
Information Processing Letters 34 (1990) 187-192

North-Holland

24 April 1990

CONSTANT TIME SORTING ON A PROCESSOR ARRAY WITH A RECONFIGURABLE
BUS SYSTEM

Biing-Feng WANG, Gen-Huey CHEN and Ferng-Ching LIN

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, People’s Republic of
China

Communicated by S.G. Akl

Received 20 September 1989

Revised 21 December 1989

Keywork Sorting, parallel algorithms, reconfigurable buses

1. Introduction

Sorting is undoubtedly one of the most funda-
mental problems in computer science. Many
sequential sorting algorithms are available in the
literatures [6] and it is well known that this prob-
lem requires O(n log n) time in the worst case. To
speed-up sorting, many parallel algorithms have
been proposed on various parallel machines [2].
Constant time sorting can be achieved on an ex-
tremely powerful machine model, CRCW PRAM
(concurrent-read concurrent-write parallel random
access machine), in which simultaneous access
(read or write) to the same memory location is
allowed and the write conflict resolution process is
to store the sum of all numbers that are written to
the same memory location [3]. Although powerful,
this machine is too idealistic to be implemented
with the current hardware technology. On the
other hand, networks of processors such as linear
array, perfect shuffle, mesh, tree, and cube seem
to be more feasible. However, the sorting times of
these networks are bounded below by their diame-
ters, which is by no means a constant.

Recently, many processor arrays have been
supplemented with buses to decrease their diame-
ters in order to enhance the system performance
[1,4,8,15,20]. Buses can give processor arrays
greater communication capabilities. They allow
broadcasting and long-distance communication to

be completed in constant time. A bus system
whose configuration can be dynamically changed
is called a reconfigurable bus system. Many recon-
figurable bus systems such as bus automaton, re-
configurable mesh, and polymorphic-torus net-
work have appeared in the literature [7,10,16,22].

A bus automaton [16,18] can be viewed as a
cellular automaton with a locally switchable global
communication network. By adjusting the local
switches properly, straight, zig-zag, and staircase
subbuses can be formed. Efficient algorithms on
bus automata for many applications such as pat-
tern recognition [9,17,19], language parsing [14],
and string comparison [5], have been proposed. A
reconfigurable mesh [lo] consists of a square array
of processors which are connected to a grid-shaped
reconfigurable broadcast bus system. Within each
processor, four locally controllable bus switches
are built to adjust the configuration of the bus
system. Some graph [ll], image [12], and geometry
problems [13] have been efficiently solved on the
reconfigurable mesh. Like the reconfigurable mesh,
a polymorphic-torus network [7] also consists of a
square array of processors, but with a wrap around
connection on each row and column. Efficient
embeddings of tree, ring, mesh, pyramid, and hy-
percube can be realized by properly establishing
the programmable local switches within each
processor [7].

In this paper, we derive a constant time sorting

OOZO-0190/90/$3.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 187

Volume 34, Number 4 INFORMATION PROCESSING LETTERS 24 April 1990

algorithm on a three-dimensional processor array
equipped with a reconfigurable bus system, which
is far more feasible than the CRCW PRAM model.
The processor array consists of N triangular arrays
whose bottom processors are connected into an
N x N square array, where N is the number of
data items to be sorted. The sorting algorithm is
based on the well-known enumeration sort (also
known as sorting by ranking) [6]. Data input, data
comparisons, and data output are performed on
the square array. The triangular arrays are re-
sponsible for ranking the data items during the
sorting process.

We first introduce the execution of each trian-
gular array in the next section. Then, we present
the sorting algorithm in Section 3.

2. Summing a binary sequence on a triangular
processor array

In this section we propose an N X N lower
triangular processor array with six-neighbour con-
nections to sum a binary sequence b,,, b,, . . . ,

b ,,-,, where b,, 0 ,< i < N - 1, is 0 or 1. Figure 1
shows such an array for N = 6. Each processor is
identified by a unique index (j,k). There are six
ports, denoted by U, D, N, S, UN, and DS, built
within each processor that connect to a reconfig-
urable broadcast bus. The configuration of the bus
is dynamically changeable by adjusting a local
switchable network in each processor. When two

ports are connected by local switch, data that
enter at one port leave the processor from the
other port.

The summing algorithm consists of the follow-
ing steps: (we explain the algorithm by summing
the binary sequence 1, 1, 0, 1, 0, 1)

Step 0: Initially, b, is stored in processor P,,,,

for 0 <j 6 N - 1 (see Fig. 2(a)).
Step 1: Processor P,,o, 1 <j G N - 1, sends a

copy of b, to processor P, ~ l,o.
Step 2: Every processor connects port D to

port U to form vertically straight subbuses. Then,
processor P,,,, 0 <j< N - 2, broadcasts b, and
b ,+1 on the corresponding subbus (see Fig. 2(b)).

