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Abstract

We consider the problem of covering the complete r-uniform hypergraphs on n vertices using

complete r-partite graphs. We obtain lower bounds on the size of such a covering. For small

values of r our result implies a lower bound of Ω( er

r
√

r
n log n) on the size of any such covering.

This improves the previous bound of Ω(rn log n) due to Snir [5]. We also obtain good lower

bounds on the size of a family of perfect hash function using simple arguments.
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1 Introduction

Let r and n be positive integers such that r ≤ n. Let [n] = {1, 2, . . . , n}. Let V be a finite set. Let

(V
r

)
= {T ⊆ V : |T | = r}. Let (n)r = n(n− 1) . . . (n− r + 1).

A hypergraph H is a pair (V (H), E(H)) where V (H) is the set of vertices of H and E(H)

is a collection of subsets of V (H). A hypergraph H is said be r-uniform if all the elements of

E(H) have size r. Thus an r-uniform hypergraph H with vertex set [n] satisfies E(H) ⊆
([n]

r

)
. If
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E(H) =
(V (H)

r

)
then H is said to be a complete r-uniform hypergraph. We shall use Kn(r) to denote

the complete r-uniform hypergraph with vertex set [n]. We shall refer to 2-uniform hypergraphs

simply as graphs.

A subpartition of [n] is a set of pairwise disjoint subsets of [n]. The degree of a subpartition

is the number of subsets in it. The size of a subpartition A, denoted by S(A), is the sum of the

sizes of the subsets appearing in A. Let A = {A1, A2, . . . , Ar} be a subpartition of [n]. Then

Kn(A), the hypergraph induced by A, is the r-uniform hypergraph such that V (Kn(A)) = [n] and

E(Kn(A)) = {T ∈
([n]

r

)
: |T ∩Aj | = 1 for j = 1, . . . , r}.

For hypergraphs H1 and H2 with V (H1) = V (H2), H1 ∪H2 will be the hypergraph such that

V (H1 ∪H2) = V (H1) and E(H1 ∪H2) = E(H1) ∪ E(H2).

For i = 1, . . . , h, let Ai be a subpartition of [n] of degree r. We say that the family Γ =

{Kn(A1),Kn(A2), . . . ,Kn(Ah)} is a covering of Kn(r) if Kn(r) =
⋃h

i=1 Kn(Ai). Let S(Γ) =

∑h
i=1 S(Ai). Let gr(n) be the minimum S(Γ) over all coverings Γ of Kn(r).

In this note we will be concerned with showing good lower bounds for gr(n). A straight forward

counting argument gives that

gr(n) ≥ n

(
n

r

)(
n

r

)−r

. (1)

By choosing random subpartitions (see [1], [2]) one can show

gr(n) = O

(
(n)r

nr

rr

r!
n log

(
n

r

))
. (2)

If r does not grow faster then log n, (2) implies

gr(n) = O(
√

r exp(r)n log n).
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On the other hand, for these values of r, the lower bound given by (1),

n

(
n

r

)(
n

r

)−r

= O(
exp(r)√

r
n).

In this note, we apply Körner’s technique [2] to this problem and show, for 2 ≤ r ≤ n,

gr(n) ≥ (n)r−1

nr−1

rr−1

(r)r−1
n log(n− r + 2).

For the values of r less than log n, this gives

gr(n) = Ω(
exp(r)
r
√

r
n log n). (3)

The previous bound due to Snir [5] gives, for 2 ≤ r ≤ n,

gr(n) ≥ n
log n− log(r − 1)
log r − log(r − 1)

.

Note that n log n−log(r−1)
log r−log(r−1) =O(rn log n).

This problem is related to computation of threshold functions using certain restricted kinds of

formulas called ΣΠΣ formulas. ΣΠΣ formulas have the form
∨p

i=1

∧ti
j=1

∨
q∈Sij

q, where each Sij

is a subset of variables and their negations. The size of such a formula is the sum of the sizes of

the Sij . The threshold function Tn
k is the boolean function on n variables that takes the value 1

precisely when there are at least k 1’s in the input.

Newman, Ragde, and Wigderson [3] observed that the problem of determining the size of the

smallest ΣΠΣ formula computing Tn
k is equivalent to the hypergraph covering problem stated above,
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if the ti are restricted to be k (the fanin of the AND gates is restricted to be k). Using the the

notion of hypergraph entropy they restated Snir’s result. However, if the fanin of the AND gates

is not restricted to be k, the two problems are not equivalent. Indeed, there exist ΣΠΣ formulas

for computing Tn
k , for k ≤ log n, with size O(exp(3

√
k log k)n log n) (see [4]). This is better than

the lower bound given by (3) above.

A related problem arises in the study of families of perfect hash functions. Let X be an n

element set. Let B be a b element set. Following Körner [2] we say that a function f : X → B

separates the set A ⊆ X if f takes a different value on each element of A. Let fπ, π ∈ Π be a

family of mappings of the set X into a set B. The family {fπ : π ∈ Π} is said to be a (b, k)-family

of perfect hash functions for X if every k-element subset of X is separated by at least one function

fπ, π ∈ Π. Let Y (b, k, n) be the minimum size of any (b, k)-family of perfect hash functions for the

set [n].

Fredman and Komlós [1] obtained good lower bounds for Y (b, k, n) using an information in-

equality concerning a measure on graphs. Later Körner restated the Fredman-Komlós bound using

a graph entropy. Their results show, for b and k fixed with respect to n, asymptotically

bk−1

(b)k−1

log n

log(b− k + 2)
≤ Y (b, k, n) ≤ bk

(b)k
k log n.

In section 4, we shall show lower bounds for Y (b, k, n) that come close to the Fredman-Komlós

bound. However, our simpler argument will use only the elementary fact that a complete graph on

n vertices can not be expressed as a union of less than log n
log r r-partite graphs.
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2 Graph Entropy

In this section we review the basic facts about entropy of graphs. The following definitions and

results are from Körner [2]. All logarithms in this paper are with base 2.

Definition 2.1 (Entropy) Given a random variable X with finite range, its entropy is given by

H(X) = −
∑
x

Pr[X = x] log Pr[X = x].

Definition 2.2 (Mutual Information) If X and Y are random variables with finite ranges, then

their mutual information is given by I(X ∧ Y ) = H(X) + H(Y )−H((X, Y )).

Definition 2.3 (Graph Entropy) Let G = (V,E) be a graph. Let P be a probability distribution

on the vertex set V. Let A(G) denote the set of all independent sets of G. Let P(G), the set of

admissible distributions, be the set of all distributions QXY on V ×A(G) satisfying (a) QXY (v,A) =

0 if v 6∈ A, and (b)
∑

A QXY (v,A) = P(v) for all vertices v in V . The graph entropy H(G, P ) is

defined by

H(G, P ) = min{I(X ∧ Y ) : QXY ∈ P(G)}.

Lemma 2.4 (Subadditivity of Graph Entropy) If G and F are graphs with V (G) = V (F ),

and P is a distribution on V (G), then H(F ∪G, P ) ≤ H(F, P ) + H(G, P ).2

In our discussion P will always be assumed to be the uniform distribution and will be omitted

from our notation for graph entropy. It is easy to see that under this condition the entropy of

the complete graph on n vertices is log n. The entropy of the empty graph is 0. The entropy of a

complete bipartite graph is at most 1.
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Lemma 2.5 (Additivity of Graph Entropy) Let {Gi}i∈I be the set of connected components

of a graph G. Then

H(G) =
∑
i∈I

|V (Gi)|
|V (G)|

H(Gi). 2

3 The Lower Bound

The idea of the lower bound is as follows. We associate with each r-uniform hypergraph a simple

graph (its Fredman-Komlós graph). The simple graph associated with Kn(r) has high entropy.

Under this association the graph associated with Kn(r) will be the union of the graphs associated

with the r-partite hypergraphs in its covering. The graphs associated with the r-partite hypergraphs

will have low entropy. Our lower bound result will then follow by the subadditivity of graph entropy.

We now present our argument in detail.

Definition 3.1 (Fredman-Komlós Graph) Let r ≥ 2. Let H be an r-uniform hypergraph on

vertex set [n]. Then G(H, r) is the graph defined by

V (G(H, r)) = {(C, x) : C ∈
(

[n]
r − 2

)
and x ∈ [n]− C};

E(G(H, r)) = {((C, x), (D, y)) : C = D and C ∪ {x, y} ∈ E(H)}.

Thus G(Kn(r), r) consists of
( n
r−2

)
components, where each component is a complete graph on

n − r + 2 vertices. In general, if H is any r-uniform hypergraph then the subgraph of G(H, r)

induced by those vertices (C, x) that have the same value for C will be called a block of G(H, r).

Thus each block has n − r + 2 vertices and there are
( n
r−2

)
blocks, one for each C ∈

( [n]
r−2

)
. Every

edge of G(H, r) is contained in one of its blocks. The following lemma is a direct consequence of
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lemma 2.5 and the earlier observation about the entropy of complete graphs.

Lemma 3.2 H(G(Kn(r), r)) = log(n− r + 2). 2

Let A be a subpartition of [n] of degree r. Consider G(Kn(A), r). Suppose that the block corre-

sponding to C = {c1, c2, . . . , cr−2} is non-empty. Then there exists a set T = {A1, A2, . . . , Ar−2} ∈( A
r−2

)
such that c1 ∈ A1, c2 ∈ A2, . . . , cr−2 ∈ Ar−2. Further, the edges within this block are arranged

as a bipartite graph. Indeed, if A − T = {Ar−1, Ar}, then the edges within this block are of the

form ((C, x), (C, y)) where x ∈ Ar−1 and y ∈ Ar. Since the entropy of a bipartite graph is at most 1

and since all but |Ar−1∪Ar| of the vertices are isolated, we get (using lemma 2.5) that the entropy

of the block is at most 1
n−r+2 |Ar−1 ∪Ar|.

