
Information Processing Letters ~7 (1993} 51-57
Elsevier

9 August 1993

Tight comparison bounds for the string
prefix-matching problem
Dany Breslauer *
Centrum rnor Wiskunde and lnfonnatica, Postbus ./079, 1009 AB Amsterdam, The Netherlands

Livio Colussi * * and Laura Toniolo * * *
Dipartimenro di Matematica Pura ed Applicata, Unii·ersitii. Degli Studi di Padoi·a, 35131 Padorn, Italy

Communicated by D. Gries
Received 14 December 1992
Revised 21 January 1993

Abstract

Breslauer. D., L. Colussi and L. Tonoilo, Tight comparison bounds for the string pref1X-matching problem. Information
Processing Letters 47 (1993) 51-57.

In the string prefv:-matching problem one is interested in finding the longest prefix of a pattern string of length m that
occurs starting at each position of a text string of length n. This is a natural generalization of the string matching problem
where only occurrences of the whole pattern are sought. The Knuth-Morris-Pratt string matching algorithm can be easily
adapted to solve the string prefix-matching problem without making additional comparisons.

In this paper we study the exact complexity of the string pref1X-matching problem in the deterministic sequential
comparison model. Our bounds do not account for comparisons made in a pattern preprocessing step. The following results
are presented:

(1) A family of linear-time string prefix-matching algorithms that make at most LCC2m -1)/ m)n] comparisons.
(2) A tight lower bound of [((2m -1)/ m)nJ comparisons for any string prefix-matching algorithm that has to match the

pattern 'ab'"- 1'.

We also consider the special case when the pattern and the text strings are the same string and all comparisons are
accounted. This problem, which we call the string self-prefix problem, is similar to the failure function that is computed in
the pattern preprocessing of the Knut-Morris-Pratt string matching algorithm and used in several other comparison
efficient algorithms. By using the lower bound for the string prefix-matching problem we are able to show:

(3) A lower bound of 2m - L2Jm l comparisons for the self-prefix problem.

Keywords: Algorithms; pattern matching; string matching; comparison model; exact complexity; failure function; lower
bounds

Correspondence to: L. Toniolo, Dipartimento di Matematica
Pura ed Applicata, Universita Degli Studi di Padova, Via
Belzoni 7, 35131 Padova, Italy.

* Partially supported by the European Research Consor·
tium for Informatics and Mathematics postdoctoral fel
lowship.

* * Partially supported by "Progetto Finalizzato Sistemi In
fonnatici e Calcolo Parallelo" of CNR under grant num·
ber 89.00026069. .

• * * The work was done while the author was visiting at the
Department of Computer Science in Columbia Univer
sity.

I. Introduction

In the string prefix-matching problem one is
interested in finding the longest prefix of a pat
tern string .9'[1..m] that starts at each position of
a text string .9'"[1..n]. More formally, the required
output of the string prefix-matching problem is
an integer array Il[l .. n] (0 <; Il{i] ~ m) such that
for each text position i, .9'"[i..i + JI[i] - 1] =

0020-0190/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 51

Volume 47. Number 1 INFORMATION PROCESSING LETTERS 9 August 1993

9'[1..ll[i}] and if ll[i] < m and i + ll[i] ~ n, then
.9""[i + II[i]] =F.9'[ll[i] + l].

The string prefix-matching problem is a natu
ral generalization of the standard string matching
problem where only complete occurrences of the
pattern are sought. The classical linear time string
matching algorithm of Knuth, Morris and Pratt
[8] can be easily adapted to solve the string pre
fix-matching problem in the same time bounds
without making additional comparisons 1• We as
sume that the reader is familiar with this algo
rithm.

