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Abstract 

Li, M. and P.M.B. Vitanyi, Optimality of wait-free atomic multiwriter variables, Information Processing Letters 43 (1992) 
107-112. 

Known implementations of concurrent wait-free atomic shared multiwriter variables use ®(n) control bits per subvariable. It 
has been shown that implementations of sequential time-stamp systems require !l(n) control bits per subvariable. We 
exhibit a sequential atomic shared rnultiwriter variable construction using log n control bits per subvariable. There arises the 
question of the optimality of concurrent implementations of the same, and of weak time-stamp systems. We also show that 
our solutions are self-stabilizing. 

Keywords: Analysis of algorithms, computational complexity, concurrency, distributed computing, shared variable (register), 
concurrent reading and writing, atomicity, multiwriter variable, simulation 

I. Introduction 

In [10] it is shown how an atomic variable -
one whose accesses appear to be indivisible -
shared between one writer and one reader, acting 
asynchronously and without waiting, can be con­
structed from lower level hardware rather than 
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just assuming its existence. Multi-user atomic 
variables of that type have been constructed: [15] 
using unbounded tags, and [12,14] using bounded 
tags. 

Usually, with asynchronous readers and writ­
ers, atomicity of operations is simply assumed or 
enforced by synchronization prim1t1ves like 
semaphores. However, active serialization of 
asynchronous concurrent actions always implies 
waiting by one action for another. In contrast, 
our aim is to realize the maximum amount of 
parallellism inherent in concurrent systems by 
avoiding waiting altogether in our algorithms. In 
such a setting, serializability is not actively en­
forced, rather it is the result of a pre-established 
harmony in the way the executions of the algo-
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rithm by the various processors interact. Any one 
of the references, say [1,10,15], describes the 
problem area in some detail. 

The point of departure is the solution of the 
following problem. (We keep the discussion infor­
mal.) A flip-flop is a Boolean variable that can be 
read (tested) by one processor and written (set, 
reset, or changed) by another. Suppose, one is 
given atomic flip-flops as building blocks, and is 
asked to implement an atomic variable with range 
0 to n - 1, that can be written by one processor 
and read by another one. Of course, log 2 n flip­
flops suffice to hold such a value. It is stipulated 
that the two processors are asynchronous and do 
not wait for one another. Suppose the writer gets 
stuck after it has written half the bits of the new 
value. If the reader executes a read while the 
writer is stuck, it obtains a value that consists of 
half the new value and half the old one. Obvi­
ously, this violates atomicity. Such atomic vari­
ables, correctly implemented [10,13], serve as the 
building blocks for our constructions. 

All constructions [12,14] for implementing 
wait-free atomic variables which can be read and 
written by all n users, use 0(n) bits of control 
information (time-stamps) per building block, be 
it I-writer 1-reader subvariables as defined above 
[12], or 1-writer n-reader (equivalent, multi­
reader) subvariables as the construction in [14]. 
Following [9], recent work [7] aims at providing a 
general method for replacing unbounded time­
stamps by bounded time-stamps in concurrent 
systems of multi-reader variables. Application to 
a multi-writer variable uses 0(n) bits of control 
information per multireader subvariable. 

Is the linear tag-size optimal? In [9], an .O(n) 
lower bound is proved for the tag-size for sequen­
tial binary comparison algorithms. Let us explain 
what this means in the current context. An algo­
rithm is sequential, if it contains no overlapping 
operation executions. The algorithms considered 
above are concurrent, they allow overlapping. A 
lower bound proven for a sequential restriction of 
an algorithm holds a fortiori for the concurrent 
version. In our context binary comparison means 
that a user can determine the (apparent) atomic 
order between every two writes. However, it does 
not need to do so - we need only to be able to 
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determine the latest write from a set of writes, 
and we do not care about the relative order 
among the remaining writes. In fact, the lower 
bound proven in [9] is not relevant for the multi­
writer problem, since we exhibit a log n upper 
bound for a sequential solution below. There 
arises the following open question. 