Lemma 3.3 If A is a subpartition of [n] of degree r, then

H(G(Kn(A), r)) ≤ S(A)
n

nr−1

(n)r−1

(r)r−1

rr−1
.

Proof : As described above, to each non-empty block of G(Kn(A), r) there corresponds a set of

T ∈
( A
r−2

)
. The number of non-empty blocks that correspond to a set T is

∏
A∈T |A|. The entropy

of each of these blocks is at most 1
n−r+2 |A1 ∪A2|, where {A1, A2} = A−T . We may thus conclude

using lemma 2.5 that

H(G(Kn(A), r)) ≤ 1( n
r−2

) ∑
T∈( Ar−2)

(
∏

A∈T

|A|) 1
n− r + 2

(
∑

B∈A−T

|B|).
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For S(A) fixed, the expression on the right is maximized if |A| = S(A)
r for each A ∈ A. Thus

H(G(Kn(A), r)) ≤ 2
(n− r + 2)

( n
r−2

)( r

r − 2

)(
S(A)

r

)r−1

=
(

S(A)
n

)r−1 nr−1

(n)r−1

(r)r−1

rr−1

≤ S(A)
n

nr−1

(n)r−1

(r)r−1

rr−1
.

The last inequality holds because S(A) ≤ n and r ≥ 2. 2

We are now ready to prove our main result.

Theorem 3.4 If 2 ≤ r ≤ n, then

gr(n) ≥ (n)r−1

nr−1

rr−1

(r)r−1
n log(n− r + 2).

Proof : Let A1, . . . ,Ah be subpartitions of [n] of degree r. Let Γ = {Kn(A1),Kn(A2), . . . ,Kn(Ah)}

be a covering for Kn(r). Then

G(Kn(A1), r) ∪G(Kn(A2), r) ∪ . . . ∪G(Kn(Ah), r) = G(Kn(r), r).

By lemma 2.4 we have that

H(G(Kn(A1), r)) + H(G(Kn(A2), r)) + . . . + H(G(Kn(Ah), r)) ≥ H(G(Kn(r), r)).
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By lemma 3.2 and lemma 3.3 we have

h∑
i=1

S(Ai)
n

nr−1

(n)r−1

(r)r−1

rr−1
≥ log(n− r + 2).

It follows that

S(Γ) =
h∑

i=1

S(Ai) ≥ (n)r−1

nr−1

rr−1

(r)r−1
n log(n− r + 2).

The proof of the theorem is complete. 2

4 The Fredman-Komlós Bound

In this section we describe the lower bound for Y (b, k, n).

Theorem 4.1 For b and k fixed and n large enough

Y (b, k, n) ≥ bk−2

(b)k−2

log(n− k + 2)
log(b− k + 2)

.

We shall make use of the following elementary fact: A complete graph on n vertices can not be

expressed as a union of less than log n
log r r-partite graphs.

The following definition associates each hash function with a graph.

Definition 4.2 (Fredman-Komlós Graph) Let f : [n] → B be a hash function. The k-th

Fredman-Komlós graph for f , denoted by G(f, k), is defined by

V (G(f, k)) = {(C, i) : C ∈
(

[n]
k − 2

)
and i ∈ [n]− C};

E(G(f, k)) = {((C, i), (D, j)) : C = D, |C ∪ {i, j}| = k and f separates C ∪ {i, j}}.
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The k-th complete Fredman-Komlós graph, denoted by C(k), is defined by

V (C(k)) = {(C, i) : C ∈
(

[n]
k − 2

)
and i ∈ [n]− C};

E(G(f, k)) = {((C, i), (D, j)) : C = D, |C ∪ {i, j}| = k}.

Proof of the theorem : Let {fπ : π ∈ Π} be a minimum size (b, k)-family of perfect hash

functions for n. It is easy to see that

⋃
π∈Π

G(fπ, k) = C(k).

Now, C(k) consists of
( n
k−2

)
components each of which is a complete graph on n − k + 2 vertices.

On the other hand, the contribution of a G(fπ, k) to each of these components is either a complete

(b − k + 2)-partite graph or nothing at all. The number of components of C(k) to which the

contribution of a G(fπ, k) is non-empty is at most (n
b )k−2

( b
k−2

)
. (The worst case occurs when fπ

corresponds to an equipartition of [n] into b classes.) Using the fact stated earlier we see that the

number of such complete (b − k + 2)-partite graphs needed to decompose all the components of

C(k) is at least
( n
k−2

) log(n−k+2)
log(b−k+2) . Thus,

|Π|(n
b
)k−2

(
b

k − 2

)
≥
(

n

k − 2

)
log(n− k + 2)
log(b− k + 2)

.

The theorem follows from this. 2

This bound is weaker by a factor of b−k+2
b when compared to the bound obtained by Körner.
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