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1 Introduction

In this paper we study the complexity of computing some arithmetic functions of integer inputs using the
computation tree model (see [BO83], [Str83]. [SY82], [PS81]). This model, which is described in some
detail in Section 2, is equivalent to a random access machine (RAM) without indirect addressing, in the
sense that programs for one model can be translated into programs for the other model with the same time
complexity (up to constant factors). The instruction repertoire includes the four arithmetic operations
+,—, %, /, plus the floor, div, and mod operations and conditional branching.

The running time in our model is defined as the number of arithmetic operations and comparisons
executed, regardless of the complexity of the operation and size of operands, which is not very realistic.
However, for the purpose of giving lower bounds, the use of a stronger model does not impair the usefulness
of the results since they will hold also for any weaker model.

The main results of this paper are:

*Sponsored by the NSF (grant DCR-8552596) and by FAPESP, BRAZIL (grant 87/0197-2).

!Permanent address: DCC - IMECG - UNICAMP. Cx. Postal 6065, 13081 - Campinas - SP, BRAZIL.



e a lower bound of Q(y/logn) on the depth of any computation tree that computes the modular power

a® mod m, where a, b, m are n-bit integers. This bound also applies to RAMs with indirect addressing.

¢ a lower bound of Q(loglog n) on the depth of any computation tree that computes the Jacobi symbol

(%) where a, b are n-bit integers, with b > 1. b odd, and ged(a,b) = 1.

The first bound holds even for the weaker problem of deciding whether or not 2 mod a = 2 for an n-bit
integer ¢. In our proofs we use results obtained by Mansour, Schieber, and Tiwari on computations with
the floor operation (see [MST88b], [MST88a]).

Modular powering and the Jacobi symbol are largely used in cryptography and have several other
number theoretical applications. Hence, there is considerable interest in determining their complexity, and
this paper is a step towards that. We believe that many other number theoretical functions can be given
lower bounds using the methods employed here.

Prior to our work, the best known lower bounds for these problems were as follows. In [vzG87], von zur
Gathen showed that at least Q(n) operations are needed for modular powering, but his operations were
only the four basic arithmetic operations in the field Z,,, so the result is only valid for a fixed prime m,
which is not part of the input. We don’t know of any lower bounds for the Jacobi symbol, although any
bound for modular powering implies a bound for the Legendre symbol, which is the special case of the
Jacobi symbol when the second argument is prime.

The rest of this paper is organized as follows. Section 2 describes the computation tree model. Section 3
explains the way we derive lower bounds for this model. Section 4 shows how these ideas are employed in

our particular case. Finally, Section 5 lists some possibilities for future work on this topic.

2 Computation trees

A program in the computation tree model is a rooted tree in which each node is labeled with an instruction.

Instructions can be of two kinds: assignments and comparisons. Assignment instructions have the form

(result) — (operandl) (operator) {operand2)




where (result) is a variable name, (operator) is one of +, —, #, /,mod, div, and each operand is either the
constant “1”, a variable name, or an input name.
The mod and div operations are defined in terms of the floor function [z (which indicates the largest

integer less than or equal to the real x) as follows.

adivh = 'j%[J

amodb = a— |bl(adivb)

Notice that “/” stands for exact division: hence. even if the inputs are integers, intermediate results
can be arbitrary rational numbers.

Assignment nodes have either one child or no children. Comparison nodes always have two children
and bear instructions of the form

{operandl) < {operand?2)

where (operandl), (operand2) are as above

This completes our description of programs. Let’s now specify how to compute the output given a
program and values for each of its inputs.

The computation starts at the root and proceeds down until a leaf (childless node) is reached. The
value computed at this leaf (which must be an assignment node) is the desired output. At cach step the
instruction of the current node is executed and then control passes to one of its children. For comparison
nodes (the only ones where there is a choice). the left child is chosen if the comparison results “true”, and
the right child is selected if the result is “false.”

Two things can go wrong during a computation: division by zero and attempt to use the value of an
uninitialized variable. In both these cases we say that the computation terminates abnormally, as opposed
to a normal termination that produces an output. We define the domain of a tree T, denoted by domain(T’),
as the set of input values that cause normal termination. For k-input trees, this is a set of k-tuples.

The running time of a program for a given input is the number of nodes visited during execution. The
depth of a tree T', denoted by depth(T'), is the number of nodes in the longest simple path from the root

to a leaf. Hence, depth(T") is an upper bound for the running time of T over all inputs.