In this paper we study the exact number of
comparisons performed by algorithms that have
access to the input strings by pairwise symbol
comparisons that test for equality. This work was
motivated by recent results on the exact compari
son complexity of the string matching problem
(3,5-7,10]: Colussi [5] optimized the Knuth-Mor
ris-Pratt [8] string matching algorithm, which
makes 2n - m comparisons, using program cor
rectness proof techniques and presented an algo
rithm that makes n + i<n - m) comparisons. His
algorithm was later improved by Gali! and Gian
carlo [7] and further by Breslauer and Gali! [3].
Recently, Cole and Hariharan [4] discovered an
algorithm that makes only n + (c/mXn - m)
comparisons, but requires an expensive pattern
preprocessing 2• Cole and Hariharan [4] also im
proved the lower bounds given by Galil and Gian
carlo [6] and Zwick and Paterson [10]. There is
still a small gap between the lower and upper
bounds for string matching. (Note that if the
input alphabet consists of only two symbols, then
the string matching problem requires at most n
comparisons. Rivest [9] proved that in the worst

1 Since complete occurrences of the pattern cannot start at
text positions larger than n - m + l, the string matching
algorithm can stop before reaching the end of the teict. The
prefiic-matching algorithm must continue until the end of
the text and therefore, it may make at most m extra
comparisons.

2 All bounds for the string matching algorithms mentioned do
not account for the comparisons made in a pattern prepro·
cessing step. The pattern preprocessing step of Cole and
Hariharan's algorithm takes O(m2) time, while the other
algorithms use the Knuth-Morris-Pratt pattern preprocess
ing step that takes linear time.

52

case any string matching algorithm has to exam
ine at least n - m + 1 input symbols.)

The string prefix-matching problem is obvi
ously harder than the standard string matching
problem since each text symbol must be either
compared directly to the first symbol of the pat
tern or compared successfully to another symbol,
while in the string matching problem some text
symbols might not be compared at all, as shown
by Boyer and Moore [2]. Interestingly, this "hard
ness" introduces more structure that makes the
analysis of the string prefix-matching problem
easier.

This paper presents matching lower and upper
bounds for the string prefix matching problem. In
particular we give:

(1) A family of linear-time string prefix-match
ing algorithms that make at most l(C!m - l)/m)nJ
comparisons. The patterns preprocessing step of
these algorithms is almost identical to that of the
string matching algorithm of Knuth. Morris and
Pratt [8].

This bound improves on the 211 - 1 compar
isons made by the adapted string matching algo
rithm of Knuth, Morris and Pratt [8].

(2) A tight lower bound of l((2m - l)/m)nJ
comparisons for any string prefix-matching algo
rithm that has to match the pattern 'abm- 1•.

These results show that although the string
matching and the string prefix-matching problems
are closely related, their exact comparison com
plexities are inherently different:

- When m --+ oo and n » m the comparison com
plexity of the string matching problem ap
proaches n while the comparison complexity of
the string prefix-matching problem approaches
2n.

- The lower bound proofs of the rwo problems
require different arguments: the pattern string
that we use for the lower bound is 'abm-l•
while the lower bounds for the string matching
problem require patterns with more complex
periodicity structures (4,6,10].

Finally, we consider the special case when the
text and the pattern strings are the same string
and all comparisons are accounted. This problem,
which we call the string self-prefix problem, is

Volume 47. Number 1 INFOR:vlA TION PROCESSING LETIERS 9 August 1993

similar to the failure function 3 that is computed
in the pattern preprocessing on the Knuth-Mor
ris-Pratt [8] string matching algorithm using 2m
- 4 comparisons. The failure function is also
used in several other string matching algorithms
(3,5,7] and in the family of algorithms discussed in
this paper. We prove:

(3) A lower bound of 2m - [2{,11 J comparisons
for the self-prefix problem.

This paper is organized as follows. Section 2
describes the family of string prefix-matching al
gorithms and Section 3 gives the matching lower
bound. Section 4 uses this lower bound to prove a
lower bound on the self-prefix problem.

2. Upper bounds

In this section we present a family of string
prefix-matching algorithms that make at most
[((2m - l)/m)nJ comparisons. The discussion be·
low is in the comparison model where we count
only comparisons and all other computation is
free. We assume that the algorithms have ob
tained complete information about the pattern in
an unaccounted pattern preprocessing step which
may compare even all (f) pairs of pattern sym·
bols. We further assume that the algorithms do
not make any comparisons that are implied by
the answers to previous comparisons. These algo
rithms can be implemented efficiently in the stan
dard random access machine model[!].

Definition 2.1. We say that a prefix-matching
algorithm is on-line if before comparing the text
symbol .9'"[/] it has determined if the pattern
prefixes that start at text positions k terminate
before text position l for all text positions k, such
that k < l.

Let .%1 = {e I l - m < k 1 < k 1 < · · · < k! = /} I I 2 ,,

be the set of all text positions for which ll[kfl

3 These are essentially different representations of the same
information: one can be computed from the other in linear
time without additional comparisons. Therefore, the lower
bound applies also to the computations of the failure func·
tion.

cannot be determined without examining .9'"[/J.
That is, Y[kf .. l - 1] =.9'[1../ - kD and .9'[/] must
be compared to check whether II[kf] = l - kf or
II[k!} >I - kf. In this terminology, an on-line
prefix-matching algorithm must determine
whether Y[I] =.9'[/ - k: + l]. for all kf E.:%1• be
fore examining any text position larger than /.
Note that .%1+ 1 :;;;.:%1 u {/ + l}.

Comparison efficient on-line prefix-matching
algorithms are somewhat restricted with the
choices of comparisons they can make. It is easy
to see that they gain no advantage by comparing
pairs of text symbols. Furthermore, all compar
isons at text position l must be between .9'[/J and
some .9[/ - kf + 1] or otherwise can be answered
by an adversary as unequal without giving the
algorithm any useful information, provided that
the alphabet is large enough. In the rest of this
section we consider on-line algorithms that com·
pare .9'[l] to .9'([- kf + 11, for some kf E.%1•

The only difference between these algorithms is
the order in which the pattern symbols .9[1 - kf
+ 1] are compared to Y[l}. These algorithms
continue comparing .9""[/J until .9'[1] =9'[/ - kf
+ l] for some kJ, or until .9'"{/] =P.9(/ - kj + l] for
all kj, and only then move to the next text posi
tion. Note that by the assumption that the algo
rithms do not to make comparisons which are
implied by answers to previous comparisons, and
since the algorithms have complete information
about the pattern, not all the symbols .9'[! - kf +
1] have to be compared:

(1) If .9'[! - kf + 1] =YTL], then .9'[! - kJ + l]
= .9'"[1), for some kJ E.%1, if and only if .9'[l - k;
+ l] =.9'[/ - k} + 1]. In this case a comparison
model algorithm "knows" which symbol is at text
position l and it moves to the next text position.

(2) If .9'[/ - kf + 1] * .9'"[!], then .9'[/ - kj + 1]
* .9'"[!], for all kj e:;rt, such that .9'(! - kf + 1]
=.9'[/ - k} + 1). Ideally, a comparison model al
gorithm should not compare the text symbol .9'{/]
to .9'[/ - kj + l]. However, this is not essential for
the proofs in this paper as long as the algorithms
do not compare some .9(/ -kf + 1] more than
once.

This leads to the definition of a family !T of all
on-line comparison model string prefix-matching
algorithms that may compare Y{/] only to some

53

Volume 47. Number 1 INFORMATION PROCESSING LETTERS 9 August 1993

.9'[! - kf + I]. The data structures that are used
by Breslauer and Gali! [3] to implement a family
of similar string matching algorithms can be used
to implement all algorithms .91 E !T in linear time
with a pattern preprocessing step that relies on
the Knuth-Morris-Pratt failure function.

Theorem 2.2. Let .91 E F. Then, except possibly the
rule which chooses the order according to which the
92'[/ - kf + l]'s are compared to 9"[1], .N can be
implemented in the standard model in linear time
with the Knuth-Morris-Pratt linear time pattern
preprocessing step that makes at most 2m - 4
comparisons.

The algorithms in the family .9" are compari
son efficient as we show next.

Lemma 2.3. Let .91 E !?". Then .91 makes at most
2n - 1 comparisons.

Proof. It is obvious that Si' does not need to make
more than n comparisons which result in equal
answers. In every comparison which results in
unequal answer Si' determines that at least one
prefix of the pattern which starts at some text
position k} terminates at text position i. There
fore, .N does not make more than n comparisons
which result in unequal answers. However, if all
pattern prefixes that start at text positions in .'%1

terminate at text position l, then Si' moves to the
next text position without a comparison that is
answered as equal.

Consider the last text position l = n. It is clear
that if all comparisons at this text position result
in unequal answers, then ..W got at most n - 1
equal answers. On the other hand, if a compari
son was answered as equal, then there is at least
one pattern prefix which starts at some text posi
tion kf and was not terminated by an inequality
answer and, thus, Si' got at most n - 1 unequal
answers. Therefore, Si' makes at most 2n - 1
comparisons. D

The adapted Knuth-Morris-Pratt [8] preft.x
matching algorithm is in the family !F. There are
cases in which it would actually make 2n - 1
comparisons; e.g . .9'[1..2] ='ab' and .9"[1..n]

54

=•an•. Note that this algorithm compares .9"(!] to
.9'[/ - k1 + l] in an increasing order of k1. This
order is the worst possible order as we show in
the next theorem.

Define a family of algorithms !f of all sf' E !T
that compare .9'[/ - kf + 1] only last. Namely, if
an algorithm sf' E #, then Si' compares .9"[1] to
.9'[l - ki + 1] only if an unequal answer implies
that all pattern prefixes that start at text positions
in % 1 terminate at text position l. Note that if
.9'[l - ki + 1] =.9'[1- kf + l], for k{ * kf, then Si'
may compare this pattern symbol at any time.

Theorem 2.4. Let sf' e #. Then Si' makes at most
l((2m - 1)/m)n] comparisons.

Proof. As in Lemma 2.3, every comparison be
tween .9"(1] to 9"[1- k[+ 1] which results in an
unequal answer determines that the pattern pre
fix which starts at text position kf terminates at
text position l. We charge such a comparison to
text position k[and charge comparisons that
result in equal answers to the text position com
pared. Using this charging scheme it is obvious
that each text position can be charged with at
most two comparisons and that comparisons to
.9"{1] cannot be charged to any text position that
is smaller than k{.

When Si' reaches text position /, the number
of comparisons that are charged to the text posi
tions k{, ... , l - 1 is at most 2(/ - kf> -
(I % 1 I - l). This is so since each of these I - kf
text positions has a comparison that resulted in
equal answer charged to it, but at least I % 1 1 - 1
of the text positions do not have a comparison
that resulted in unequal answer charged to them.

We prove by induction that the number of
comparisons charged to text positions smaller
than k{ is at most l((2m - 1)/mXk{ - l)J. This is
obviously true at the beginning when I = 1. The
only concern is when .N advances from l to l + 1
and k{ < kf + 1.

Let d = k{+ 1 - kf. The number of comparisons
that were charged to the text positions
kL ... , kf + 1 - 1 is at most 2d - 1 since either at
most d text positions were charged with compar
isons that resulted in equal answers and k{ was
not charged with an unequal answer, or kf was

Volume 47, Number l INFORMATION PROCESSING LETIERS 9 August 1993

charged with an unequal answer but then kf "'" 1 =
l + 1 and text position l was not charged with an
equal answer. But d ~ m and by simple arith
metic,

l 2:- l (k{ -1)J + (2d- l)

:i;; l 2m: 1 (kf + i - 1) J.
When .ef reaches text position l = n + 1, the
number of comparisons satisfies 4 ,

l2m - 1 J
m (k~-1) +2(L-kD-(lz1 l-1)

l 2m -1 j
..; n .

m
0

3. Lower bounds

In this section we show a lower bound on the
number of comparisons required by any string
prefix-matching algorithm which may have an un
accounted pattern preprocessing step. We de
scribe an adversary that can force such an algo
rithm to make at least l((2m - l)m)nj compar
isons.

Theorem 3.1. Any prefix-matching algorithm must
make at least !((2m - l)m)nj comparisons.

Proof. Fix the pattern to 9'[1..m]='ab"'-i. and
assume that the text alphabet has at least three
symbols. We show that an adversary can answer
comparisons made by any prefIX-matching algo
rithm in a way that if the algorithm claims to have
computed IT[l..m] in less than l((2m + l)m)nJ
comparisons, then it can be fooled.

Consider first algorithms that cannot compare
pairs of text symbols. The adversary will maintain
each text symbol in one of three states: unknown,
potential 'a' or 'b', and fixed 'a' or 'b'.

Initially the adversary sets all text symbols at
positions i, such that i = 1 mod m, to be poten·

4 Note that I .%1 I = 1 if k{ = n + l and I .%1 I ~ 2 otherwise.

tial 'a's and all other text symbols to be unknown.
A comparison between an unknown text symbol
to 'a' or to 'b' is answered as unequal and the
text symbol is set to be a potential 'b' or 'a',
respectively. A potential 'a' or 'b' is revealed to
the algorithm at the cost of one comparison after
which it becomes fixed.

If an algorithm claims it has computed 11[1..n]
before all text symbols are fixed, the adversary
has the freedom of setting one of the unknown or
potential symbols to an alphabet symbol other
than 'a' and 'b'. Let u be a text position that is
not fixed and assume that all other text symbols
become fixed. If .9'"'[u] is a potential 'b', then
there exists u such that u - m < v < u and
.9'"'[v .. u - l] ='abu-c- 1', and the adversary can
alter JI[v] by fixing .9'"'[u] to 'b' or 'c'. Similarly,
the adversary can alter II[u] if T[u] is unknown
or a potential 'a'. Thus, any algorithm must make
two comparisons at each text position except at
the text positions that are set initially to be po
tential 'a's, where it has to make only one com
parison. The total number of comparisons is at
least L((2m - 0/m)nj.

When pairwise comparisons of text symbols
are permitted, the lower bound arguments are
slightly more complicated. To keep track of the
comparisons the adversary maintains a graph with
n + 2 vertices that correspond to the n text sym
bols and the pattern symbols 'a' and 'b'. The
edges of the graph correspond to comparisons
and are labeled with their outcome ("equal" or
"unequal").

The adversary maintains a two-level represen
tation of the edges. This representation satisfies
the following invariants:

(1) A subgraph that contains the edges that are
labeled "unequal" and all vertices.

We refer to the connected components in this
subgraph as components. The adversary will
maintain the property that components are bipar
tite graphs.

(2) A subgraph that contains the edges that are
labeled "equal" and all vertices.

We refer to the connected components in this
s~bgr~ph as super-vertices. By transitivity, all ver
tices m a super-vertex correspond to equal sym
bols. The adversary will maintain the property

SS

Volume 47, Number I INFORMATION PROCESSING LElTERS Q Au11.1st l993

that vertices which are in the same super-vertex
are always in the same side of a single comw
nent.

Initially. the graph has 1 + ln/mJ edges: be
tween the pattern symbol 'a' and the pattern
symbol 'b' and between the pattern symbol 'b'
and every text position i. such that i • 1 mod m.
These edges are labeled "unequal"; the invari
ants are clearly satisfied. The adversary answers
comparisons as follows:

- A comparison between symbols which corre
spond to vertices that belong to different com
ponents is answered as unequal.
The two components are merged into a single
component which is still bipartite.

