mzuriCh ETH Library

A special case of the dynamization
problem for least cost paths

Report

Author(s):
Crippa, Davide

Publication date:
1991

Permanent link:
https://doi.org/10.3929/ethz-a-000582227

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgendssische Technische Hochschule Zirich, Departement Informatik, Institut fiir Theoretische Informati 155

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000582227
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgendssische Departement Informatik
Technische Hochschule Institut far

Zirich Theoretische Informatik
Davide Crippa A Special Case of the

Dynamization Problem for
Least Cost Paths

Eidg. Techn. Hochschule Zirich
Informatikbibliothek
ETH-Zentrum
CH-8092 Ziirich

March 1991

155

Authors’addresses:

Institut fUr Theoretische Informatik
ETH-Zentrum

CH-8082 Zrich

e-mail: crippa@inf.ethz.ch

© 1991 Departement Informatik, ETH Ztirich

Abstract

Given a digraph and a cost function on its edges, we want
to develop a structure supporting questions of the type: what
is the cost of the least cost path from a given origin r to each
node v if the cost of each edge is increased by the same po-
sitive constant §. We will see that an efficient structure can
be generated as by-product of the Bellmann-Ford algorithm
for least cost paths; the main feature of this structure is that
for any choice of § such questions can be answered in time
O(log M), where X is the length of the longest least cost path
in the digraph. :

Contents

1

2
3
4

Introduction

The Main Idea

Least Cost Paths of Bounded Length
The Structure LeastCostTree

Concluding Remarks and Open Questions

10

13

1 Introduction

In working with large networks it is sometimes necessary to modify
some of their characteristics; then, in order to reduce the time needed
for finding the solution of a given problem, it is advisable to update
the previously found solutions instead of computing everything from
scratch again. This is what we tried to do for our problem, which
could be seen as a special case of the dynamization problem, solved
by Even/Shiloach [2] and Ibaraki/Katoh [5] for transitive closures,
by La Poutré/van Leeuwen [7] for transitive closures and reductions,
by Frederickson [4] for minimum spanning trees and by Rohnert [10]
for all-pairs least cost paths.

The problem can be formalized as follows given a digraph G' =
(V, E), |V| = n,|E| = m, and a cost function C : E — IR, which
does not imply negative cost cycles, we want to compute

LeastCost(r,v,68) = cost of the least cost path from a given
origin r to the node v when the cost of
each edge in the graph is increased by the
positive constant é

for different choices of § without having to run a least cost path
algorithm everytime with a new cost function. This will be obtained
by generating in time O(m }) a structure that will allow us to answer
every LeastCost(r,v,6) in time O(log \), where) is the length of the
longest least cost path in G.

2 The Main Idea

Throughout this paper we suppose that a given origin r is specified,
from which all the least cost paths are computed; therefore, whenever
we speak about a path to v we mean a path starting at , and least
cost path trees are also meant to be rooted at this node.

As usual we denote by adj *(v) (resp adj ~(v)) the set of suc-
cessors (resp. predecessors) of the node v in G. Further we will write
Ple, c] for a path with e edges whose total cost is ¢ , LCP(v) for the
least cost path to the node v and LCPy(v) for the least cost path to
the node v of length not exceeding k ; we define G(6) as the graph
obtained from G by adding the positive constant § to the cost of
each edge, and we call § the offset of the new graph with respect to
the original one. Finally, by updating an offset § we mean computing
the least cost path tree of the graph G(6).

Property 1 The number of edges in the LCP(v) is a non increasing
function with respect to the offset, i.e. when updating an offset the
new LCP(v) will have at most as many edges as the old ome.

Proof. Let Ple;,c;] be the LCP(v); for any other path Ple,c] to
v we must have ¢ > ¢;. When we update an offset § these paths
become respectively Plej,ci + de1] and Ple,c + be]; if now another
path becomes the LCP(v) we must have ¢ 4 ée < ¢1 + deq, which is
possible only if e < e1. 0

Property 2 Given two paths Ple1,c1] and Ples, ca] to v withey > ez
and ¢i < cg, the latter will become less expensive than the former at
the offset 6§ = (ca — c1)/(e1 — e2).

Proof. Immediate, as the costs of the two paths at an offset 6 are
respectively c; + §ej and ¢z + Sea.]

Property 3 There ezists an offset A such that in G(A) the length
of the LCP(v) is equal to the distance between v and r. Further the
least cost path tree of G(6) will be the same as the one of G(A) for
all 6 > A.

Proof. It follows immediately from Properties 1 and 2.]