Step 3: Processor P,,k, O<j<N-2andO<k
G N - 1 -j, connects port S to port N if (b,,
b,, ,) is (0, 0), connects port DS to port N if (b,,
b,,,) is (0, l), connects port S to port UN if (b,,

b,, ,) is (1, 0), and connects port DS to port UN if
(b,, b,,,) is (1, 1). The resulting configuration
consists of several disjoint staircase subbuses.
Then, the special processor P,+,,. broadcasts a
signal “ * ” through port UN if b,_, = 1 and
through port N otherwise (see Fig. 2(c)).

Step 4: Processor PO,k, 0 < k 6 N - 1, connects
port U to port D to form a vertically straight
subbus. Then, the processor PO,k,, that received
the signal “ *” broadcasts the value k’ on the
established subbus (see Fig. 2(d)).

Step 5: Processor Po,o computes the sum as
k’ + 6, (see Fig. 2(e)).

U

N S

D

Fig. 1. A triangular processor array with a reconfigurable bus system.

188

Volume 34, Number 4 INFORMATION PROCESSING LETTERS 24 April 1990

Fig. 3. Four triangular processor arrays whose bottom processors are connected into a square processor array.

(a) After step 0. (b) After step 2.

(c) After step 3.

0
00
000
0000
00000
~00000

(d) After step 4. (e) After step 5.

Fig. 2. Summing the binary sequence 1,1,0,1,0,1.

N
U

UN

189

Volume 34, Number 4 INFORMATION PROCESSING LETTERS 24 April 1990

It is clear that the algorithm takes only con- b ,+, = 0 and at port DS as b,, , = 1, and leaves
stant time. The correctness of the algorithm is P,,k from port N as b, = 0 and from port UN as
assured by the following lemma. b, = 1. So, the signal goes up one stair step if a “1”

is encountered and goes horizontally otherwise.
Lemma 2.1. The triangular processor array does After Step 3, in each column only one processor
compute the sum of the input binary sequence. can receive the signal. If a processor P,,k, 0 <<j ,<

N - 2, receives the signal, k ’ = b,, , + b,, z
Proof. Step 3 is the most crucial. In Step 3, the + . . ’ + b,_ ,. The desired sum b, + b, + . . .
signal “ * ” enters a processor P,,k at port S as + b,_, will be obtained in P,,, after Step 5. 0

0000
0000
0000

(a) After step I of comparison phase. (b) After step 2 of comparison phase.

@O@O

@@O@

OO@O

@a@@
(c) After step 3 of comparison phase. (d) After step 4 of comparison phase.

OO@O

0000

0000

0000

(e) After ranking phase. (f) After step 1 of rearrangement phase

coooo

+-@ooo

4000

+@ooo

(g) After step 2 of rearrangement phase (h) After step 3 of rearrangement phase.

Fig. 4. Sorting data items 4,6,1,4.

190

Volume 34, Number 4 INFORMATION PROCESSING LETTERS 24 April 1990

3. Sorting on a processor array with a reconfigura-
ble bus system

The processor array consists of N triangular
arrays introduced in the last section. The bottom
processors of the triangular arrays are connected
into an N x N square array, as depicted in Fig. 3
for N = 4. Six ports N, E, W, S, UN, and U are
built within each bottom processor. Each processor
in the processor array is identified by a unique
index (i, j, k) and is connected to a reconfigura-
ble broadcast bus through the ports.

The sorting algorithm is composed of three
phases: comparison, ranking, and rearrangement.
In the comparison phase, the data items are com-
pared with each other. The ranking phase de-
termines the rank of each data item using the
results of the comparison phase. The rearrange-
ment phase rearranges the data items into a non-
decreasing sequence according to their ranks. Let
d,, d,, . . . , d,_ 1 (not necessarily distinct) be the
data items to be sorted. The execution of each
phase is as follows: (we explain the algorithm by
sorting the data items 4, 6, 1, 4)

Comparison phase.
Step 1: For 0 < i < N - 1, input data item d,

into processor P,,O,O in parallel (see Fig. 4(a)).

Step 2: All processors in the square array con-
nect port N to port S to form straight subbuses.
Then, processor P,,O,O, 0 < i < N - 1, broadcasts d,

on the corresponding subbus (see Fig. 4(b)).
Step 3: All processors in the square array con-

nect port E to port W to form straight subbuses.
Then, processor P ,,,, 0,0 <j < N - 1, broadcasts d,

on the corresponding subbus (see Fig. 4(c)).
Step 4: Processor P,,,,O, 0 < i < N - 1 and 0 <j

<N - 1, sets b,,, = 1 if (d, > d,) or ((d, = d,) and

(i >j)), and b,,, = 0 otherwise (see Fig. 4(d)).

Ranking phase. As we have described in the last
section, the triangular arrays can compute r; = bi,O
+ b,,, + . . . +b,,,_, in parallel, for 0 6 i G N - 1.

After the ranking phase, the rank r, of the data
item di is kept in processor Pi,,, (see Fig. 4(e)).

Rearrangement phase.
Step 1: All processors in the square array con-

nect port N to port S to form straight subbuses.

