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1. Introduction 

Real-time computations have deadline con- 
straints. In addition to providing a result with a 
correct value, a real-time computation must pro- 
duce the result before the deadline. A real-time 
system usually has many jobs sharing system re- 
sources, such as CPU and I/O devices. The sys- 
tem must provide a feasible schedule for all jobs 
so that they can finish executions before their 
deadlines. In many applications [ 1,3], real-time 
systems are modeled as object-oriented systems. 
In an object-oriented system, each object has a 
set of well-defined operations. Each object also 
has local variables, which may be accessed only 
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by the operations defined in the interface of the 
object. The object decides if and when to process 
the requests from other objects. 

In real-time systems, an object usually makes 
scheduling decisions in order to maximize the 
system performance. There are many ways to 
make scheduling decisions. Operation coalescence 
is one of them [2]. The idea is that some objects 
may be able to handle several distinct requests at 
the same time. For example, suppose a stack 
object is implemented in a system and suppose 
the public, or primitive, operations defined for 
the stack object are: push, pop, new and top. We 
may provide a coalesced operation double-push, 
which takes two elements and pushes both of 
them onto the stack at the same time. Whenever 
two consecutive push operations are found in 
front of the request queue for the stack object, 
the object scheduler can invoke the coalesced 
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operation double-push instead. For many dis- 
tributed systems using the client-server model, 
operation coalescence can be easily adopted. 

By coalescing several requests into one single 
request, the workload of the object may be re- 
duced. Moreover, the response time for a job 
waiting for the result from the object may be 
shortened if its request is coalesced with an ear- 
lier request from another job. It is true that other 
requests in the middle may be delayed if a later 
request is coalesced with an earlier request. It is 
therefore the responsibility of the object or the 
system scheduler to decide if a coalescence should 
be performed. This is similar to the proposal of 
using non-conventional protocols to handle real- 
time transactions [4]. By executing urgent transac- 
tions first [5] and delaying non-urgent requests, a 
real-time system can provide better performance 
by meeting more deadlines. 

In most applications, coalesced operations 
must be defined by the programmer, due to the 
semantic issues involved. On the other hand, 
whether a coalescence should be performed is 
usually decided by the object (or system) sched- 
uler. In the scheduler, the reward (usually the 
amount of computation time saved) for each coa- 
lesced operation must be pre-analyzed and 
recorded in a reward table before execution. 
When a sequence of requests arrive, the sched- 
uler consults the reward table and determines 
which requests to coalesce in order to maximize 
the total reward. 

In a real-time system, the request patterns of 
many jobs are known in advance, especially when 
jobs are periodic. For example, service requests 
from a radar monitor are periodic and well-de- 
fined. Given K periodic jobs and the reward 
table, we can determine which requests to coa- 
lesce to produce the maximum total reward. In 
other words, we can find the coalescence sched- 
ule that saves the most time. If some requests are 
not predefined, we can still perform the analysis 
at run-time if the complexity of scheduling coa- 
lesced operations is not high. Unfortunately, find- 
ing an optimal schedule in the general case is 
NP-hard 111. To simplify the problem, we assume 
that only two primitive operations can be coa- 
lesced at a time. 
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In this paper, we consider the model in which 
each periodic job J, has II sequential operations 

{Jji, JiZ,..., Ji,} and execution of each job must 
satisfy ‘the precedence constraint, i.e., each oper- 
ation Ji,j cannot be executed until operation Ji,j_ I 
has completed, 1 <j Q n. For any two operations, 
there is a reward value. If the two operations 
cannot be coalesced, the reward value is zero. 
Our objective is to find a feasible coalescence 
schedule that produces the maximum total re- 
ward. 

For the case of two periodic jobs, Chen et al. 
[ll have developed an 0(n6) time algorithm for 
the problem. Using dynamic programming, we 
improve their work by presenting an 0(n2) time 
algorithm. Moreover, the algorithm can be ex- 
tended to handle any k periodic jobs with time 
complexity O(k2nk). 

2. An O(n21 time algorithm for scheduling two 
periodic jobs 

We assume that there are two periodic jobs in 
the real-time system, and each job .( has n 
sequential operations (Ji,i, Ji,2,. . . , Ji,,), i = 1, 2. 
To describe the problem formally, we represent 
the system as an undirected graph. Each vertex 
ui,j denotes an operation Ji,j. There are edges 
between ui,j and u~,~+ i, i = 1, 2, j = 1,. . . , n - 1, 
and between vlp and vZq, p= I,..., n, q = 
1 ,..-, n. Each edge is associated with a weight 
representing the reward value. Thus, maximizing 
the total reward is equivalent to finding a maxi- 
mum weighted compatible matching 111 in the 

graph. Any two edges (u~,~, u~,~), (u,,,, u2,J in a 
weighted compatible matching satisfy either r <p 
and s < q or r > p and s > q. In other words, the 
maximum weighted compatible matching problem 
is to find a subset of edges that do not cross each 
other and whose total weight is maximized. This 
subset of edges is called the maximum weighted 
compatible matching set. 

As an example, Fig. 1 shows a real-time object 
with four primitive operations op,, op,, op,, and 
op4. There are two periodic jobs and each has 
four operations. Job J, consists of op,, op,, op,, 

and op3 (J,,,, J,,,, J,,,, and J,,,, respectively). 
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Fig. 1. An example of scheduling operations with precedence 
constraints. 

Job J2 consists of op,, op,, op,, and op2 

(J2,,, J2,2, J2,3 and J2,4, respectively). The reward 
values are given in Table 1. The maximum 
weighted compatible matching set is indicated as 
solid lines in Fig. 1. The maximum total reward is 
16 and the scheduling sequence is J2,1, J,,, + 

J,,,, JI,, + J2,,7 J1.2 + J1,39 JI,,. 
Let Ri,j denote the maximum total reward for 

matching operations in (J,,,, . . . , J,,i) and 

(J,,,, . . . , J2,j}, ri,j the weight of edge (~i,~, uZj), 
1 G i G n, i 6 j G n, and ck,, the weight of edge 

&,l- I, vk /), k = 1, 2, 1 < 1 =G n. Clearly, consider- 
ing operations J,,i and J2,j, we have the following 
equations: 

Ri,j = max{Ri-i,j, Ri,j-i, ci,i +Ri-Z,j, 

c2j+Rij-2, rij+Ri_ij-i} 

for2<i=gn,2gj<n, 

R1,~ = mm{RO,j? Rl,j-lT ‘2.j + Rl,j-2, 

‘1.j + RO,j- 1) 

for 2<j<n, 

Ri,l = max{%,,,, Ri,o, ~1,~ +Ri-z,l, 

‘i,l + Ri- I,01 

for 2,<i<n, 

RO,j = max{RCl,j-17 ‘Z,j + R0,j-2j 

for 2<j,<n, 

(1) 

(2) 

(3) 

(4) 

Table 1 

An example of the reward table 

OPl OP2 W3 ou4 

OPl 2 7 5 0 

OP2 7 2 0 4 

OP3 5 0 2 1 

fJP4 0 4 1 2 

Ri,o = max(Ri-l,oT Cl,i + Ri-2,0} 
for 2<iGn, (5) 

R,,, = R,,, = R,,, = 0, 
R,,, = rl,l if r,,, > 0, and R, i = 0 otherwise. 

(6) 

In (l), the first (second) term in the right-hand 
side represents the case that operation J,,i (J2,j) 

is not coalesced with any other operation. The 
third (fourth) term represents the case that oper- 
ation J, i (J, j) is coalesced with its immediate 
predecessor. The fifth term represents the case 
that J,,i is coalesced with J2,j. No other cases are 
possible, because edges in the maximum weighted 
compatible matching set are not allowed to cross 
each other due to precedence constraints. The 
other equations are derived similarly. 

With initial values given by (61, the following 
algorithm takes O(n’) time to compute the value 

R, n n, which is the maximum total reward. 

/ * Initialization */ 
R,,, := 0; R,,, := 0; R,,, := 0; 
if rll for I :_>,o;;en”~i,I := r1,1 e’se Rl,l := 0; 

Ri,o := maxIR,_ 1,0, Cl,i + Ri-4; 
for j := 2 to n do 

R,,j := m4R,,j-,, C2.j + R,j-,l; 
for i := 2 to n do 

Ri,l := m4RRi-l,l, Ri,o, Cl,i +Ri-2,1, 
ri 1 + Ri-l,J; 

for j := 2 to n 60 
R,,j := maxIR,,j, R,,j-l, C2,j + Rl,j-2, 

rl,j + R,,j- 1); 

/ * Compute R, n */ 

for i := 2 to n do’ 
for j := 2 to n do 

Ri,j := mti(Ri_,,j, Ri,j_,, Cl,i + Ri_2,j, 
C2j+R~j-2, rij+Ri_,,j_,). 

3. Extension to k periodic jobs 

We now extend our result to k 2 3 periodic 
jobs. We assume that each job J,, 1 ( i 6 k, has n 
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sequential operations IJ,,r, Ji,z, . . . , JJ. Let 
R r~ll,r~21,, , tfkl denote the maximum total reward 
for matching operations in {Jr,,, . . . , Jl,tIIJ, 

1.f~ 1, . . . , J2,f[21), . . . ,(J~,I~ . . . , Jk,t[kl), ri,j,p,q the 

weight of edge (u~,~, up J, 1 G i G k, 1 <j < n, 1 < 
p G k, 1 G q <n, i fp, and c,,, the weight of 

edge (v,,,_,, v,,,), 1 G u < k, 1 < u <n. 
Depending on whether operations in S = 

{J Lqll J2,,[2]7 . . . 7 &,,,kJ are coalesced with some 
other operations, there are three possible cases. 

Case 1: Some operation in S is not coalesced 
with any other operation. We have 

M,=R r[ll,t[21,. , Qkl 

= 
m~~R,~l]-1,,[2]....,r[k]~ R r[l],r[2]-l,...,r[k]’ 

. ..) R t[l],r[2],...,t[k]- 1 1. 

Case 2: Some operation in S is coalesced with 
its immediate predecessor. We have 

M,=R t[l],r[2]. , r[k] 

- max{cl,,[,] +Rt[l]-2,r[2],...,r[k], 

C2J[2] + R r[l],r[2]-2 ,..., t[k],. ., 

Ck,r[k] + R r[l],r[2],...,t[k]-2 1. 

Case 3: Two operations in S are coalesced. If 

.I l,rtll is coalesced with J2,tt21, the maximum total 

reward is equal to rl,f[ll,2,r[2] + K[l]- 1,r[2]- 1,. , r[k]. 

Thus, we have 

M,=R r[ll,r[2l,...,~[kl 

= 
max{rl,t[l],2,t[2] + R~~l]-l,t[21-l,...,f[kl’ 

r1,t[1],3,1[3] + Rt[l]-l,r[2],1[3]-1,...,r[k], . . . 

rl,t[l],k,r[k] + Rrrl]-l,r[2],...,t[k]-l, 

r2,t[2],3,t[3] + R t[l],r[2]- l,r[3]- 1, .,t[k]’ 

rZ,t[2],4,r(4] + R r[l].r[2]- 1,r[3],r[4]- l,..., t[k], 

. . . 3 r2,t[2],k,r[k] + R r[1],r[2]- 1,r[3] ,..., qkl- 1’ 

. . . ? rk-l,r[k-l],k.t[k] 

+R t[l],r[2],...,r[k-I]-1,r[kl-1 1. 

Due to precedence constraints, no other cases 
are possible. Therefore, Rr~ll,r~21,~ _, , trkl = max{M,, 
M,, M3}. For example, given operations {Jr,,, . . . , 

JJ, i&,1, . . . , J2,4I, and (J3.1, . . . , J3,4), 

Ml = max( R3,,,, y R4,3,4 ) R4,4,3} 7 

M2 = max{cl,4 + R2,4,4f c2,4 + R4,2,49 c3,4 + R4,4,2} ) 

and 

M3 = maxh,4,2,4 + R3,3,47 rl,4,3,4 + R3,4,3, 

r2,4,3,4 + R4,3,31 . 

The maximum total reward is 

R 4,4,4 = max{ Ml 7 M2 7 M3I 

= 
m={R3,4,4 7 R4,3,4 f R4.4.3) 

c1,4 + R2,4,4 3 c2,4 + R4,2,4) 

c3,4 + R4,4,2 7 rl,4,2,4 + R3.3,4) 

r1,4,3,4 + R3,,,,) r2,4,3,4 + R4,3,3} . 

It is not difficult to show that the time complexity 
of computing the maximum total reward R,,.,, 
is 0(k2nk). 

4. Discussion and conclusion 

Using dynamic programming, we have devel- 
oped an 0(n2) time algorithm for the proposed 
problem. The same technique can be easily ap- 
plied to the case of coalescing three or more 
operations. It is not difficult to see that O(n3) 
time is sufficient for the case of coalescing three 
operations. 

Although we made a significant improvement 
over Chen et al.‘s work, we have not determined 
what the lower bound for the problem is. 
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