
Information Processing Letters 43 (1992) 107-112
North-Holland

24 August 1992

Optimality of wait-free atomic
multiwriter variables *
Ming Li
Computer Science Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

Paul M.B. Vitanyi
Centrum voor Wiskunde en lnformatica, Kruis/aan 413, 1098 SJ Amsterdam, The Netherlands and Faculteit Wiskunde
en lnformatica, Universiteit van Amsterdam, Amsterdam, The Netherlands

Communicated by D. Dolev
Received 5 September 1990
Revised 8 September 1991

Abstract

Li, M. and P.M.B. Vitanyi, Optimality of wait-free atomic multiwriter variables, Information Processing Letters 43 (1992)
107-112.

Known implementations of concurrent wait-free atomic shared multiwriter variables use ®(n) control bits per subvariable. It
has been shown that implementations of sequential time-stamp systems require !l(n) control bits per subvariable. We
exhibit a sequential atomic shared rnultiwriter variable construction using log n control bits per subvariable. There arises the
question of the optimality of concurrent implementations of the same, and of weak time-stamp systems. We also show that
our solutions are self-stabilizing.

Keywords: Analysis of algorithms, computational complexity, concurrency, distributed computing, shared variable (register),
concurrent reading and writing, atomicity, multiwriter variable, simulation

I. Introduction

In [10] it is shown how an atomic variable -
one whose accesses appear to be indivisible -
shared between one writer and one reader, acting
asynchronously and without waiting, can be con­
structed from lower level hardware rather than

Correspondence to: P.M.B. Vitanyi, Centrum voor Wiskun­
de en lnformatica, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands.

* The first author was supported in part by NSERC under
grant OGP-0046506. The second author was supported in part
by the NSERC International Scientific Exchange Award
ISE0046203. A preliminary discussion of this material ap­
peared in the ICALP89 paper (12).

just assuming its existence. Multi-user atomic
variables of that type have been constructed: [15]
using unbounded tags, and [12,14] using bounded
tags.

Usually, with asynchronous readers and writ­
ers, atomicity of operations is simply assumed or
enforced by synchronization prim1t1ves like
semaphores. However, active serialization of
asynchronous concurrent actions always implies
waiting by one action for another. In contrast,
our aim is to realize the maximum amount of
parallellism inherent in concurrent systems by
avoiding waiting altogether in our algorithms. In
such a setting, serializability is not actively en­
forced, rather it is the result of a pre-established
harmony in the way the executions of the algo-

0020-0190/92/$05.00 © 1992 - Elsevier Science Publishers B.V. A.JI rights reserved 107

Volume 43, Number 2 INFORMATION PROCESSING LETTERS 24 August 1992

rithm by the various processors interact. Any one
of the references, say [1,10,15], describes the
problem area in some detail.

The point of departure is the solution of the
following problem. (We keep the discussion infor­
mal.) A flip-flop is a Boolean variable that can be
read (tested) by one processor and written (set,
reset, or changed) by another. Suppose, one is
given atomic flip-flops as building blocks, and is
asked to implement an atomic variable with range
0 to n - 1, that can be written by one processor
and read by another one. Of course, log 2 n flip­
flops suffice to hold such a value. It is stipulated
that the two processors are asynchronous and do
not wait for one another. Suppose the writer gets
stuck after it has written half the bits of the new
value. If the reader executes a read while the
writer is stuck, it obtains a value that consists of
half the new value and half the old one. Obvi­
ously, this violates atomicity. Such atomic vari­
ables, correctly implemented [10,13], serve as the
building blocks for our constructions.

All constructions [12,14] for implementing
wait-free atomic variables which can be read and
written by all n users, use 0(n) bits of control
information (time-stamps) per building block, be
it I-writer 1-reader subvariables as defined above
[12], or 1-writer n-reader (equivalent, multi­
reader) subvariables as the construction in [14].
Following [9], recent work [7] aims at providing a
general method for replacing unbounded time­
stamps by bounded time-stamps in concurrent
systems of multi-reader variables. Application to
a multi-writer variable uses 0(n) bits of control
information per multireader subvariable.