3 Main ideas

The way we prove the lower bounds in this paper can be viewed as a three step process. First, we find a
deciston problem that is reducible to the computation of the arithmetic function we are interested in. A
decision problem is one for which there are only two possible outputs. For modular powering, we chose the
question “is 2% mod @ = 27”. For the Jacobi symbol, the function itself can be used since there are only
two possible outputs, namely, +1 and —1. The reason we want decision problems is that we can assume
without loss of generality that if the executions for two inputs end up in the same leaf, they give the same
output value. This ce;n be achieved appending a comparison node to the end of the program that tests the
output and branches to compute the appropriate constant value. This observation is true for RAMs with
or without indirect addressing also.

The second step is to show that for every program T it is possible to find a set S of inputs that will
follow the same path down to a leaf during execution. In view of what we did in step 1, this means that
all inputs in S give the same output.

The last step consists in showing that, if the depth of T is smaller than the claimed lower bound, the

set S will be rich enough to contain inputs that give different outputs, contradicting the conclusion from

steps 1 and 2.

4 Results

Since there are a few differences in the way we treat the problems according to the number of inputs, we

will analyze each case separately, although the basic steps outlined in the last section apply to both cases.

4.1 One input problems

In this section we obtain the Q(\/logn) lower bound for the single input problem of deciding whether
2% mod a = 2. We will use the computation tree model here, although an extension to RAMs with indirect
addressing can be obtained as in [MST88b].

We start by recalling two number theoretical results. The first one depends on standard estimates on




the distribution of prime numbers, for which [RS62] is a good reference. The second one is a consequence

of Linnik’s work [Lin44].
Lemma 1 For any positive integer m, lel q(m) be the least prime not dividing m. Then
q(m) < O(log m).

Lemma 2 (Least Prime in an Arithmetic Progression) If m,r, s are integers with m,s > 1 and

ged(r,m) = 1 then the least prime solution to

r = r (modm)

satisfies < (ms)P().

To complete our prerequisites, we state a theorem on single input computation trees proved in [MST88b].

Given a positive integer A, we define
SN ={a€eZ|a>1 a=1 (mod )}

Theorem 1 Let T be a I-inpul compuiation tree of depth h and domain D. There exisis A € Z such that
for every input in S(A) N D the computation lerminates normally at the same leaf of T. Furthermore.

A<

Actually, the theorem is proved for computation trees using the operations 4, —, %, /, |'], <, but we
know that mod and div can be simulated by these in a constant numbers of steps (see Section 2). Also,
our definition of the set S(A) is slightly different, but the proof can be easily adapted to this case.

We are now ready for the main result.

Theorem 2 Let T be a computation {ree with depth h that decides whether or not 2* mod a = 2 for all

n-bit integers a. Then h > Q(\/logn).

Proof: Without loss of generality, we may assume that inputs which cause the execution to go to the same
leaf generate the same output. According to Theorem 1, there is a A € Z such that all n-bit inputs in S())

should yield the same output.

ot



Our goal is to exhibit two integers aj, ¢s in S()) that generate different outputs. Of course, at least
one of them should not be an n-bit integer to avoid a contradiction. Take a; as the least prime in S(A).
By Fermat’s Theorem, 2% mod a; = 2 and by Lemma 2 we have a; < A9(1).

To construct as, first let ¢ be the least prime not dividing A, and then choose p as the least prime that

satisfies

p = ¢! (mod )

p > 27
where ¢! is the inverse of ¢ modulo A (it exists since ged(q, A) = 1). The bounds given by Lemmas 1 and
2 are

g < O(log ), p<(290)°01 < A0
We claim that as = pq is the required element. Indeed, if 2% mod a» = 2 we would have
29 =2 =2 (mod p),

contradicting p > 29. Notice that both aj, as are < A1), As we said earlier, at least one of them should

be greater than 2" to avoid a contradiction. so
92 < /\O(l) < 20(24}1"2)

which implies the desired lower bound for h.

End of proof.

