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Introduction

Automatic garbage collection is an area of rising importance� It �rst appeared in LISP

systems and in early list based theorem provers and has been incorporated into many

areas of computer science� Fully modular programming relies on garbage collection to

avoid introducing unnecessary inter�module dependencies� Explicit storage allocation

is not only a burden to programmers� but is also a frequent source of subtle errors due

to late or early recycling of objects� It also makes program debugging very di�cult� as

errors tend to occur at di�erent times during execution�

The techniques usually employed for memorymanagement in modern programming

languages is one of the variants of the mark�scan� copying or reference counting algo�

rithms 	see 
�� ��
 for a survey of algorithms for garbage collection�� A mark�scan

garbage collection algorithm works in two phases� When a machine runs out of space�

computation is suspended and garbage collection is performed� First� the algorithm

traverses all the data structures in use� marking each cell visited� Then the scan process

places all unmarked cells onto a free�list� The time taken by the mark�scan algorithm

is proportional to the size of the heap 	the work space where cells are allocated��

The copying algorithm is a modi�ed version of the mark�scan algorithm in which

the heap is divided into two halves� This algorithm copies cells from one half to

the other during collection traversing all data structures in use� Its time complexity is

proportional to the size of the graph in use� Practical observation shows that young cells

tend to die young and old cells tend to remain alive until the very end of computation


�
� In order to avoid much of the repeated copying of old objects generational collection

segregates objects into multiple areas by age 
�
� Areas of young objects are copied

more frequently than the ones with older objects� The mark�scan algorithm can also

be made generational 
�
�

A completely di�erent technique for memory management is o�ered by reference

counting� In reference counting� each data structure or cell has an additional �eld�

RC� which contains the number of references to it� During computation� alterations

to a data structure imply changes to the connectivity of the graph and� consequently�

re�adjustment of the RC �eld of the cells involved� Reference counting has the major

�



advantage of being performed in small steps interleaved with computation� The disad�

vantage of the simple algorithm for reference counting is the inability to reclaim cyclic

structures� To solve this problem� reference 
�
 presents a simple reference�counting

garbage collection algorithm for cyclic data structures� which works as a natural ex�

tension of the standard reference counting algorithm� Deletion of a pointer to a shared

structure increases the complexity of the local mark�scan to O	n�� where n is the size

of the shared subgraph� Unfortunately� the overhead of this algorithm is too high for

applications that make extensive use of sharing and of cyclic data structures� Making

mark�scan lazy 
�
 removes the drawback of running mark�scan every time a pointer

to a cell with multiple references is deleted� by placing a reference to these cells onto a

queue� The deletion of the last pointer to a shared cell will recycle it immediately� re�

gardless of whether there is a reference to it on the queue� This means that more shared

cells will now be claimed directly without the need of the mark�scan phase� Only if

the free�list is empty or the queue is full is the local mark�scan required� Experimental

evidence shows that the lazy algorithm is more e�cient than the local mark�scan 
�
�

Although local� mark�scan can be expensive and should be avoided by every means�

If unavoidable it should be as e�ective as possible� In this paper� we introduce the

concept of the age of a cell to cyclic reference counting� Lifetime �gures vary from

language to language and program to program� but usually between �� to �� percent

of all newly�allocated objects die within a few million instructions� or before another

megabyte has been allocated� The majority of objects die even younger� within tens of

kilobytes of allocation 
�� ��� �
� Age information brings the advantage of selecting the

youngest cell in the queue� increasing the likelihood of running mark�scan on garbage

cells� We also use the age information as a way of detecting the existence of cycles

during the mark phase� This information allows the algorithm to perform the scan

phase more e�ciently�

The Lazy Mark�Scan Algorithm

The algorithm presented in 
�
 performs a local mark�scan whenever a pointer to a

shared structure is deleted� It works in three phases� In the �rst phase� the graph below

the deleted pointer is traversed� counts due to internal references are decremented and

nodes are marked as possible garbage� In phase two� the subgraph is rescanned for cells

with positive reference count� These are cells to which there are external references�

They are re�marked as ordinary cells and their counts are reset� All other nodes are

marked as garbage� Finally� in phase three all marked cells are returned to the free

list� The algorithm above was optimised in reference 
�
 allowing mark�scan to take

place lazily� The deletion of a pointer to a shared cell pushes a reference to this cell on

a queue Q and mark�scan is postponed� This delay has the e�ect of recycling some of
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the shared cells directly� without performing mark�scan�

We use the notation �R�S� to denote a pointer from node R to node S� Each node S

has a colour colour�S�� which is green� red� blue� or black� The initial colour of each

node is green� the other three colours are used only during execution of the algorithm

that deletes a pointer� The colour of a pointer �R�S� is the colour of node R� A cell T

belongs to set Sons�S� i� there is a pointer �S�T��

The following invariant P is maintained by all procedures 	assuming it is true ini�

tially�� That P must be maintained is not mentioned in the descriptions given below�

it is implicitly understood�

P� for all nodes S� RC�S� is the number of green or black pointers to it�

Procedure recolor maintains P as it changes the colour of a node�

f Change the colour of node S to Cg

recolor�S�C��

for T in Sons�S� do

if colour�S��green and C ��green then decrement RC�T��

if colour�S���green and C�green then increment RC�T��

colour�S�	�C

The following two procedures are used only when all nodes are green or black� Free

cells are linked in a structure called a free�list� When needed� a node is obtained from

free�list using the following algorithm� Note that �eld RC remains the same for a node

moved from the free�list� since the number of pointers to it remains the same� If a new

cell is required and the free�list is empty� the cells on Q are mark�scanned�

f Cell R is reachable from root


Obtain a cell U from free�list and create pointer �R�U�g

New�R� � if free�list not empty then select U from free�list�

make pointer �R�U�

else if Q not empty then scan�queue� New �R�

else write�out �No cells available�

scan�queue is the routine responsible for calling the local mark�scan on the cells on Q

as explained later�

Copy increases the connectivity of the graph�

f�S�T� exists
 R is reachable from root� Create pointer �R�T�


Paint T greeng

Copy�R� �S�T�� � increment RC�T�� make pointer �R�T��

colour�T� 	� green�

�



We now present the procedure that deletes a pointer to a node S� The complexity

arises in that deleting a pointer to S may allow S to be placed on the free�list if all

remaining pointers to it are cyclic in nature� The deletion of the last pointer to a cell

automatically recycles it� Removing a pointer to a shared cell S forces testing of the

colour of S to avoid multiple references on queue Q� If not black� the cell is painted

black and appended to Q�

Delete��R�S�� � remove �R�S�

f standard reference countingg

if RC�S� � 
 then

colour�S� 	� green�

for T in Sons�S� do Delete��S�T���

link S to free�list

else decrement RC�S��

f lazy reference countingg

if colour�S� not black then

colour�S� 	� black�

Q 	� Q �� �S� f append S to Qg

Now let us explain how Q is used� The algorithm pops the cell S on the front of Q

and tests its colour� If black� then a local mark�scan is performed� The subgraph S

is coloured red so that RC�S� is the number of pointers from outside subgraph S into

S 	see invariant P�� Then� S is scanned in a fashion that makes blue the subgraph of

graph S that indeed has no pointers into it and makes green the rest of it� Finally�

the blue subgraph� which must be rooted at S� is placed on the free�list� Otherwise�

the cell was in the path of a previous call to delete and has been recycled already� so

scan�queue is re�invoked�

scan�queue � S 	� head�Q��

Q 	� tail�Q��

if colour�S� is black then

flocal mark�scang

mark�red�S�� scan�S�� collect�blue�S��

else if Q not empty then scan�queue

mark�red�S� paints red S and all the cells in the subgraph S� It also decrements the

reference counts of the cells visited� so the �nal reference counts are associated only

with pointers from outside the subgraph�

�



f All cells are green or black� Paint the subgraph S red
g

mark�red�S� � if colour�S� is green or black then

recolor�S�red��

for T in Sons�S� do

mark�red�T�

scan�S� searches the red subgraph S for green pointers into S 	a cell will have an

external reference if its reference count is greater than zero�� If during scan an external

reference is found auxiliary function scan�green paints green the sub�graph below the

external reference� Cells with no external references are painted blue�

f Graph S is red�

Paint blue the subgraph of S with no green pointers to it�

Paint green the subgraph of S with green pointers to it�g

scan�S� � if colour�S� is red then if RC�S��� then scan�green�S�

else recolor�S�blue��

for T in Sons�S� do scan�T�

scan�green�S� paints green the subgraph S and increases the reference count of the

cells visited� to take into account the internal pointers within the subgraph 	which had

been set to zero by mark�red��

f Make green the red�blue subgraph below a green pointerg

scan�green�U� � recolor�U�green��

for T in Sons�U� do

if colour�T� is not green then scan�green�T�

collect�blue�S� recovers all the blue 	garbage� cells in the subgraph given by S and

links them to the free�list�

f Place 	possibly empty� blue subgraph S onto free�list�g

collect�blue�S� � if colour�S� is blue then

recolor�S�green��

for T in Sons�S� do collect�blue�T��

remove �S�T��

link S to free�list

The algorithm presented above is lazy in the sense that the mark�scan phase is

performed on demand� i�e� only when the free�list is empty or when the queue Q is full�

Di�erent strategies can be easily incorporated to it� For instance� local mark�scans can

be performed every time Q exceeds a certain size or after a certain number of cells are

claimed from the free�list�

�



The Generational Algorithm

For the purpose of recording the age of cells a new counter is introduced� the age

counter 	AG�� There is also a global time counter� The time counter is initialised with

zero and is incremented every time a cell is claimed from the free�list by New�

New�R� � if free�list not empty then select U from free�list�

AG�U� 	� time�counter

make pointer �R�U�

increment time�counter

else if Q not empty then scan�queue� New�R�

else write�out �No cells available�

If AG�R�� AG�U� this means that cell R is older than cell U�

We present two ways of pro�ting from age information�

� To observe the age of cells and� based on the fact that young cells die young�

whenever needed� run the mark�scan routines from the youngest cell on Q�

� To use age information to check for the existence of cycles� If one is sure that

there are no cycles mark�scan can be performed more e�ciently�

The �rst way presented to bene�t from age information needs only to modify scan�queue�

as follows�

scan�queue � S 	� youngest�black�cell�in�Q�

f local mark�scang

mark�red�S�� scan�S�� collect�blue�S��

Finding the youngest black cell in Q implies scanning the whole Q� depending on the

size of Q this overhead is not signi�cant� During this process green cells can be expelled

from Q�

In order to be able to spell out the possibility of cycles during mark�red we check

for the condition that a all parent cells are older than their sons� If this condition is

true we know at the end of mark�red that we are dealing with an acyclic graph� This

information allows us to send cells directly into the free�list or restore their original

status without the intermediate state of having these cells painted blue� For this

purpose a new global variable is introduced� no�cycles� Thus we have�
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scan�queue � S 	� youngest�black�cell�in�Q�

no�cycles 	� true�

f local mark�scang

mark�red�S�� scan�S��

f there may be cycles in the graph below S
g

if not no�cycles then collect�blue�S��

mark�red is modi�ed to check if each son is younger than its parent�

f All cells are green or black� Paint red the subgraph S


Check for the possibility of cycles in S
g

mark�red�S� � if colour�S� is green or black then

recolor�S�red��

for T in Sons�S� do

if AG�T��AG�S� then no�cycles 	� false

mark�red�T�

scan makes use of the no�cycles information�

f Graph S is red�

If there are no cycles then

Send to free�list the subgraph of S with no green pointers to it�

Paint green the subgraph of S with green pointers to it�

else

Paint blue the subgraph of S with no green pointers to it�

Paint green the subgraph of S with green pointers to it�g

scan�S� � if colour�S� is red then if RC�S��� then scan�green�S�

else if no�cycles then

recolor�S�green�

for T in Sons�S� do

scan�T��

remove �S�T��

link S to free�list

else recolor�S�blue��

for T in Sons�S� do scan�T�
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Proof of Correctness

The generational algorithm can be seen as a conservative extension to the algorithm of

cyclic reference counting with lazy mark�scan 
�
 and to prove its correctness is trivial�

Age information does not interfere with other information in cells�

The �rst optimisation described� the choice of the youngest cell in Q to run scan�queue�

brings no real change to the algorithm dynamics� Any cell could have been selected�

all the generational algorithm does is to select it based on the age of cells�

Now� all we have to prove is�

�� If for the graph below a cell S there is any cyclic subgraph no�cycles will be

false after mark�red�

�� The generational version of scan is correct 	observes property P above��

To prove the �rst item we should observe that only Copy can make a link from a

younger cell to an older one� In order to close a cycle at least one cell has to point to

a cell �higher up� in the graph� by construction an older cell� Thus� if there is at least

a cyclic subgraph as part of a graph under mark�red the variable no�cycles will be

made false� Note that the fact that no�cycles being false does not imply the existence

of a cyclic subgraph� but states only the possibility of its existence� Copying a pointer

to an older cell �from a di�erent branch� of the graph may also �ag no�cycles as false�

Now we draw our attention to scan� The only possibility of a blue cell becoming

green again is when it is on a cycle with an external reference �further down� the

graph� In this case the blue cell is in the transitive closure of an externally referenced

cell and will be reached by scan�green� If no�cycles is true a blue cell would never

become green and all collect�blue would do is to send it to the free�list� That is

exactly what is performed by the generational version of scan�

This proves the cyclic reference counting algorithm with generational reference

counting correct�

Conclusions

The inclusion of generational information to reference counting brings in a new strategy

of avoiding unnecessary calls to the mark�scan� With minimal overhead one can also

check for cycles during marking� This allows a more e�cient scan phase� saving one

pass through the subgraph under analysis� The algorithm presented can be easy and

advantageously incorporated to the shared memory architectures described in 
�� �
�
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