Is the linear tag-size optimal? In [9], an .O(n)
lower bound is proved for the tag-size for sequen­
tial binary comparison algorithms. Let us explain
what this means in the current context. An algo­
rithm is sequential, if it contains no overlapping
operation executions. The algorithms considered
above are concurrent, they allow overlapping. A
lower bound proven for a sequential restriction of
an algorithm holds a fortiori for the concurrent
version. In our context binary comparison means
that a user can determine the (apparent) atomic
order between every two writes. However, it does
not need to do so - we need only to be able to

108

determine the latest write from a set of writes,
and we do not care about the relative order
among the remaining writes. In fact, the lower
bound proven in [9] is not relevant for the multi­
writer problem, since we exhibit a log n upper
bound for a sequential solution below. There
arises the following open question.

Question. Can the 0(n) control bit implementa­
tion of concurrent wait-free atomic multiwriter
variable be improved in terms of using less con­
trol bits per subvariable?

2. Informal preliminaries

We briefly discuss the used concepts and as­
sume acquaintance with the published literature,
say [7,9,12,14], for the formal definitions. A con­
current system consists of a collection of sequen­
tial processes that communicate through shared
data structures. The most basic such data struc­
ture is a shared variable. A user of such a vari­
able V can start an action a (read or write) at any
time when it is not engaged in another action, by
invoking an "execute a" command on V, which
finishes at some later time, possibly returning the
value read. The semantics can be expressed in
terms of a local value v of a process P and the
global value contained in V. In absence of any
other concurrent action the result of process P
writing its local value v to V is that V == v is
executed, and the result of a process reading the
global V is that v == V is executed.

A subvariable is a shared variable which can
be atomically written by (a set of) writer(s) and
can be atomically read by (a set of) reader(s). We
designate the read- and write-actions on the sub­
variables as lower level actions. An implementa­
tion of V consists of a set of protocols, one for
each user process, and a set of subvariables
X, Y, ... , Z. An execution of a read- or write-op­
eration by user process P on V consists of an
execution of the associated protocol in which it
applies some transformations on the subvariables
X, Y, ... , Z, followed by returning a result to P.
We designate the read- and write-actions on Vas
higher level actions.

Volume 43, Number 2 INFORMATION PROCESSING LETIERS 24 August 1992

An implementation is wait-free if the number
of lower level actions involved in a higher level
action is bounded by a constant, which depends
only on the number of users.

To emphasize the distinction between actions
at a higher level, and those at a lower level, the
word operation execution, or shortly action, is
used for the former, and subaction is used for the
latter.

Linearizability or atomicity is defined in terms
of equivalence with a sequential system in which
actions are mediated by a sequential scheduler
that permits only one operation at a time to
execute on any variable. A shared variable is
atomic, if each read and write of it actually hap­
pens, or appears to take effect, instantaneously at
some point between its invocation and response,
irrespective of its actual duration.

3. Weak time-stamp system

We generalize the time-stamp system defined
in [9], removing all restrictions. This discussion
assumes some knowledge of [9]. 1 A sequential
weak time-stamp system of order n is < G, f),
where G is a set of nodes (or just numbers) and f
is a (possibly partial) symmetric function from an
to G such that the following n pebble game can
be infinitely played on G.

• Initially all n pebbles are on an initial set of
nodes.

• To execute a step, the adversary chooses a
pebble and the pebbler has to move this pebble
to a node v such that, with the remaining
pebbles on nodes v1, •.• , v,,_ 1, we have
f((v, VI, •. - , Vn-1}) = V, Where U *° U; for all 1.,;;;
i~n-1.

We call f the labeling function. Obviously the
new time-stamp system has most nice properties
of the old time-stamp system of [9]. However in
[9] it was proved that 2n - 1 nodes are needed

1 In [12] we called this notion "generalized time-stamp
system", but "weak time-stamp system" as coined later by [6)
seems more appropriate.

for the sequential [9]-time-stamp system of order
n.

Theorem 1. There is a sequential weak time-stamp
system of order n, using n 2 nodes.

Proof. The set of nodes G consists of {l, ... , n} x
{1, ... , n}. We exhibit the appropriate function /­
The function f will always put pebble i on an
element of {1, ... , n} X {i}. Initially, pebble i is on
node (1, i), 1 .;;;; i ~ n. Suppose the pebbles are at
nodes (ip 1), ... ,(in, n). If the adversary chooses
pebble j, then it has to be moved to node (m, j)
such that

j = (m + E i k) mod n.
k= l,k+j

(1)

That is, f is defined as

!({(m, j), (i1, 1), ... ,(ii-l' j-1),

(ij+P j+ l), ... ,(in, n)}) = (m, j),

with m given by (1). The effect is that the sum
modulo n of the first coordinates, indicates a
second coordinate which identifies the pebble
which has just been moved. D

The labeling function in the proof has the
advantage of being transparant and shows that
the nodes can be described in 2 log n bits for a
sequential weak time-stamp system, rather than n
bits as required in a sequential [9]-time-stamp
system. This suffices to illustrate the exponential
difference between the two. But clearly f in the
proof is not optimal. In fact, it has been recently
shown that n 2 in the theorem can be improved to
2n - 1 (6].

4. A sequential multiwriter algorithm using n
tags

The modification in Fig. 1 of the unbounded
time-stamp algorithm in (15], assuming the opera­
tion executions do not overlap, needs only log n
bits to encode a (sequential) weak time-stamp
system of order n. This is an application of Theo-

109

Volume 43, Number 2 INFORMATION PROCESSING LETTERS 24 August 1992

u; reads value:/* value== V *I
(Rl) Read R 1,;, ••• ,Rn,i·
(R2) Compute m = (L,itag@R;,;) mod n.
(R3) value== value@Rm,i·

u; writes newvalue (1 ~i..: n): / * V== newvalue *I
(Wl) Read Ri.;, ... ,R.,;·
(W2) Compute m such that i = (m + Ei.,. 1tag@Ri.1) mod n.
(W3) Write tag == m and value•= newvalue to R;,1 •... , R1,n·

Fig. 1. Sequential multiwriter algorithm using n tags.

rem 1 above. (We use n2 nodes since the nodes
are (time-stamp, index) pairs, where the numbers
of time-stamps and indices are both n.) The
variable V can be read and written by users
u1, u2 , ••• , un- It is implemented in subvariables
R.. 1 ~ i 1· ~ n where R . . can be written by user

l.J' ~ ' ' l9} •

u. and read by user u .. The tags (= time-stamps
i~ this case) are just l, ... , n and are initialized
with value 1.

About the same algorithm works with multi·
reader variables as building blocks. Namely, use
R R as subvariables, where R 1 is written by 1•• .. • n

user u. and read by all users. Replace lines Rl
and W1l by "Read R 1, ... , Rn"• and replace line
W3 by "Write tag:= m and value == newvalue to
R;."

Theorem 2. The algorithm implements a sequential
atomic n·writer n-reader variable from n 2 subvari·
ables, each of which is an atomic 1-writer l-reader
variable. Each read/write operation takes at most
n 2 subvariable accesses. 2

Proof. In a sequential system, where the actions
do not overlap, correctness is not an issue be­
cause of concurrency, but because of communica­
tion. In our setting, user u; communicates with

2 While the formal requirement for wait-freeness is a
bounded number of basic operation-executions per one execu­
tion of the protocol, this requirement is always raised f~r
concurrent systems in which every interleaving of the basic
operation-executions is possible. This is not the case in se­
quential systems in which waiting is inherent, and .therefore
the term wait-free cannot be used properly for this type of
systems.