Theorem 1 For every § > 0 and veV there exists a keV such that
LCP(v) in G(6) = LCPy(v) in G

Proof. Moreover, if the LCP(v) in G(§) has length k, we can show
that this path is the same as the LCP,(v) in G. Let P[k,c| be the
path in G that will be the LOP(u) in G(8), and let another path
Ple’,c'] be the LCP;(v) in G. Then ¢’ < k and ¢’ < ¢, so that in
G(8) we will obtain ¢+ k& > ¢’ + €'6 for the costs of the two paths,
in contradiction with our assumptions. u]

Theorem 2 Let Pile;,ci], i = 1,2,3 , be three paths to a node v in
G withe; > ez > e3 and ¢1 < ¢c2 < c3; further let 619, 61,3 and b23 be
the offsets at which Po becomes less expensive than Py, respectively
P; less expensive than P and P3 less expensive than Pp.

Then, if 812 < 813 , it must also be 612 < do,3

Proof. The following inequalities are all equivalent:

6,2 < 613
(c2—c1)(e1—e3) < (c3—ci)(er—e3)
coe; —cgeg +cijeg < c3el — czeg -+ c1es

—c1e9 — c2€3 + c1eg < cgep — C3eg — Cr€]
(c2—ci)(e2—e3) < (c3—c2)(e1—e2)
b2 < b23

We now have enough arguments to state the main idea of the
algorithm, which consists in finding for each v € V all the offsets §
for which

LCP(v) in G(§) # LCP(v) in G(§'), forall0< & < §

i.e., all the offsets at which the structure of the least cost path to v
changes, which are the relevant data to compute LeastCost(r,v,$) for
all § > 0. In the algorithm we will use a liss BLCP(v) representing
the least cost paths of bounded length to v in G. The construction
of this list will be described in the next section.

Main Algorithm

(1) forallv eV do

(2) compute the list BLCP(v);

(3 find out which of the paths in BLCP(v) will become
LCP(v) in a G(é) and at which &;

4) generate the structure to answer
LeastCost(r,v,8) forany 6 >0
(5) od;

(6) while not stop do answer LeastCost(r,v,6) od.
Main Algorithm

3 Least Cost Paths of Bounded Length

We now present the procedure which computes for each node v in
the digraph @ all the least cost paths to v of bounded length (Step
(2) of the Main Algorithm). Each path will be stored in the list
BLCP(v) as record of two variables: its cost and its length in G 1,

BLCP

(1)
(2)
3)
(4)
(5)
(6)
(7)
(®)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
an
(18)
(19)

(20)
1)

PQ — ;
forall u ¢ V do BLCP(u) « od;
BLCP(r)+[0]0] ;

repeat
« the first record in PQ;

u_path + the first record in BLCP(u);
forall v € adj* (u) do
v._path « the first record in BLCP(v);
if u_path.cost+ C(u,v) < v_path.cost
then
new_v_cost — u_path.cost + C(u,v);
new_v.length — u_path.length + 1;
if v_path.length = new_v_length
then v_path.cost — new_v_cost

else
put | v | new_v_length |
at the end of PQ;
put | new.v_cost | new_vlength |
at the begin of BLCP(v)
fi
fi
od
until PQ=0

BLCP

'In each record we could also store the predecessor of the node in that path,
so that we would be able to reconstruct in the usual way the corresponding path;
as this is not very relevant to our analysis we will omit it.

8

In particular the list is constructed in such a way that the records
are ordered by decreasing number of edges in the path, which will
be useful in the next step of the Main Algorithm. Notice that the
list contains only the different least cost paths of bounded length:
this means that if Ple;,c;] is the immediate predecessor of Ples, cg]
in the list, then the latter is the LCPy(v) for all e3 < k < €.

Let us denote by ¢ the cost of LCPy(v) in G. The presented

iprocedure is a by-product of the Ford’s algorithm [3], which was
based on the equations

cS-O) =0
c$,°) = oo Vovs#r
Y = min {cgk) , {cﬁ,’“) +C(u,v) |ue adj’(v)}} VveV

It consists in introducing a priority-queue PQ (as developed by Ford
[3] and Moore [9]) where we store each node for which a new, longer
LCP of bounded length has been found together with the length of
this path:

PO = {r} ‘

PQ®) = {veV| P < cs,k'_l)} Vk=1,.,n

If now §ve order the Ford’s equations differently we get the following
procedure:

cgkﬂ) = cs,k) VveV

D) = min {cs,kﬂ),) + C(u, v)} Ve adit(u), ue PQX

If finally we choose for PQ a first-in-first-out strategy, we automati-
cally obtain the list BLCP(v) ordered with respect to the length.

