have non-disjoint set of participants, i.e. PA;, (\PAin #@.

Based on this definitions it is now possible to interpret partial-correctness assertions in the usual way. In the
next two sections we present the extension of cooperating proofs 1o the language /P .
3. LOCAL PROOF-OUTLINES

The basic components of a proof are represented as proof-outlines, which were introduced in [0G76]. Our
use of them is similar to that in [AFR80]. proof-outlines constitute the local part of a proof, in which separate rea-

soning about each process is carried out. proof-outlines are to be contrasted with each other at the second stage of a
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correctness proof. (A formulation in terms of proofs from assumptions appears in [Ap84].) The proof-outlines for

IP satisfy the usual partial-correciness axioms and rules, and in addition the following interaction-box axiom (iba).

(iba) {p}in [v:=e){q}, for arbitrary local assertions p and q.

This axiom is the natural generalization of the i/o axioms in [AFR80, LG81] and their counter-parts in the

more complicated applications of cooperative proofs mentioned in the introduction.

In so much as the i/o axioms constitute an assumption about the state of the communication partner (in some
matching communication), the interaction-box axiom may be considered 10 constitute a joint-assumption about the
preinteraction states of all the participants of some collection of matching local interaction-boxes. The collection of
all such joint-assumptions made by all members of PA ;, are confronted simultaneously in the cooperation-test

described in the next section. This is the proof-theoretical counterpart of the synchronized nawre of a multi-party

interaction.
Example: As a simple example, we consider the following applications of the iba axiom.

Pu(Pyin[x=x+y+z] 1Pyt in [y:=x+y+z] P52 in [z :=x+y+z]).
Each of the following is a valid proof-outline:

{x 20} in[x=x+y+z]{x 20} for P,,
{y 20} in[y=x+y+z]){y 20} for P,,
{z 20} in[z:=x+y+z]){z 20} for P,.
Thus, in the first one, we conclude locally for P, a postcondition x 2 O based on its own precondition and an

assumption about the preconditions of P4 and P 3, about the values of y and z. As it happens, the conjunction of
the respective preconditions y 2 0 and z 2> 0 indeed satisfies the assumption, as would be revealed during the

coopceration test.

As is usual for partial comrectness proofs in distributed programs, another kind of an assumption made by a
process is that a certain interaction will never occur (compare with [AFR80] and [Ap84] for the same phenomenon

in send-receive communication). This can be seen in the following simple example.
Example: Consider the program Q in Figure 1. Note that PA;, = (P, Py, P1}, in spite of the identically
false guards (introduced for simplicity, 10 avoid local computation) of in in P, and P 5.

As a part of a proof of {true }Q {x=y=0}, we might have a proof-outline for P with a postcondition

{x=0}. However, since x is modificd both in the body of iny and in the body of in,, to preserve the sequential
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Q:: [Py limlx:=y) — skip Oinylx:=z] - skip]
I
Pyiy=0;[true — iny[10false — inyf]]
I
Py z:=1;[true — im{10false — inyll]

1.

Figure 1: Example program Q
nondeterministic branching rule an assumption is needed also about the local interaction-box in,[x:=z], even
though this interaction will never occur. We obtain the following (Figure 2) proof-outline for P . The interaction
iny will pass the cooperation-test vacuously, by having a false precondition in any maiching collection of local

interaction-boxes.

4. GLOBAL INVARIANTS AND THE COOPERATION TEST

Let P be an /P program and in an interaction in P . Our most basic aim, after having separate proof-outlines

for each P; in P, is t0 establish

* A pre; [inV-::E lI~--lIin\7~:=e'7] A post;}.

), &, Pres) | inl¥i=2;) B=g)] {, 5, Post)
Here {pre;} in[V;:=2;]{post;} is taken from the local proof-outline of P;, PjePA;, for a syntactically-
matching collection of local interaction-boxes. The correctness assertion (*) captures the operational synchronous

nature of an interaction.

Py {true}
[iny[x =y 1{x=0} — skip {x=0}
a
iny[x :=z){x=0} — skip {x=0}]
1{x=0}

Figure 2: A proof-outline for Py
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The first step is to introduce the (global) interaction axiom (gia), the natural generalization of the communication

axiom of [AFR80] and [LG81].

ia M I in[v;:=¢; ,where v= U Vv;ande= U e¢g;.
@ ){p‘}[P,ePA,. nv;:=2illip). w PicPA, ’ P;ePA,’

This axiom captures the operational semantics of an interaction as a parallel (atomic) execution of all the
parallel assignments is the local intcraction-boxes. This is the usual axiom for multiple assignments [LG81], with
two levels of multitude being collapsed: One within a local interaction-box and another among concurrent local
interaction-boxes. The syntactic constraint of all variables in V' being different follows from the formation rules of

local interaction-boxes in /P and from process state disjointness.