4.2 Two input problems

In this section we study the computation of the Jacobi symbol, which is a function (%) of two relatively

prime integers a, p with p odd and greater than 1. characterized by the following properties.

o If p is prime,

> 1 if a is a quadratic residue mod p

—1 if a is a quadratic nonresidue mod p




o If p and q are odd integers (not necessarily prime),

From now on, we will use the notation Jac(«, p) to indicate the Jacobi symbol. Given three positive integers

a1, an, g, we define
S(ar,an,a3) = {(z,y) €Z* |2 > y*. y>as, and z=y=1 (modasz)}.
Given a positive imteger 8§, we define a polynomial transformation A by the formula
As(e, y) = (‘2:1:"S —yx).
If A =(61,6q,...,6:) is a sequence of positive integers. we define 45 as the composition
Aa = A5, 0 Adgy 0.0 As,.
We will use the convention A = identity when A = (), the empty sequence.

Lemma 3 (Correspondence Property) If v.y > 1, ged(z,y) = |, and 2 = y = 1 (mod 4) then

Jac(z, y) = Jac(Aa(z,y)) for any A.

Proof: It suffices to prove for As; the general result then follows by induction. If (u,v) = 4s(z,y) =

(2z° — y, ), notice that u and v are relatively prime, congruent to 1 modulo 4, and

et = (= (272) = () - () ()

But Jac(—1,z) = 1 since 2 is 1 modulo 4. and Jac(y,z) = Jac(z,y) by the quadratic reciprocity law.
These are standard facts on the Jacobi symbol that can be found in, e.g., [Hua82]. We conclude that
Jac(u, v) = Jac(z, y), as claimed.

End of proof.

The following theorem, which corresponds to Lemma 10 in [MST88a], is analogous to Theorem 1 for

2-input trees.



Theorem 3 Let T be a 2-inpul computaiion irec of depth h and domain D. There exist parameters
a1, @2, a3 end a sequence A = (61,64,...,6,), withr < h, such that for every input in Aa(S(ay, a2, a3))ND

the computation terminates normally at the same leaf of T. Furthermore, fori € 1..r,

There are a few differences between our setting and the one in [MST88a], but the proof given there can
be easily adapted to work under our definitions. In particular, we use a different sort of A-transformation;

however, the important properties of these transformations needed in the proof hold for our functions.

Theorem 4 Let T' be a computation tree with depth h that computes the Jacobi symbol for all pairs of

n-bit integers (a,b), where b is odd, b > 1. and ged(a.b) = 1. Then h > Q(loglogn).

Proof: Without loss of generality, we assume that inputs which cause the computation to terminate at the
same leaf have the same output. Let D, be the set of all pairs (a,b) of odd, relatively prime n-bit integers
with & > 1. By hypothesis, D,, C domain(T"). From Theorem 3 we have the parameters ay, a9, a3 and the
sequence A with the stated properties.

Our goal is to exhibit pairs of relatively prime odd integers in Aa(S(a1, o, as)) with different values
for the Jacobi symbol. By the Correspondence Property, it suffices to exhibit such pairs in S(aq, @9, as),
as long as all numbers involved are congruent to 1 modulo 4. We claim that the pairs (v;,y) and (22,y)
satisfy these conditions, where

Y = 4dasoz + 1,
ry = 4y*rag + 1,
Lo =z y—yz+4yTas,

and z is any integer between 1 and y such that Jac(z,y) = —1.
It’s easy to verify that (z;,y) belongs to S{a1.09+. a3), ged(z;,y) = 1, and 2; =1 (mod 4) fori = 1.2.

Moreover, Jac(z1,y) # Jac(za, y), since x; is congruent to 1 whereas x4 is congruent to z modulo y.




We need to estimate the size of the actual inputs given to the tree. Notice that these inputs are not
the pairs (z;,y) themselves, but rather 44 (z;,y). Using the conclusions of Theorem 3, we get

2341/?-+3+1‘ 225h+3

Aa(zi,y) <2 <2

where the inequalities are meant to hold for each component.
To avoid a contradiction, one of the four numbers a;,as,b;,bs has to be larger than or equal to 27,
where (a;,b;) = Aa(zi,y),i = 1,2, and from that we derive the relation
‘ T
which implies the desired lower bound.

End of proof.

5 Conclusions

We believe that many other number theoretical problems, such as computing the square root modulo a
prime, can be given lower bounds using similar arguments.

The lower bounds obtained here, although not trivial, are very small. For both problems a O(n) upper
bound is possible. It would be interesting to bring these bound closer to each other.

Although the inclusion of the floor operation is a step toward a more realistic model, the fact that only
the number of operations is taken into account for the running time needs to be reviewed. In practice,
multiplications and divisions are more expensive to compute than additions and subtractions, and the size

of the operands also makes a difference.
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