4 The Structure LeastCostTree

We now come to the description of the other steps of the Main Al-
gorithm, which are developed in a single procedure.

As mentioned before, the list BLCP(v) contains all the possible
candidates for LCP(v) in a G(6) and by construction they are ordered
by decreasing length; in particular the first path, say Pyle,], is the
LCP(v) in G. Now we compare it with all the other candidates
and, according to Property 2, we determine at which offset each of
these would become less expensive than Pp; the minimum & over
these values, corresponding say to the path P'[¢/,'], is the smallest
offset at which the structure of LCP(v) changes. This means that
for 0 < & < & the least cost path to v in G(6) is given by Py,
and therefore it follows immediately that LeastCost(r,v,6) = c + e
for all 0 < § < §'. Continuing, we compare now P' with all the
candidates which are shorter (because of Proposition 1), i.e. with
all its successors in BLCP(v), and again we compute the minimum
8" over the possible offsets; at this point Theorem 2 makes sure that
" > §, and therefore for §' < § < §" the LCP(v) in G(6) will be P'.
And so on.

LeastCostTree

(1) forallveV do

(2) LeastCostTree(v) «+ empty tree;

(3) Py « the first record in BLCP(v);

(4) insert [Pp.cost | Pp.length | 0 |in LeastCostTree(v);
(5) while Py not the last record in BLCP(v) do

(6) let P' be the record in BLCP(v) such that
§pr = min { pﬁf;‘:;—:,;":l—)ﬁf%ﬁ I P successor of Py }
M insert [P'.cost | P'.length | 6pr | in LeastCostTree(v);
(8) Py — P
(9) od;
(10) od
LeastCostTree

10

As the only relevant data needed to compute LeastCost(r,v,8)
are the offsets at which the structure of the LCP(v) changes together
with the length and the cost of these paths in G, we need a structure
to store these values. For this purpose we assign to each node v a
balanced search tree LeastCostTree(v), which could be for instance
a BB[a-Tree (see Mehlhorn [8]). For this Data Structure the basic
operations Insert and Search require time O(logN), where N is
the number of data stored in the tree. Usually sets are stored in
BB|a]-trees in node-oriented fashion; in our case, though, we will
assign the offsets to the nodes and the other information regarding
the paths to the leaves. If now we want to compute LeastCost(r,v,§)
we proceed in the following way:

LeastCost(r,v,6)

(1) node « root of LeastCostTree(v);

(2) while node # leaf do

3) if § < node.key

4) then go to the left son of node

(5) else go to the right son of node

(6) fi;

(7) od;

(8) LeastCost(r,v,6) « leaf.cost + leaf.length -6

LeastCost(r,v,§)

11

To explain better the last steps let us make an example. Suppose
that the structure of LCP(v) in G(&) changes at the three different
offsets §; < 6 < 63 and let Pifes,ci], i =1,2,3, be the corresponding
paths to v; further let Pyleq, co] be the LCP(v) in the originary G =
G(0). Then we would store these values in the following tree:

€g €1 €2 €3
()] C1 5] c3

To compute LeastCost(r,v,8), say for §; < é < &2, we would start
at the root 6o of the tree, go to its left son §; and reach its right
leaf. This leaf contains, as explained in a previous discussion, the
characteristics e; and ¢; of the path in @ that will become LCP(v)

_in G(8), and therefore

LeastCost(r,v,6) =c1+e1 -8

12

5 Concluding Remarks and Open Questions

The complexity of the whole algorithm can be set together by the
following:

o to compute BLCP we need time O(m)), where) is the length
of the longest least cost path in G, because each node will be
removed from PQ at most A times, as shown in [9];

o further to compute LeastCostTree we have a complexity of
O(n X logA): for each node v the steps (6)-(10) cost at most
successively (A —1) logi),i=1,.,A—1;

e finally to answer LeastCost(r,v,6) we need time O(log)), be-
cause, according to Property 1, A is an upper bound for the
. number of offsets at which the structure of LCP(v) changes.

Our empirical results, obtained by running the algorithm on a
weighted random digraph of the class D, p . (as defined in [1]), indi-
cate that A is in the order of magnitude of logn. Is there a mathe-
matical proof for this ?

An upper bound for the total number of offsets Noff is n) , and
this would show, if our conjecture about A is exact, that Noff does
not grow linearly with the number of edges. This again agrees with
our empirical results.

