
Lins, Rafael D. (1992) Generational Cyclic Reference Counting. Technical
report. Elsevier Science BV, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21033/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21033/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Generational Cyclic Reference Counting

Rafael D� Lins

Departamento de Inform�atica � U�F�PE� � Recife � Brazil

Computing Laboratory � The University � Canterbury � England�

Key Words� Compilers� Garbage Collection� Functional Programming

Introduction

Automatic garbage collection is an area of rising importance� It �rst appeared in LISP

systems and in early list based theorem provers and has been incorporated into many

areas of computer science� Fully modular programming relies on garbage collection to

avoid introducing unnecessary inter�module dependencies� Explicit storage allocation

is not only a burden to programmers� but is also a frequent source of subtle errors due

to late or early recycling of objects� It also makes program debugging very di�cult� as

errors tend to occur at di�erent times during execution�

The techniques usually employed for memorymanagement in modern programming

languages is one of the variants of the mark�scan� copying or reference counting algo�

rithms 	see
�� ��
 for a survey of algorithms for garbage collection�� A mark�scan

garbage collection algorithm works in two phases� When a machine runs out of space�

computation is suspended and garbage collection is performed� First� the algorithm

traverses all the data structures in use� marking each cell visited� Then the scan process

places all unmarked cells onto a free�list� The time taken by the mark�scan algorithm

is proportional to the size of the heap 	the work space where cells are allocated��

The copying algorithm is a modi�ed version of the mark�scan algorithm in which

the heap is divided into two halves� This algorithm copies cells from one half to

the other during collection traversing all data structures in use� Its time complexity is

proportional to the size of the graph in use� Practical observation shows that young cells

tend to die young and old cells tend to remain alive until the very end of computation

�
� In order to avoid much of the repeated copying of old objects generational collection

segregates objects into multiple areas by age
�
� Areas of young objects are copied

more frequently than the ones with older objects� The mark�scan algorithm can also

be made generational
�
�

A completely di�erent technique for memory management is o�ered by reference

counting� In reference counting� each data structure or cell has an additional �eld�

RC� which contains the number of references to it� During computation� alterations

to a data structure imply changes to the connectivity of the graph and� consequently�

re�adjustment of the RC �eld of the cells involved� Reference counting has the major

�

advantage of being performed in small steps interleaved with computation� The disad�

vantage of the simple algorithm for reference counting is the inability to reclaim cyclic

structures� To solve this problem� reference
�
 presents a simple reference�counting

garbage collection algorithm for cyclic data structures� which works as a natural ex�

tension of the standard reference counting algorithm� Deletion of a pointer to a shared

structure increases the complexity of the local mark�scan to O	n�� where n is the size

of the shared subgraph� Unfortunately� the overhead of this algorithm is too high for

applications that make extensive use of sharing and of cyclic data structures� Making

mark�scan lazy
�
 removes the drawback of running mark�scan every time a pointer

to a cell with multiple references is deleted� by placing a reference to these cells onto a

queue� The deletion of the last pointer to a shared cell will recycle it immediately� re�

gardless of whether there is a reference to it on the queue� This means that more shared

cells will now be claimed directly without the need of the mark�scan phase� Only if

the free�list is empty or the queue is full is the local mark�scan required� Experimental

evidence shows that the lazy algorithm is more e�cient than the local mark�scan
�
�

Although local� mark�scan can be expensive and should be avoided by every means�

If unavoidable it should be as e�ective as possible� In this paper� we introduce the

concept of the age of a cell to cyclic reference counting� Lifetime �gures vary from

language to language and program to program� but usually between �� to �� percent

of all newly�allocated objects die within a few million instructions� or before another

megabyte has been allocated� The majority of objects die even younger� within tens of

kilobytes of allocation
�� ��� �
� Age information brings the advantage of selecting the

youngest cell in the queue� increasing the likelihood of running mark�scan on garbage

cells� We also use the age information as a way of detecting the existence of cycles

during the mark phase� This information allows the algorithm to perform the scan

phase more e�ciently�

The Lazy Mark�Scan Algorithm

The algorithm presented in
�
 performs a local mark�scan whenever a pointer to a

shared structure is deleted� It works in three phases� In the �rst phase� the graph below

the deleted pointer is traversed� counts due to internal references are decremented and

nodes are marked as possible garbage� In phase two� the subgraph is rescanned for cells

with positive reference count� These are cells to which there are external references�

They are re�marked as ordinary cells and their counts are reset� All other nodes are

marked as garbage� Finally� in phase three all marked cells are returned to the free

list� The algorithm above was optimised in reference
�
 allowing mark�scan to take

place lazily� The deletion of a pointer to a shared cell pushes a reference to this cell on

a queue Q and mark�scan is postponed� This delay has the e�ect of recycling some of

�

the shared cells directly� without performing mark�scan�

We use the notation �R�S� to denote a pointer from node R to node S� Each node S

has a colour colour�S�� which is green� red� blue� or black� The initial colour of each

node is green� the other three colours are used only during execution of the algorithm

that deletes a pointer� The colour of a pointer �R�S� is the colour of node R� A cell T

belongs to set Sons�S� i� there is a pointer �S�T��

The following invariant P is maintained by all procedures 	assuming it is true ini�

tially�� That P must be maintained is not mentioned in the descriptions given below�

it is implicitly understood�

P� for all nodes S� RC�S� is the number of green or black pointers to it�

Procedure recolor maintains P as it changes the colour of a node�

f Change the colour of node S to Cg

recolor�S�C��

for T in Sons�S� do

if colour�S��green and C ��green then decrement RC�T��

if colour�S���green and C�green then increment RC�T��

colour�S�	�C

The following two procedures are used only when all nodes are green or black� Free

cells are linked in a structure called a free�list� When needed� a node is obtained from

free�list using the following algorithm� Note that �eld RC remains the same for a node

moved from the free�list� since the number of pointers to it remains the same� If a new

cell is required and the free�list is empty� the cells on Q are mark�scanned�

f Cell R is reachable from root

Obtain a cell U from free�list and create pointer �R�U�g

New�R� � if free�list not empty then select U from free�list�

make pointer �R�U�

else if Q not empty then scan�queue� New �R�

else write�out �No cells available�

scan�queue is the routine responsible for calling the local mark�scan on the cells on Q

as explained later�

Copy increases the connectivity of the graph�

f�S�T� exists
 R is reachable from root� Create pointer �R�T�

Paint T greeng

Copy�R� �S�T�� � increment RC�T�� make pointer �R�T��

colour�T� 	� green�

�

We now present the procedure that deletes a pointer to a node S� The complexity

arises in that deleting a pointer to S may allow S to be placed on the free�list if all

remaining pointers to it are cyclic in nature� The deletion of the last pointer to a cell

automatically recycles it� Removing a pointer to a shared cell S forces testing of the

colour of S to avoid multiple references on queue Q� If not black� the cell is painted

black and appended to Q�

Delete��R�S�� � remove �R�S�

f standard reference countingg

if RC�S� �
 then

colour�S� 	� green�

for T in Sons�S� do Delete��S�T���

link S to free�list

else decrement RC�S��

f lazy reference countingg

if colour�S� not black then

colour�S� 	� black�

Q 	� Q �� �S� f append S to Qg

Now let us explain how Q is used� The algorithm pops the cell S on the front of Q

and tests its colour� If black� then a local mark�scan is performed� The subgraph S

is coloured red so that RC�S� is the number of pointers from outside subgraph S into

S 	see invariant P�� Then� S is scanned in a fashion that makes blue the subgraph of

graph S that indeed has no pointers into it and makes green the rest of it� Finally�

the blue subgraph� which must be rooted at S� is placed on the free�list� Otherwise�

the cell was in the path of a previous call to delete and has been recycled already� so

scan�queue is re�invoked�

scan�queue � S 	� head�Q��

Q 	� tail�Q��

if colour�S� is black then

flocal mark�scang

mark�red�S�� scan�S�� collect�blue�S��

else if Q not empty then scan�queue

mark�red�S� paints red S and all the cells in the subgraph S� It also decrements the

reference counts of the cells visited� so the �nal reference counts are associated only