Question. Can the 0(n) control bit implementa­
tion of concurrent wait-free atomic multiwriter 
variable be improved in terms of using less con­
trol bits per subvariable? 

2. Informal preliminaries 

We briefly discuss the used concepts and as­
sume acquaintance with the published literature, 
say [7,9,12,14], for the formal definitions. A con­
current system consists of a collection of sequen­
tial processes that communicate through shared 
data structures. The most basic such data struc­
ture is a shared variable. A user of such a vari­
able V can start an action a (read or write) at any 
time when it is not engaged in another action, by 
invoking an "execute a" command on V, which 
finishes at some later time, possibly returning the 
value read. The semantics can be expressed in 
terms of a local value v of a process P and the 
global value contained in V. In absence of any 
other concurrent action the result of process P 
writing its local value v to V is that V == v is 
executed, and the result of a process reading the 
global V is that v == V is executed. 

A subvariable is a shared variable which can 
be atomically written by (a set of) writer(s) and 
can be atomically read by (a set of) reader(s). We 
designate the read- and write-actions on the sub­
variables as lower level actions. An implementa­
tion of V consists of a set of protocols, one for 
each user process, and a set of subvariables 
X, Y, ... , Z. An execution of a read- or write-op­
eration by user process P on V consists of an 
execution of the associated protocol in which it 
applies some transformations on the subvariables 
X, Y, ... , Z, followed by returning a result to P. 
We designate the read- and write-actions on Vas 
higher level actions. 
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An implementation is wait-free if the number 
of lower level actions involved in a higher level 
action is bounded by a constant, which depends 
only on the number of users. 

To emphasize the distinction between actions 
at a higher level, and those at a lower level, the 
word operation execution, or shortly action, is 
used for the former, and subaction is used for the 
latter. 

Linearizability or atomicity is defined in terms 
of equivalence with a sequential system in which 
actions are mediated by a sequential scheduler 
that permits only one operation at a time to 
execute on any variable. A shared variable is 
atomic, if each read and write of it actually hap­
pens, or appears to take effect, instantaneously at 
some point between its invocation and response, 
irrespective of its actual duration. 

3. Weak time-stamp system 

We generalize the time-stamp system defined 
in [9], removing all restrictions. This discussion 
assumes some knowledge of [9]. 1 A sequential 
weak time-stamp system of order n is < G, f), 
where G is a set of nodes (or just numbers) and f 
is a (possibly partial) symmetric function from an 
to G such that the following n pebble game can 
be infinitely played on G. 

• Initially all n pebbles are on an initial set of 
nodes. 

• To execute a step, the adversary chooses a 
pebble and the pebbler has to move this pebble 
to a node v such that, with the remaining 
pebbles on nodes v1, •.• , v,,_ 1, we have 
f((v, VI, •. - , Vn-1}) = V, Where U *° U; for all 1.,;;; 
i~n-1. 

We call f the labeling function. Obviously the 
new time-stamp system has most nice properties 
of the old time-stamp system of [9]. However in 
[9] it was proved that 2n - 1 nodes are needed 

1 In [12] we called this notion "generalized time-stamp 
system", but "weak time-stamp system" as coined later by [6) 
seems more appropriate. 

for the sequential [9]-time-stamp system of order 
n. 

Theorem 1. There is a sequential weak time-stamp 
system of order n, using n 2 nodes. 

Proof. The set of nodes G consists of {l, ... , n} x 
{1, ... , n}. We exhibit the appropriate function /­
The function f will always put pebble i on an 
element of {1, ... , n} X {i}. Initially, pebble i is on 
node (1, i), 1 .;;;; i ~ n. Suppose the pebbles are at 
nodes (ip 1), ... ,(in, n). If the adversary chooses 
pebble j, then it has to be moved to node (m, j) 
such that 

j = ( m + E i k ) mod n. 
k= l,k+j 

( 1) 

That is, f is defined as 

!({(m, j), (i1, 1), ... ,(ii-l' j-1), 

(ij+P j+ l), ... ,(in, n)}) = (m, j), 

with m given by (1). The effect is that the sum 
modulo n of the first coordinates, indicates a 
second coordinate which identifies the pebble 
which has just been moved. D 

The labeling function in the proof has the 
advantage of being transparant and shows that 
the nodes can be described in 2 log n bits for a 
sequential weak time-stamp system, rather than n 
bits as required in a sequential [9]-time-stamp 
system. This suffices to illustrate the exponential 
difference between the two. But clearly f in the 
proof is not optimal. In fact, it has been recently 
shown that n 2 in the theorem can be improved to 
2n - 1 (6]. 

4. A sequential multiwriter algorithm using n 
tags 

The modification in Fig. 1 of the unbounded 
time-stamp algorithm in (15], assuming the opera­
tion executions do not overlap, needs only log n 
bits to encode a (sequential) weak time-stamp 
system of order n. This is an application of Theo-
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u; reads value:/* value== V *I 
(Rl) Read R 1,;, ••• ,Rn,i· 
(R2) Compute m = (L,itag@R;,;) mod n. 
(R3) value== value@Rm,i· 

u; writes newvalue (1 ~i..: n): / * V== newvalue *I 
(Wl) Read Ri.;, ... ,R.,;· 
(W2) Compute m such that i = (m + Ei.,. 1tag@Ri.1) mod n. 
(W3) Write tag == m and value•= newvalue to R;,1 •... , R1,n· 

Fig. 1. Sequential multiwriter algorithm using n tags. 

rem 1 above. (We use n2 nodes since the nodes 
are (time-stamp, index) pairs, where the numbers 
of time-stamps and indices are both n.) The 
variable V can be read and written by users 
u1, u2 , ••• , un- It is implemented in subvariables 
R.. 1 ~ i 1· ~ n where R . . can be written by user 

l.J' ~ ' ' l9} • 

u. and read by user u .. The tags ( = time-stamps 
i~ this case) are just l, ... , n and are initialized 
with value 1. 

About the same algorithm works with multi· 
reader variables as building blocks. Namely, use 
R R as subvariables, where R 1 is written by 1•• .. • n 

user u. and read by all users. Replace lines Rl 
and W1l by "Read R 1, ... , Rn"• and replace line 
W3 by "Write tag:= m and value == newvalue to 
R;." 

Theorem 2. The algorithm implements a sequential 
atomic n·writer n-reader variable from n 2 subvari· 
ables, each of which is an atomic 1-writer l-reader 
variable. Each read/write operation takes at most 
n 2 subvariable accesses. 2 

Proof. In a sequential system, where the actions 
do not overlap, correctness is not an issue be­
cause of concurrency, but because of communica­
tion. In our setting, user u; communicates with 

2 While the formal requirement for wait-freeness is a 
bounded number of basic operation-executions per one execu­
tion of the protocol, this requirement is always raised f~r 
concurrent systems in which every interleaving of the basic 
operation-executions is possible. This is not the case in se­
quential systems in which waiting is inherent, and .therefore 
the term wait-free cannot be used properly for this type of 
systems. 
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user u . through R. . and R,. ;· The system is 
J I,] ' • 

sequential is equivalent to requiring there 1s a 
total precedence order on the operation execu­
tions in a system run. Since only the writes write, 
atomicity is ensured if a read returns the value 
written by the last preceding write. Since a writer 
selects its tag according to line W2, and a reader 
returns the value according to line R2, this is the 
case. The protocols consists of at most 2n sub­
variable accesses. D 

This algorithm is partly related to the elegant 
2-writer algorithm in [2]. The version with multi­
reader subvariables was the first try at a concur­
rent multiwriter protocol by the second author in 
Februari 1986. But the algorithm is not a concur­
rent atomic multiwriter variable by the following 
scenario for three writers and one reader: Ini­
tially, all writer have tag = 1, initializing the situa­
tion such that Writer 3 wrote last. 

1. Reader starts to read and reads Writer 1 's tag 
( = 1); and Writer 2's tag ( = 1); 

2. Writer 2 writes and sets tag •= O; 
3. Writer 3 writes and sets tag := 2; 
4. Reader reads Writer 3's tag ( = 2), and returns 

the value held by Writer 1. (But Writer 1 has 
not written at all!) 

5. Self-stabilizing property 

Suppose all users in a network run the same 
program. A state consists of a vector of all values 
of the local variables, the shared variables, and 
the value of the program counter of the program 
execution, for each user. Each entry of the vector 
has its associated domain of values. The cartesian 
product of all these domains is called the state 
space. Clearly, from a fixed initial state a subset 
of the state space is reachable by the system. For 
most algorithms, there will be a subset of the 
state space which is co"ect, and its complement 
which is forbidden. The set of reachable states 
should be a subset of the set of correct states. For 
instance in mutual exclusion algorithms, states 
with tw~ users in the critical zone are forbidden. 

An algorithm is self-stabilizing, if started in 
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any state of the state space, the system will move 
to a correct state within a finite number of steps. 

Self-stability is a robustness property which 
guaranties that, whatever disturbance happens, if 
there is a long enough disturbance-free interval, 
the system will converge back to correct opera­
tion. This notion is due to Dijkstra [8]. Recent 
work is (3-5, 11]. 

If we take the sequential multiwriter construc­
tion, where the tag t of user u; is always (im­
plicitly) the pair (t, i), then whatever way we start 
the users in their protocols with whatever values 
of the local and global variables, the following 
happens. Let the system be started in an arbitrary 
state at time zero. Let S be the first system state 
reached when all users have executed at least one 
complete write. Let user u i do the first write 
after the system reached state S. Subsequent to 
termination of this write execution by ui, the 
system state will be correct. Namely, at the start 
of this write execution all program counters are 
zero (the system is sequential), each row 
R;, 1, ••• , R;,n contains the same value in each of 
its subvariable elements (all users u;, i = 1, ... , n, 
have executed a complete write), and the value of 
no local variable will ever be used again. After 
user ui has finished its write execution, the sum 
of the values in R 1,;, .•. , R n,i modulo n equals j, 
for i = 1, ... , n. 

This argument is generalized in the obvious 
way to the weak timestamp system constructed. 
Viz., wherever the pebbles are placed on nodes in 
the graph, if a pebble is moved then it moves to a 
node (t, j) determined as follows. Prior to the 
move no pebble is on a node ( ·, j). The sum of 
the second coordinates of the pebbles which are 
not moved and t, equals j mod n. · 

The reader may wonder that the multiwriter 
register had to do n + 1 writes to be stabilized 
again. This is because there we used I-writer 
1-reader variables. Time-stamp systems use mul­
tireader variables. Collapsing the rows of the 
multiwriter subvariable matrix R;J to multireader 
variables R;, the system stabilizes after only a 
single complete write. To get the system in its 
sequential mode again, this write must be exe­
cuted after all program counters have been at 
zero at least once. 

6. Conclusion 

The current state of knowledge about optimal­
ity of time-stamp systems and multiwriter vari· 
ables is the following. We consider implementa­
tions in terms of atomic multireader subvariables. 
For concurrent (and hence for sequential) [9)­
time-stamp systems, the upper bound per subvari­
able is 0(n) control bits, according to [7]. For 
sequential (and hence for concurrent) [9]-time­
stamp systems, the lower bound per subvariable is 
n control bits by [9]. For sequential weak time­
stamp systems the analogous upper bound per 
multiwriter subvariable is 2 log n by the argu­
ment we gave, and log n + 1 by [6], while the 
lower bound is again, trivially, log n. But for 
concurrent weak time-stamp systems, defined in 
analogy with concurent [9]-time-stamp systems in 
[7], the cited upper bound of E>(n) control bits 
per subvariable must a fortiori also hold, while 
the best lower bound known is the trivial log n 
control bits per subvariable. This is the case which 
is relevant (rather, equivalent) to wait-free atomic 
multiwriter variable implementation. And it is 
here that the gap between upper bound and 
lower bound is wide open, while in all other cases 
it is essentially closed. 
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