Let us specify the concepts of internal resp. external path length
of a tree: these are defined to be the sum, taken over all interior nodes
respectively leaves, of the lengths of the paths from these nodes to
the root (see also [6]). Another upper bound for Noffis now given by
the difference between the sum of internal and external path lengths
in the LCP-Tree and in the BFS-Tree in G} in fact by Property 1 at
every offset there is at least an LCP whose length will decrease by at
least 1, and further by Property 3 the sum of internal and external
path lengths in the LCP-Tree after the biggest offset will be the same
as the one in the BFS-Tree. Using the results about the diameter of
random graphs obtained by Spirakis [11] we could say that the sum
for BFS-Tree should be in average O(n logn), but again we do not
know about any result concerning the sum for LCP-Trees.

13

References

[1] D.ANGLUIN AND L.VALIANT. Fast Probabilistic Algorithms for
Hamiltonian Circuits and Matchings. J. Computers and Sys-
tem Sciences 18 (1979) 155-193.

[2] S.EVEN AND Y.SHILOACH. An On-line Edge-Deletion Pro-
blem. JACM 28-1 (1981).

[3] L.J.ForDp JR. Network Flow Theory. Rand Corporation Re-
port P-293 (1956).

[4] G.N.FREDERICKSON. Data Structures for On-line Updating of
Minimum Spanning Trees. CACM (1983).

[5] T.IBARAKI AND N.KATOH. On-line Computation of Transitive
Closures of Graphs. Information Processing Letters 16 (1983)
95-97. '

[6] R.KEMP. Fundamentals of the Average Case Analysis of Par-
ticular Algorithms. Wiley-Teubner (1984) 124.

[7] J.A. La POUTRE AND J. VAN LEEUWEN. Maintenance of
Transitive Closures and Transitive Reductions of Graphs. Lec-
ture Notes in Computer Science 314 (1987) 106-120.

[8] K.MEHLHORN. Data Structures and Algorithms 1/2. EATCS,
Springer (1984).

[9] E.F.MOORE The Shortest Path through o Maze. International
Symposium on the Theory of Switching 1957, Harvard Univer-
sity Cambridge MA (1959).

[10] H.ROENERT. A Dynamization of the All Pairs Least Cost Path
Problem. Lecture Notes in Computer Science 182 (1985) 279-
286.

[11] P.SPIRAKIS The Diameter of Connected Components of Ran-
dom Graphs. Lecture Notes in Computer Science 246 (1986)
264-274.

14

Gelbe Berichte des Departements Informatik

135

136

137

138
139

140
141
142
143

144
145
146

147
148
149
150
151
152

153
154

Ch. Wieland

H.-J. Schek, M.H. Scholl,
G. Weikum

G. Weikum, Ch. Hasse
A. Ménkeberg, P. Zabback
J. Gutknecht

P.E. Saylor,
D.C. Smolarski

N. Wirth
M. Franz
M. Franz

N. Wirth

J.L. Marais

J. M&ssenbdck

H. E. Meier

G. Weikum, P. Zabback,
P. Scheuermann

D. Degiorgi

A. Moenkeberg,

G. Weikum

M.H. Scholl, Ch. Laasch
M. Tresch

C. Szyperski

M. Bronstein

G.H. Gonnet, D.W. Gruntz
G.H. Gonnet, St.A. Benner

Two Explanation Facilities for the Deductive Data
base Management System DeDEx

From the KERNEL to the COSMOS: The Database
Research Group at ETH Zurich

The COMFORT Project: A Comfortable Way to
Better Performance (vergriffen)

The Oberon Guide: System Release 1.2 (vergriffen)

Implementation of an Adaptive Algorithm for
Richardson 's Method (vergriffen)

Die Programmiersprache Oberon (vergriffen)
The Implementation of MacOberon
MacOberon Reference Manual

From Medula to Oberon (Revised Edition)
(vergriffen)

The GADGETS User Interface Management System
She: A Simple Hypertext Editor for Programs

Schriftgestaltung mit Hilfe des Computers
Typographische Grundregeln

Dynamic File Allocation in Disk Arrays
A New Linear Algorithm to Detect a Line Graph and
Output its Root Graph

Conflict-Driven Load Control for the Avoidance of
Data-Contention Thrashing

Updatable Views in Object-Oriented Databases
Write - An extensible Text Editor for the Oberon
System :

On Solutions of Linear Ordinary Difierential
Equations in their Coefficient Field

Algebraic Manipulation: Systems

Computational Biochemistry Research at ETH