110

user u . through R. . and R,. ;· The system is
J I,] ' •

sequential is equivalent to requiring there 1s a
total precedence order on the operation execu­
tions in a system run. Since only the writes write,
atomicity is ensured if a read returns the value
written by the last preceding write. Since a writer
selects its tag according to line W2, and a reader
returns the value according to line R2, this is the
case. The protocols consists of at most 2n sub­
variable accesses. D

This algorithm is partly related to the elegant
2-writer algorithm in [2]. The version with multi­
reader subvariables was the first try at a concur­
rent multiwriter protocol by the second author in
Februari 1986. But the algorithm is not a concur­
rent atomic multiwriter variable by the following
scenario for three writers and one reader: Ini­
tially, all writer have tag = 1, initializing the situa­
tion such that Writer 3 wrote last.

1. Reader starts to read and reads Writer 1 's tag
(= 1); and Writer 2's tag (= 1);

2. Writer 2 writes and sets tag •= O;
3. Writer 3 writes and sets tag := 2;
4. Reader reads Writer 3's tag (= 2), and returns

the value held by Writer 1. (But Writer 1 has
not written at all!)

5. Self-stabilizing property

Suppose all users in a network run the same
program. A state consists of a vector of all values
of the local variables, the shared variables, and
the value of the program counter of the program
execution, for each user. Each entry of the vector
has its associated domain of values. The cartesian
product of all these domains is called the state
space. Clearly, from a fixed initial state a subset
of the state space is reachable by the system. For
most algorithms, there will be a subset of the
state space which is co"ect, and its complement
which is forbidden. The set of reachable states
should be a subset of the set of correct states. For
instance in mutual exclusion algorithms, states
with tw~ users in the critical zone are forbidden.

An algorithm is self-stabilizing, if started in

Volume 43, Number 2 lNFORMATION PROCESSING LEITERS 24 August 1992

any state of the state space, the system will move
to a correct state within a finite number of steps.

Self-stability is a robustness property which
guaranties that, whatever disturbance happens, if
there is a long enough disturbance-free interval,
the system will converge back to correct opera­
tion. This notion is due to Dijkstra [8]. Recent
work is (3-5, 11].

If we take the sequential multiwriter construc­
tion, where the tag t of user u; is always (im­
plicitly) the pair (t, i), then whatever way we start
the users in their protocols with whatever values
of the local and global variables, the following
happens. Let the system be started in an arbitrary
state at time zero. Let S be the first system state
reached when all users have executed at least one
complete write. Let user u i do the first write
after the system reached state S. Subsequent to
termination of this write execution by ui, the
system state will be correct. Namely, at the start
of this write execution all program counters are
zero (the system is sequential), each row
R;, 1, ••• , R;,n contains the same value in each of
its subvariable elements (all users u;, i = 1, ... , n,
have executed a complete write), and the value of
no local variable will ever be used again. After
user ui has finished its write execution, the sum
of the values in R 1,;, .•. , R n,i modulo n equals j,
for i = 1, ... , n.

This argument is generalized in the obvious
way to the weak timestamp system constructed.
Viz., wherever the pebbles are placed on nodes in
the graph, if a pebble is moved then it moves to a
node (t, j) determined as follows. Prior to the
move no pebble is on a node (·, j). The sum of
the second coordinates of the pebbles which are
not moved and t, equals j mod n. ·

The reader may wonder that the multiwriter
register had to do n + 1 writes to be stabilized
again. This is because there we used I-writer
1-reader variables. Time-stamp systems use mul­
tireader variables. Collapsing the rows of the
multiwriter subvariable matrix R;J to multireader
variables R;, the system stabilizes after only a
single complete write. To get the system in its
sequential mode again, this write must be exe­
cuted after all program counters have been at
zero at least once.