- A comparison between symbols which corre
spond to vertices that belong to the same com
ponent is answered as equal if and only if the
two vertices are on the same side of the com
ponent.
This may cause two super-vertices to be merged
into one. Note that comparisons between ver
tices that belong to the same component but
are on different sides and comparisons be
tween two vertices in the same super-vertex do
not contribute anything to the component or
super-vertex structure and are practically an
swered for free.

The invariants are obviously maintained after
each comparison is answered. Note that vertices
which are in the same super-vertex as one of the
pattern symbols correspond to fixed symbols; ver
tices which are in the same component as the
pattern symbols correspond to potential symbols
and vertices which are in other components cor
respond to unknown symbols.

A prefix-matching algorithm can terminate
correctly only when there is one component and
two super-vertices. Since every connected compo
nent with r vertices must have at least r - 1
edges, there are at least n + 1 edges labeled
"unequal" and at least n edges labeled "equal"
at termination. Thus, the total number of com
parisons is at least

S6

4. ~ bounds ror the self-prefix problem

In this section we consider the special case
where the pattern and the text strings are the
same string and all comparisons are accounted.
This problem is solved in the preprocessing step
of the Knuth-Morris-Pratt {8} string matching
algorithm in linear time and 2m - 4 comparisons.

Theorem 4.1. Fix a positil·e integer constant h.
Then, any self-prefix algorithm that is gi1.:tn an
input string of length m, such that m ;i. h. must
make at least l((2h -1)/h)mJ-h comparisons.

Proof. The adversary fixes the first h symbols of
the string to 'abh - 1' and reveals them to the
algorithm for h - 1 comparisons. Note that any
self-prefix algorithm must compare these symbols
eventually. By Theorem 3.l the algorithm must
make at least l((2h - l}/hXm - h)j more com
parisons. But,

l 2h - 1 1 -h-(m-h) +h-1

l 2h - 1 J
- -h-m -h. D

If the lenght of the input string is known to the
adversary in advance, it can maximize the lower
bound as the next corollary shows. In the on-line
case, where the string is given a symbol at a time
and its length not known in advance, there seems
to be a tradeoff between maximizing the number
of comparisons in the short term and in the long
term.

Corollary 4.2. The lower bound in Theorem 4.1
has a maximal i·alue of 2m - l2Vrn J.

Proof. It is easy to verify that the maximum is
achieved for h = l Vm J and also for h • l Im J.

0

Acknowledgment

We thank Matt Franklin, Raffaele Giancarlo
and Moti Yung for comments on early versions of
this paper.

Volume 47. Number l INFORMATION PROCESSING LETTERS 9 August 1993

References

[ll A.V. Aho. J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Compurer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2J R.S. Boyer and J.S. Moore, A fast string searching algo
rithm. Comm. ACM 20 {1977) 762-772.

[3J D. Breslauer and Z. Gali\, Efficient comparison based
string matching, 1. Complexiry (1993) to appear.

[4] R. Cole and R. Hariharan, Tighter bounds on the exact
complexity of string matching, in: Proc. 33rd IEEE Symp.
on Foundations of Compwer Science (1992) 600-609.

[5] L. Co\ussi. Correctness and efficiency of string matching
algorithm. Inform. and Control 95 (1991) 225-251.

!6] Z. Gali! and R. Giancarlo. On the exact complexity of
string matching lower bounds. Sl4AI J. Compur. 20 (6)
(199[) 1008-1020.

(7] Z. Gali! and R. Giancarlo. The exact complexity of string
matching: upper bounds. SIAM 1. Comput. 21 (3) (1992)
407-437.

(8] D.E. Knuth, J.H. Morris and V.R. Pratt. Fast pattern
matching in strings. SlAM J. Compul. 6 (1977) 322-350.

(9] R. V. Rivest, On the worst case behavior of string-search
ing algorithms. SlA,\f]. Comput. 6 (1977) 669-674.

(lO] U. Zwick and M.S. Paterson. Lower bounds for string
matching in the sequential comparison model.
Manuscript, l 99 l.

57

