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In this note we show the following theorem: 

Theorem 1.1 For any k, and an nk-enumerator E (given a Boolean formula f, E prints out a list of 
n k many numbers one of which is #f), one can find #f in deterministic polynomial time relative to E. 

kIn particular, if an n - enumerator E exists in P, then P =p#P. 

The idea of enumerative counting was introduced in [CRS9] , where the above theorem was conjectured 
c-enumerator exists in P, thenbut left open. Instead, a weaker result was proved, namely if an n1

P = p#P. This result has been extended by Amir, Beigel and Gasarch [ABGS9]. They showed that 
if an nk-enumerator exists then BPP = p#P. The above result will settle our original conjecture 
in [CHS9].3 

The proof is based on the newly developed idea of using polynomial interpolation for tree pruning, 
with which Lund, Fort now, Karloff, and Nisan [LFKNS9] and Shamir [ShaS9] proved that the polyno
mial hierarchy and indeed even PSPACE have interactive proofs, and with which Babai, Fortnow, and 
Lund [BFL90] have shown that Uk>O NTIME[2"·] has two-prover interactive protocols, and Cai [CaiS9] 
has shown that the polynomial hierarchy has two-prover one-round interactive protocols. 

Our proof works as follows: Since the permanent function is hard for #P, without loss of generality 
we assume that our nk-enumerator E is given for the permanent; thus, for any integer matrix A of 
n bits, E gives a list of nk-numbers one of which is perA, where k is some fixed integer. As the 
enumerator E gives some n k possible values for per A, the task is to determine which value is the right 
one. Suppose our matrix A is m x m. For some fixed constant d (independent of n), we will produce an 
(m - 1) x (m - 1) matrix, for which E gives up to nd possible values and each of which, if it is correct, 
certifies exactly one of the claimed values for perA is correct. Then by induction, the correct value of 
perA will be computed. 

We now proceed to the formal proof. Let us be given an m x m integer matrix A = (aij) of n 

bits, where perforce laijl $ 2", and m 2 $ n. Clearly perA is bounded by n!(2")", hence by Chinese 
Remainder Theorem and Prime Number Theorem, for any c ~ 2, the values perA mod p for all the 

Cprimes n < p < n c+1 uniquely determine perA. (The exact value of c will be chosen later.) As there 
are at most a polynomial number of such primes and they are of O(log n) bits each, we have no problem 
checking the primality of all of them; thus we will just concentrate on getting perA mod p for any fixed 

Cprime n < p < n c+1 in polynomial time. (The reason for introducing primes and Chinese Remaindering 
is to make sure we don't have a blow-up in the size of the entries; this will become clear later on.) 

Assume m > 1, and let A[llk] be the (m - 1) x (m - 1) submatrices obtained from A by striking 
out row 1 and column k, 1 $ k $ m. Now we view each matrix as a matrix over Z/pZ, i.e., we take a 
reduction modulo p. Let A(z) = 2:;'=1 ek(z)A[llk] E Mm-1(Z/pZ)[z] be a matrix polynomial, where 

1 Department of Computer Science, Princeton University, Princeton, NJ 08544. 
2Department of Computer Science, University of Rochester, Rochester, NY 14627. Supported in part by the National 

Science Foundation under research grant CCR-8996198 and a Presidential Young Investigator Award. 
3Seinosuke Toda has, independently, shown Theorem 1.1 as an extension of the work of Amir, Beigel, and 

Gasarch [Tod90]. 

1 





el:(x) E Z/pZ[x] are polynomials of degree at most m-l, such thatel:(i) = Ol:l, for 1 ~ k,i ~ m. Hence, 
A(k) = A[llk], and per(A(k)) is the kth permanental minor of A. Thus, perA = 2:~=1 a,aper(A(k)). 
p> m, so polynomials el:(x) as described above can be chosen. 

We would like to know the polynomial p(x) = perA( x) E Z/pZ[x], which is of degree at most (m-l)2. 
Clearly the values of p(x) at any (m - I? +1 points uniquely determine the polynomial itself. However, 
if we query E directly, we will get some nl: values for each point we query, and together they make up 
an exponential number of polynomials by interpolation. 

We get around this problem by suitably combining the queries, and in effect, force the enumerator E 
to sort itself out consistently. Thus we consider the matrices A(i) E M m - 1(Z/ pZ ), for 0 ~ i ~ (m _1)2. 
As p > nC ~ m 2 , these i are all distinct points in Z/pZ. Now we lift them back to the integers 
Z, and form a single N P machine N, such that the number of accepting computation of N on In is 
2:~~;1)' 2'·n· . perA(i). We note first that by lifting back to the integers, we can assume all the entries 
of A( i) are nonnegative and bounded by p < n c+1. Thus each permanent perA( i) over Z is nonnegative 
and bounded by (m - I)!· (nC+1)n < 2n ' , hence the values of these permanents can be read off easily 
from the number of accepting computation of N on In. The construction of N can be easily carried 
out in polynomial time as follows: For each matrix, first guess a permutation, then multiply the entries 
on the "diagonal" given by the permutation, and generate the appropriate number of accepting paths. 
Finally the computation subtrees corresponding to each permanental matrices are combined to form the 
computation of N on 10 

• 

To the machine N we apply Valiant's reduction from #P to the permanent function, and we get an 
integer matrix of n l bits, for some constant i, and whose permanental value can be easily decoded to 
obtain the number of accepting computation of N on In, which in turn, upon reduction modulo p, gives 
a tuple of values p(i) =perA( i) E Z/pZ, for 0 ~ i ~ (m - 1)2, which uniquely determines a polynomial 

nklp(x) E Z/pZ[x]. Of course, we will query E, and we get instead a list of up to polynomials in 
Z/pZ[x], one of which is the right one perA(x). Note that these polynomials are of degree at most 
(m -1)2 < n, thus any two distinct polynomials can agree on at most n points. Now choose c > 2k£+ 1; 

Cthen n- (02 
kl 

) < n < p, thus there exists a point r E Z/pZ, such that no two of the nkl polynomials agree 
at r. This point can be found by exhaustive search in P. We note crucially that each value claimed by 
E for perA(r) labels a unique polynomial p(x) which certifies a unique value for the permanent of A: 
perA = 2:;:1 aliP(i). If a particular value po(r) is found to be the right value for perA(r), this implies 
that all the other polynomials we obtained by interpolation are incorrect. Since E must be right on one 
of its answers to any query, the tuple that interpolates to po(x) must be all correct, and thus Po(x) is 
the correct polynomial, and therefore the value perA = 2:7:::1 a1,po(i) it certifies must be correct. 

Now replace A by A(r). The proof is completed by induction. We only need to note that each entry 
of A(r) is bounded by p, without any blow-up in size. 
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