6. Conclusion

The current state of knowledge about optimal­
ity of time-stamp systems and multiwriter vari·
ables is the following. We consider implementa­
tions in terms of atomic multireader subvariables.
For concurrent (and hence for sequential) [9)­
time-stamp systems, the upper bound per subvari­
able is 0(n) control bits, according to [7]. For
sequential (and hence for concurrent) [9]-time­
stamp systems, the lower bound per subvariable is
n control bits by [9]. For sequential weak time­
stamp systems the analogous upper bound per
multiwriter subvariable is 2 log n by the argu­
ment we gave, and log n + 1 by [6], while the
lower bound is again, trivially, log n. But for
concurrent weak time-stamp systems, defined in
analogy with concurent [9]-time-stamp systems in
[7], the cited upper bound of E>(n) control bits
per subvariable must a fortiori also hold, while
the best lower bound known is the trivial log n
control bits per subvariable. This is the case which
is relevant (rather, equivalent) to wait-free atomic
multiwriter variable implementation. And it is
here that the gap between upper bound and
lower bound is wide open, while in all other cases
it is essentially closed.

Acknowledgment

We thank John Tromp for helpful comments.

References

[l] B. Awerbuch, L. Kirousis, E. K.ranakis and P.M.B.
Vitanyi, A proof technique for register atomicity, in:
Proc. 8th Conf on Foundations of Software Technology
and 71uoretical Computer Science, Lecture Notes in Com­
puter Science 338 (Springer, Berlin, 1988) 286-303.

[2] B. Bloom, Constructing two-writer atomic registers, IEEE
Trans. Comput. 37 (1988) 249-259.

(3] G.M. Brown, M.G. Gouda and C.L. Wu, A self-stabiliz­
ing token system, in: Proc. 20th Ann. Hawaii Intemat.
Conf on System Sciences (1989) 218-223.

[4] J.E. Bums, Self-stabilizing rings without demons, Tech.
Rept. GIT-ICS-87 /36, Georgia institute of Technology.

[5] J. Burns and J. Pachel, Uniform self-stabilizing rings,
ACM Trans. Programming Language Systems (1989) 330-
344.

111

Volume 43, Number 2 INFORMATION PROCESSING LETrERS 24 August 1992

[6) R. Cori and E. Sopana, Some combinatorial aspects of
time-stamp systems, Manuscript, Labri, Universite Bor­
deaux 1, France, June 1990.

[7] D. Dolev and N. Shavit, Bounded concurrent time-stamp
systems are constructible (Extended abstract), in: Proc.
2lth ACM Symp. on Theory of Computing (1989) 454-466.

[8] E.W. Dijkstra, Self-stabilizing systems in spite of dis­
tributed control, Comm. ACM 17 (1974) 643-644.

[9] A. Israeli and M. Li, Bounded time-stamps, in: Proc.
28th IEEE Symp. on Foundations of Computer Science
(1987) 371-382.

[10) L. Lamport, On interprocess communication, Parts I and
II, Distributed Comput. l (1986) 77-101.

[11) L. Lamport, The mutual exclusion problem, Parts I and
II, 1. ACM 33 (1986) 313-326 and 327-348.

112

[12] M. Li and P.M.B. Vitanyi, How to share atomic concur­
rent wait-free variables, in: Proc. Internal. Colloq. on
Automata, Languages, and Programming, Lecture Notes
in Computer Science 372, (Springer, Berlin, 1989) 488-
505.

[13] G.L. Peterson, Concurrent reading while writing, ACM
Trans. Programming Language Systems 5 (1983) 46-55.

[14] R. Schaffer, on the correctness of atomic multi-writer
registers, Tech. Rept. MIT /LCS/TM-364, MIT Labora­
tory for Computer Science, 1988.

[15] P.M.B. Vitanyi and B. Awerbuch, Atomic shared register
access by asynchronous hardware, in: Proc. 27th IEEE
Symp. on Foundations of Computer Science (1986) 233-
243; Errata: ibid., 1987.