with pointers from outside the subgraph�

�

f All cells are green or black� Paint the subgraph S red
g

mark�red�S� � if colour�S� is green or black then

recolor�S�red��

for T in Sons�S� do

mark�red�T�

scan�S� searches the red subgraph S for green pointers into S 	a cell will have an

external reference if its reference count is greater than zero�� If during scan an external

reference is found auxiliary function scan�green paints green the sub�graph below the

external reference� Cells with no external references are painted blue�

f Graph S is red�

Paint blue the subgraph of S with no green pointers to it�

Paint green the subgraph of S with green pointers to it�g

scan�S� � if colour�S� is red then if RC�S��� then scan�green�S�

else recolor�S�blue��

for T in Sons�S� do scan�T�

scan�green�S� paints green the subgraph S and increases the reference count of the

cells visited� to take into account the internal pointers within the subgraph 	which had

been set to zero by mark�red��

f Make green the red�blue subgraph below a green pointerg

scan�green�U� � recolor�U�green��

for T in Sons�U� do

if colour�T� is not green then scan�green�T�

collect�blue�S� recovers all the blue 	garbage� cells in the subgraph given by S and

links them to the free�list�

f Place 	possibly empty� blue subgraph S onto free�list�g

collect�blue�S� � if colour�S� is blue then

recolor�S�green��

for T in Sons�S� do collect�blue�T��

remove �S�T��

link S to free�list

The algorithm presented above is lazy in the sense that the mark�scan phase is

performed on demand� i�e� only when the free�list is empty or when the queue Q is full�

Di�erent strategies can be easily incorporated to it� For instance� local mark�scans can

be performed every time Q exceeds a certain size or after a certain number of cells are

claimed from the free�list�

�

The Generational Algorithm

For the purpose of recording the age of cells a new counter is introduced� the age

counter 	AG�� There is also a global time counter� The time counter is initialised with

zero and is incremented every time a cell is claimed from the free�list by New�

New�R� � if free�list not empty then select U from free�list�

AG�U� 	� time�counter

make pointer �R�U�

increment time�counter

else if Q not empty then scan�queue� New�R�

else write�out �No cells available�

If AG�R�� AG�U� this means that cell R is older than cell U�

We present two ways of pro�ting from age information�

� To observe the age of cells and� based on the fact that young cells die young�

whenever needed� run the mark�scan routines from the youngest cell on Q�

� To use age information to check for the existence of cycles� If one is sure that

there are no cycles mark�scan can be performed more e�ciently�

The �rst way presented to bene�t from age information needs only to modify scan�queue�

as follows�

scan�queue � S 	� youngest�black�cell�in�Q�

f local mark�scang

mark�red�S�� scan�S�� collect�blue�S��

Finding the youngest black cell in Q implies scanning the whole Q� depending on the

size of Q this overhead is not signi�cant� During this process green cells can be expelled

from Q�

In order to be able to spell out the possibility of cycles during mark�red we check

for the condition that a all parent cells are older than their sons� If this condition is

true we know at the end of mark�red that we are dealing with an acyclic graph� This

information allows us to send cells directly into the free�list or restore their original

status without the intermediate state of having these cells painted blue� For this

purpose a new global variable is introduced� no�cycles� Thus we have�

�

scan�queue � S 	� youngest�black�cell�in�Q�

no�cycles 	� true�

f local mark�scang

mark�red�S�� scan�S��

f there may be cycles in the graph below S
g

if not no�cycles then collect�blue�S��

mark�red is modi�ed to check if each son is younger than its parent�

f All cells are green or black� Paint red the subgraph S

Check for the possibility of cycles in S
g

mark�red�S� � if colour�S� is green or black then

recolor�S�red��

for T in Sons�S� do

if AG�T��AG�S� then no�cycles 	� false

mark�red�T�

scan makes use of the no�cycles information�

f Graph S is red�

If there are no cycles then

Send to free�list the subgraph of S with no green pointers to it�

Paint green the subgraph of S with green pointers to it�

else

Paint blue the subgraph of S with no green pointers to it�

Paint green the subgraph of S with green pointers to it�g

scan�S� � if colour�S� is red then if RC�S��� then scan�green�S�

else if no�cycles then

recolor�S�green�

for T in Sons�S� do

scan�T��

remove �S�T��

link S to free�list

else recolor�S�blue��

for T in Sons�S� do scan�T�

�

Proof of Correctness

The generational algorithm can be seen as a conservative extension to the algorithm of

cyclic reference counting with lazy mark�scan
�
 and to prove its correctness is trivial�

Age information does not interfere with other information in cells�

The �rst optimisation described� the choice of the youngest cell in Q to run scan�queue�

brings no real change to the algorithm dynamics� Any cell could have been selected�

all the generational algorithm does is to select it based on the age of cells�

Now� all we have to prove is�

�� If for the graph below a cell S there is any cyclic subgraph no�cycles will be

false after mark�red�

�� The generational version of scan is correct 	observes property P above��

To prove the �rst item we should observe that only Copy can make a link from a

younger cell to an older one� In order to close a cycle at least one cell has to point to

a cell �higher up� in the graph� by construction an older cell� Thus� if there is at least

a cyclic subgraph as part of a graph under mark�red the variable no�cycles will be

made false� Note that the fact that no�cycles being false does not imply the existence

of a cyclic subgraph� but states only the possibility of its existence� Copying a pointer

to an older cell �from a di�erent branch� of the graph may also �ag no�cycles as false�

Now we draw our attention to scan� The only possibility of a blue cell becoming

green again is when it is on a cycle with an external reference �further down� the

graph� In this case the blue cell is in the transitive closure of an externally referenced

cell and will be reached by scan�green� If no�cycles is true a blue cell would never

become green and all collect�blue would do is to send it to the free�list� That is

exactly what is performed by the generational version of scan�

This proves the cyclic reference counting algorithm with generational reference

counting correct�

Conclusions

The inclusion of generational information to reference counting brings in a new strategy

of avoiding unnecessary calls to the mark�scan� With minimal overhead one can also

check for cycles during marking� This allows a more e�cient scan phase� saving one

pass through the subgraph under analysis� The algorithm presented can be easy and

advantageously incorporated to the shared memory architectures described in
�� �
�

�

Acknowledgements

Research reported herein has been sponsored jointly by the British Council� CAPES

	Brazil� grant CBE��������� and C�N�Pq� 	Brazil� grants No ������������� and

�������������

References

�
 J�Cohen� Garbage collection of linked data structures� ACM Computing Surveys�

��	����������� September �����

�
 A�Demers� M�Weiser� B�Hayes� D�Bobrow� and S�Shenker Combining genera�

tional and conservative garbage collection� Framework and implementations� In

Conf�Record of the ��th Annual ACM Symposium on Principles of Programming

Languages� pages �������� January �����

�
 H�Lieberman and C�Hewitt� A real�time garbage collection algorithm based on

the lifetimes of objects� CACM� ��	����������� June �����

�
 R�D�Lins� A shared memory architecture for parallel cyclic reference counting�

Microprocessing and Microprogramming� ��������� North�Holland� August �����

�
 R�D�Lins� A multi�processor shared memory architecture for parallel cyclic ref�

erence counting� Microprocessing and Microprogramming� ����������� North�

Holland� August �����

�
 R�D�Lins� Cyclic Reference Counting with Lazy Mark�Scan� to appear in Infor�

mation Processing Letters�

�
 R�D�Lins and M�A�Vasques� A comparative study of algorithms for cyclic reference

counting� in Proc� XII Congress of the Brazilian Computing Society� pp ������ Rio

de Janeiro� September ����� 	also Technical Report ��� UKC Computing Lab�

Report� The University of Kent at Canterbury� August ������

�
 A�D�Martinez� R�Wachenchauzer and R�D�Lins� Cyclic reference counting with

local mark�scan� Information Processing Letters� ��������� �����

�
 D�M�Ungar� Generation scavenging� A non�disruptive high�performance storage

reclamation algorithm� in ACM SIGSOFT�SIGPLAN Software Engineering Sym�

posium on Practical Software Development Environments� pages �������� April

����� 	also ACM SIGPLAN Notices ��	����������� May�����

�

��
 P�R�Wilson� Uniprocessor Garbage Collection Techniques� in Proc� of the ���	

Inter� Workshop on Memory Management 	St�Malo� France� September ������

LNCS ���� ����� Springer Verlag�

��

