
Information Processing Letters 46 (1993) 129-133

Elsevier

llJune1993

An algorithm for coalescing operations with
precedence constraints in real-time systems
Lung-Tien Liu
Telecommunication Laboratories, P. 0. Box 71, Chung-Li, Taiwan, ROC

Gen-Huey Chen
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC

Kwei-Jay Lin
Department of Computer Science, University of Illinois, Urbana, IL, USA

Communicated by D. Gries

Received 14 November 1991

Revised 20 July 1992 and 26 February 1993

Keywords: Algorithms; dynamic programming; maximum weighted compatible matching; real-time systems

1. Introduction

Real-time computations have deadline con-
straints. In addition to providing a result with a
correct value, a real-time computation must pro-
duce the result before the deadline. A real-time
system usually has many jobs sharing system re-
sources, such as CPU and I/O devices. The sys-
tem must provide a feasible schedule for all jobs
so that they can finish executions before their
deadlines. In many applications [1,3], real-time
systems are modeled as object-oriented systems.
In an object-oriented system, each object has a
set of well-defined operations. Each object also
has local variables, which may be accessed only

Correspondence to: Professor G.-H. Chen, Department of
Computer Science and Information Engineering, National
Taiwan University, Taipei, Taiwan, ROC.

by the operations defined in the interface of the
object. The object decides if and when to process
the requests from other objects.

In real-time systems, an object usually makes
scheduling decisions in order to maximize the
system performance. There are many ways to
make scheduling decisions. Operation coalescence
is one of them [2]. The idea is that some objects
may be able to handle several distinct requests at
the same time. For example, suppose a stack
object is implemented in a system and suppose
the public, or primitive, operations defined for
the stack object are: push, pop, new and top. We
may provide a coalesced operation double-push,
which takes two elements and pushes both of
them onto the stack at the same time. Whenever
two consecutive push operations are found in
front of the request queue for the stack object,
the object scheduler can invoke the coalesced

0020-0190/93/$06.00 0 1993 - Elsevier Science Publishers B.V. AI1 rights reserved 129

Volume 46, Number 3 INFORMATION PROCESSING LETTERS 11 June 1993

operation double-push instead. For many dis-
tributed systems using the client-server model,
operation coalescence can be easily adopted.

By coalescing several requests into one single
request, the workload of the object may be re-
duced. Moreover, the response time for a job
waiting for the result from the object may be
shortened if its request is coalesced with an ear-
lier request from another job. It is true that other
requests in the middle may be delayed if a later
request is coalesced with an earlier request. It is
therefore the responsibility of the object or the
system scheduler to decide if a coalescence should
be performed. This is similar to the proposal of
using non-conventional protocols to handle real-
time transactions [4]. By executing urgent transac-
tions first [5] and delaying non-urgent requests, a
real-time system can provide better performance
by meeting more deadlines.

In most applications, coalesced operations
must be defined by the programmer, due to the
semantic issues involved. On the other hand,
whether a coalescence should be performed is
usually decided by the object (or system) sched-
uler. In the scheduler, the reward (usually the
amount of computation time saved) for each coa-
lesced operation must be pre-analyzed and
recorded in a reward table before execution.
When a sequence of requests arrive, the sched-
uler consults the reward table and determines
which requests to coalesce in order to maximize
the total reward.

In a real-time system, the request patterns of
many jobs are known in advance, especially when
jobs are periodic. For example, service requests
from a radar monitor are periodic and well-de-
fined. Given K periodic jobs and the reward
table, we can determine which requests to coa-
lesce to produce the maximum total reward. In
other words, we can find the coalescence sched-
ule that saves the most time. If some requests are
not predefined, we can still perform the analysis
at run-time if the complexity of scheduling coa-
lesced operations is not high. Unfortunately, find-
ing an optimal schedule in the general case is
NP-hard 111. To simplify the problem, we assume
that only two primitive operations can be coa-
lesced at a time.

130

In this paper, we consider the model in which
each periodic job J, has II sequential operations

{Jji, JiZ,..., Ji,} and execution of each job must
satisfy ‘the precedence constraint, i.e., each oper-
ation Ji,j cannot be executed until operation Ji,j_ I
has completed, 1 <j Q n. For any two operations,
there is a reward value. If the two operations
cannot be coalesced, the reward value is zero.
Our objective is to find a feasible coalescence
schedule that produces the maximum total re-
ward.

For the case of two periodic jobs, Chen et al.
[ll have developed an 0(n6) time algorithm for
the problem. Using dynamic programming, we
improve their work by presenting an 0(n2) time
algorithm. Moreover, the algorithm can be ex-
tended to handle any k periodic jobs with time
complexity O(k2nk).

2. An O(n21 time algorithm for scheduling two
periodic jobs

We assume that there are two periodic jobs in
the real-time system, and each job .(has n
sequential operations (Ji,i, Ji,2,. . . , Ji,,), i = 1, 2.
To describe the problem formally, we represent
the system as an undirected graph. Each vertex
ui,j denotes an operation Ji,j. There are edges
between ui,j and u~,~+ i, i = 1, 2, j = 1,. . . , n - 1,
and between vlp and vZq, p= I,..., n, q =
1 ,..-, n. Each edge is associated with a weight
representing the reward value. Thus, maximizing
the total reward is equivalent to finding a maxi-
mum weighted compatible matching 111 in the

graph. Any two edges (u~,~, u~,~), (u,,,, u2,J in a
weighted compatible matching satisfy either r <p
and s < q or r > p and s > q. In other words, the
maximum weighted compatible matching problem
is to find a subset of edges that do not cross each
other and whose total weight is maximized. This
subset of edges is called the maximum weighted
compatible matching set.

As an example, Fig. 1 shows a real-time object
with four primitive operations op,, op,, op,, and
op4. There are two periodic jobs and each has
four operations. Job J, consists of op,, op,, op,,

and op3 (J,,,, J,,,, J,,,, and J,,,, respectively).

Volume 46, Number 3 INFORMATION PROCESSING LE’ITERS 1lJune 1993

Fig. 1. An example of scheduling operations with precedence
constraints.

Job J2 consists of op,, op,, op,, and op2

(J2,,, J2,2, J2,3 and J2,4, respectively). The reward
values are given in Table 1. The maximum
weighted compatible matching set is indicated as
solid lines in Fig. 1. The maximum total reward is
16 and the scheduling sequence is J2,1, J,,, +

J,,,, JI,, + J2,,7 J1.2 + J1,39 JI,,.
Let Ri,j denote the maximum total reward for

matching operations in (J,,,, . . . , J,,i) and

(J,,,, . . . , J2,j}, ri,j the weight of edge (~i,~, uZj),
1 G i G n, i 6 j G n, and ck,, the weight of edge

&,l- I, vk /), k = 1, 2, 1 < 1 =G n. Clearly, consider-
ing operations J,,i and J2,j, we have the following
equations:

Ri,j = max{Ri-i,j, Ri,j-i, ci,i +Ri-Z,j,

c2j+Rij-2, rij+Ri_ij-i}

for2<i=gn,2gj<n,

R1,~ = mm{RO,j? Rl,j-lT ‘2.j + Rl,j-2,

‘1.j + RO,j- 1)

for 2<j<n,

Ri,l = max{%,,,, Ri,o, ~1,~ +Ri-z,l,

‘i,l + Ri- I,01

for 2,<i<n,

RO,j = max{RCl,j-17 ‘Z,j + R0,j-2j

for 2<j,<n,

(1)

(2)

(3)

(4)

Table 1

An example of the reward table

OPl OP2 W3 ou4

OPl 2 7 5 0

OP2 7 2 0 4

OP3 5 0 2 1

fJP4 0 4 1 2

Ri,o = max(Ri-l,oT Cl,i + Ri-2,0}
for 2<iGn, (5)

R,,, = R,,, = R,,, = 0,
R,,, = rl,l if r,,, > 0, and R, i = 0 otherwise.

(6)

In (l), the first (second) term in the right-hand
side represents the case that operation J,,i (J2,j)

is not coalesced with any other operation. The
third (fourth) term represents the case that oper-
ation J, i (J, j) is coalesced with its immediate
predecessor. The fifth term represents the case
that J,,i is coalesced with J2,j. No other cases are
possible, because edges in the maximum weighted
compatible matching set are not allowed to cross
each other due to precedence constraints. The
other equations are derived similarly.

With initial values given by (61, the following
algorithm takes O(n’) time to compute the value

R, n n, which is the maximum total reward.

/ * Initialization */
R,,, := 0; R,,, := 0; R,,, := 0;
if rll for I :_>,o;;en”~i,I := r1,1 e’se Rl,l := 0;

Ri,o := maxIR,_ 1,0, Cl,i + Ri-4;
for j := 2 to n do

R,,j := m4R,,j-,, C2.j + R,j-,l;
for i := 2 to n do

Ri,l := m4RRi-l,l, Ri,o, Cl,i +Ri-2,1,
ri 1 + Ri-l,J;

for j := 2 to n 60
R,,j := maxIR,,j, R,,j-l, C2,j + Rl,j-2,

rl,j + R,,j- 1);

/ * Compute R, n */

for i := 2 to n do’
for j := 2 to n do

Ri,j := mti(Ri_,,j, Ri,j_,, Cl,i + Ri_2,j,
C2j+R~j-2, rij+Ri_,,j_,).

3. Extension to k periodic jobs

We now extend our result to k 2 3 periodic
jobs. We assume that each job J,, 1 (i 6 k, has n

131

Volume 46, Number 3 INFORMATION PROCESSING LETTERS 11 June 1993

sequential operations IJ,,r, Ji,z, . . . , JJ. Let
R r~ll,r~21,, , tfkl denote the maximum total reward
for matching operations in {Jr,,, . . . , Jl,tIIJ,

1.f~ 1, . . . , J2,f[21), . . . ,(J~,I~ . . . , Jk,t[kl), ri,j,p,q the

weight of edge (u~,~, up J, 1 G i G k, 1 <j < n, 1 <
p G k, 1 G q <n, i fp, and c,,, the weight of

edge (v,,,_,, v,,,), 1 G u < k, 1 < u <n.
Depending on whether operations in S =

{J Lqll J2,,[2]7 . . . 7 &,,,kJ are coalesced with some
other operations, there are three possible cases.

Case 1: Some operation in S is not coalesced
with any other operation. We have

M,=R r[ll,t[21,. , Qkl

=
m~~R,~l]-1,,[2]....,r[k]~ R r[l],r[2]-l,...,r[k]’

. ..) R t[l],r[2],...,t[k]- 1 1.

Case 2: Some operation in S is coalesced with
its immediate predecessor. We have

M,=R t[l],r[2]. , r[k]

- max{cl,,[,] +Rt[l]-2,r[2],...,r[k],

C2J[2] + R r[l],r[2]-2 ,..., t[k],. .,

Ck,r[k] + R r[l],r[2],...,t[k]-2 1.

Case 3: Two operations in S are coalesced. If

.I l,rtll is coalesced with J2,tt21, the maximum total

reward is equal to rl,f[ll,2,r[2] + K[l]- 1,r[2]- 1,. , r[k].

Thus, we have

M,=R r[ll,r[2l,...,~[kl

=
max{rl,t[l],2,t[2] + R~~l]-l,t[21-l,...,f[kl’

r1,t[1],3,1[3] + Rt[l]-l,r[2],1[3]-1,...,r[k], . . .

rl,t[l],k,r[k] + Rrrl]-l,r[2],...,t[k]-l,

r2,t[2],3,t[3] + R t[l],r[2]- l,r[3]- 1, .,t[k]’

rZ,t[2],4,r(4] + R r[l].r[2]- 1,r[3],r[4]- l,..., t[k],

. . . 3 r2,t[2],k,r[k] + R r[1],r[2]- 1,r[3] ,..., qkl- 1’

. . . ? rk-l,r[k-l],k.t[k]

+R t[l],r[2],...,r[k-I]-1,r[kl-1 1.

Due to precedence constraints, no other cases
are possible. Therefore, Rr~ll,r~21,~ _, , trkl = max{M,,
M,, M3}. For example, given operations {Jr,,, . . . ,

JJ, i&,1, . . . , J2,4I, and (J3.1, . . . , J3,4),

Ml = max(R3,,,, y R4,3,4) R4,4,3} 7

M2 = max{cl,4 + R2,4,4f c2,4 + R4,2,49 c3,4 + R4,4,2})

and

M3 = maxh,4,2,4 + R3,3,47 rl,4,3,4 + R3,4,3,

r2,4,3,4 + R4,3,31 .

The maximum total reward is

R 4,4,4 = max{ Ml 7 M2 7 M3I

=
m={R3,4,4 7 R4,3,4 f R4.4.3)

c1,4 + R2,4,4 3 c2,4 + R4,2,4)

c3,4 + R4,4,2 7 rl,4,2,4 + R3.3,4)

r1,4,3,4 + R3,,,,) r2,4,3,4 + R4,3,3} .

It is not difficult to show that the time complexity
of computing the maximum total reward R,,.,,
is 0(k2nk).

4. Discussion and conclusion

Using dynamic programming, we have devel-
oped an 0(n2) time algorithm for the proposed
problem. The same technique can be easily ap-
plied to the case of coalescing three or more
operations. It is not difficult to see that O(n3)
time is sufficient for the case of coalescing three
operations.

Although we made a significant improvement
over Chen et al.‘s work, we have not determined
what the lower bound for the problem is.

References

[l] T.E. Bihari and P. Gopinath, Object-oriented real-time
systems: Concept and examples, IEEE Comput. 25 (12)
(1992) 25-32.

[2] M.I. Chen, J.Y. Chung and K.J. Lin, Scheduling algorithm

for coalesced operations in real-time systems, in: Proc.
COMPSAC 89, Orlando, FL (1989) 143-150.

132

Volume 46. Number 3 INFORMATION PROCESSING LETTERS 11June 1993

[3] K.B. Kenny and K.J. Lin, Structuring large real-time sys-

terns with performance polymorphism, in: Proc. IEEE
Real-Time Systems Symp. (1990) 238-246.

[4] T.W. Kuo and A.K. Mok, Application semantics and con-

currency control of real-time data-intensive applications,

in: Proc. IEEE Real-Time Systems Symp., Phoenix, AZ

(1992) 35-45.
[5] C.L. Liu and J.W. Layland, Scheduling algorithm for mul-

tiprogramming in a hard real-time environment, J. ACM

20 (1) (1973) 46-61.

133