Then, processor P,,o,O, 0 < i < N - 1, broadcasts r,

on the corresponding subbus (see Fig. 4(f)).
Step 2: All processors in the square array con-

nect port E to port W to form straight subbuses.
Then, processors P,,i,,O, 0 < i < N - 1 and j’ = r,,
broadcasts d, on the corresponding subbus (see

Fig. 4(g)).
Step 3: Processor PO,,,“, 0 <j G N - 1, outputs

the data item that it has received in Step 2 (see

Fig. 4(h)).

Theorem 3.1. The three-dimensionul array of 0(N3)
processors with a reconfigurable bus system can sort

N data items in constant time.

The proof of Theorem 3.1 is immediate from
Lemma 2.1 and the description of the sorting
algorithm.

4. Concluding remarks

In this paper we have presented a constant time
sorting algorithm on a three-dimensional processor
array with a reconfigurable bus system. In fact, by
embedding the triangular arrays into the square
array, the dimension of the processor array can be
reduced from three to two without increasing the
processor number. The authors are currently try-
ing to reduce the processor number from 0(N3)
to 0(N210g2N), which is the hardware lower
bound of sorting while retaining the constant time

WI.

References

[l] A. Aggarwal, Optimal bounds for finding maximum on
array of processors with k global buses, IEEE Trans.

Comput. 35 (1) (1986) 62-64.

[2] S.G. Akl, Parallel Sorting Algorithms (Academic Press,

Orlando, FL, 1985).

[3] S.G. Akl, The Desrgn and Analysis of Parallel Algorithms

(Prentice-Hall, Englewood Cliffs, NJ, 1989) 93-96.

[4] S.H. Bokhari, Finding maximum on an array processor
with a global bus, IEEE Trans. Comput. 33 (2) (1984)

133-139.

[S] D.M. Champion and J. Rothstein, Immediate parallel
solution of the longest common subsequence problem, in:

Proc. International Conference on Parallel Processing (1987)

70-77.

191

Volume 34, Number 4 INFORMATION PROCESSING LETTERS 24 April 1990

[6] D.E. Knuth, The Art of Computer Programming, Vol. 3.

Sorting and Searching (Addison-Wesley, Reading, MA,
1973).

[7] H. Li and M. Maresca, Polymorphic-torus network, IEEE

Trans. Comput. 38 (9) (1989) 1345-1351.

[E] P. McKinley, Multicast routing in spanning bus hyper-

cubes, in: Proc. International Conference on Parallel

Processing 2 (1988) 204-211.

[9] J.R. Melby, Recognition of straight lines by bus automata

using parallel processing, Ph.D. Thesis, The Ohio State

University, Columbus, OH (1980).

[lo] R. Miller, V.K. Prasanna Kumar, D. Reisis and Q.F.

Stout, Meshes with reconfigurable buses, in: Proc. 5th

MIT Conference on Advanced Research in VLSI (1988)

163-178.

[ll] R. Miller, V.K. Prasanna Kumar, D. Reisis and Q.F.

Stout, Data movement operations and applications on

reconfigurable VLSI arrays, in: Proc. International Con-

ference on Parallel Processing 1 (1988) 205-208.

[12] R. Miller, V.K. Prasanna Kumar, D. Reisis and Q.F.

Stout, Image computations on reconfigurable VLSI arrays,

in: Proc. IEEE Comput. Sot. Conf: Comput. Vision Pattern

Recognition (1988) 925-930.

[13] R. Miller and Q.F. Stout, Efficient parallel convex hull

algorithms, IEEE Trans. Comput. 37 (12) (1988) 1605-

1618.

[14] J.M. Moshell and J. Rothstein, Bus automata and im-

mediate languages, Inform. and Control 40 (1979) 88-121.

[15] V.K. Prasanna Kumar and C.S. Raghavendra, Array

processor with multiple broadcasting, J. Parallel and Dis-

tributed Comput. 2 (1987) 173-190.

[16] J. Rothstein, On the ultimate limitations of parallel

processing, in: Proc. International Conference on Parallel

Processing (1976) 206-212.

[17] J. Rothstein, Toward pattern-recognizing visual prosthe-

ses, in: Proc. IFAC Symposium, Control Aspects of Pros-

thetics and Orthotics, Columbus (1982) 87-89.

[18] J. Rothstein, Bus automata, brains, and mental models,

IEEE Trans. Systems Man Cybernet. 18 (4) (1988) 522-531.

[19] J. Rothstein and A. Davis, Parallel recognition of para-

bolic and conic patterns by bus automata, in: Proc. Inter-

national Conference on Parallel Processrng (1979) 288-297.

[20] Q.F. Stout, Mesh connected computers with broadcasting,

IEEE Trans. Comput. 32 (9) (1983) 826-830.

[21] C.D. Thompson, The VLSI complexity of sorting, IEEE

Trans. Comput. 32 (12) (1983) 1171-1184.

[22] C.C. Weems, S.P. Levitan, A.R. Hanson, E.M. Riseman,

J.G. Nash and D.B. Shu, The image understanding archi-

tecture, COINS Tech. Rept. 87-76, University of Mas-

sachusetts, Amherst, MA (1987).

I92