Example: Retuming to the program P in a previous example, an application of the interaction-axiom and the rule

of consequence immediately yield

(**) (x20Ay20 A sz}[in[x =x+y+z] linly =x+y+z)llin[z :=x+y+z]] {x20 A y20 A z20).
We might also prove a stronger partial-correctness assertion, about P , with the same precondition and the
posicondition x =y =z 20). To obtain this proof, we have to appeal also to the usual substitution rule of (Go75] (see
also [Ap84] for its use for cooperation proofs). The problem is that we need to "freeze” initial values of variables, to
which local interaction-boxes have access, but local assertions do not. We modify the proof outlines for that exam-

ple.

The stronger proof-outlines for the program P above are:

{x =a 20} in[x =x+y+z){x =a+b+c 20} for P,,
{y =b 20} inly:=x+y+z1{y =a+b+c 20} for P,
{z=c 20} in[z.=x+y+z]{z =a+b+c 20} for P;.

Since

x=a20Ay=b20Az=c20 = x+y+z=a+b+c20
An application of the global interaction-axiom and the consequence rule yields

(x=a20Ay=b20Az=c 20} P {x=a+b+c=y=220).
By weakening the postcondition, we finally get

[x=a20Ay=b20Az=c 20} P {x=y=z20).
Since none of @, b and ¢ is free either in P or in the postcondition, we can substitwte @ 1x, b 1y, ¢ 1z, o obtain

{(x20 Ay20 A 220} P {x=y=220].
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Without substitution, we could obtain an even stronger posicondition, "remembering” the summation effect of

the program.
0
However, as in the case of communicating processes [AFR80], things are a little more complicated. The main
problem is the identification of semantically-matching interactions. So, similarly to the communicating processes
case, we introduce awxdliary variables [0G76, AFR80]), that carry the additional information needed to express the
conditions for such a semantic matching, which happen not o be present in the state. In addition, we introduce a
global invariant and bracketed sections, where the invariant has to hold before and after every execution of a
semantically-matching tuple of bracketed sections. The global invariant may refer to the variable in all processes.

While its main role is the one stated above, in actual proofs it can be used to propagate any global information.

We now slightly extend the bracketing notion of communicating processes.

Definition:

(1) A process P; is bracketed iff the brackets ' <’ and ' > ' is interspersed in its body in such a way that each
bracketed section < S > is of the form Sy; in[V:=€]; S, for some local S and S, (i.e., without interac-

tion boxes, possibly empty).

(2) A collection of local interaction-boxes {in; [V;:=&;] i € A } syntactically-match iff for some interaction in,

A in;=in holds, where in; [V;:=2;] occurs in process P; . Furthermore, A=PA;,.
i€A

(3) A collection <S;>, i€A, of bracketed sections syntactically match iff the collection of respective local

interaction -boxes occurring within them syntactically match.

(4) An outline section {p }<S >{q } is a bracketed section with its precondition and postcondition taken from a
Tocal proof-outline of some process. Outline sections syntactically-match when their respective bracketed sec-

tions match.

0

As for communicating processes, the bracketing suggest a slightly different operational semantics, where the
grain of atomicity is a semantically matching pair of bracketed sections. As far as partial correctness is concerned,
this is equivalent to the original semantics, and enables updating auxiliary variables together with visible effects in
an interaction. For an explanation of this equivalence in term of emporal logic see [KP87). This approach extends

0P as well, taking as atomic steps semantically matching collections of local interaction-boxes.
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We now introduce a global invariant 7, to be preserved by a program P when executed with this coarser
grain of intericaving, induced by the bracketed sections. The invariant has free variables whose values are modifi-

able only within bracketed sections.
Definition:
(1) A syntactically matching collection of outline sections {pre;} <S;> {post;}, 1 i Sn cooperates wr.t.
theinvariant I iff { A pre; AT} <Sll --- WS, >{ A post; Al] canbe proved.
i=lm i=lm
(2) For an IP program P:: [ Ill P; 1, proof-outlines {p;} P; {q;}, 1Si £n cooperate wrir. I iff every
i=ln

syntactically matching collection of outline sections cooperate wr.t /.

1]

To establish the condition in (1), one can use the global interaction-axiom and formation rules similar to the

ones in [AFR80] or [Ap84].

We now can introduce the usual concurrent composition (cc) meta-rule, which is the same as for communi-
cating processes., but with the exiended definition of cooperation among proofs.
LetP:: [Pyl -+ P, ]bean [P program and let {p; }P;{q; }, 1<i <n , be valid local proof-cutlines.

{p;}P;{q;},1<i <n,cooperate w.r.t. I

(ce) (AP AP LA GAT]
i=ln i=l;n

1t is interesting to note that the concurrent composition rule remains intact, and is valid for many situations of
cooperation of local outline. It might be interesting to find an abstract characterization of cooperation that will have
(cc ) as a valid rule. No such characterization exists to date.

Finally, onc uses the usual auxiliary variables rule ({0G76), [AFR80]) to get rid of the auxiliary variables and

assingments introduced for the sake of the proof only.
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