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Abstract

In this note we consider the problem of computing threshold functions using directed
monotone contact networks. We give constructions of monotone contact networks of size
(k − 1)(n − k + 2) dlog(n− k + 2)e computing Tn

k , for 2 ≤ k ≤ n − 1. Our upper bound is
close to the Ω(kn log(n/(k−1))) lower bound for small thresholds and the k(n−k +1) lower
bound for large thresholds. Our networks are described explicitly; we do not use probabilistic
existence arguments.
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1 Introduction and Definitions

A monotone contact network is a graph where each edge has a variable as its label. (In non-
monotone networks, negated variables are also allowed to appear as labels.) For a pair (v, w) of
vertices, the contact network computes the Boolean function f(v,w) as follows. On an assignment
y, each edge is set to 0 or 1 according to the value of its label. Then f(v,w)(y) = 1 if there is
a path from v to w using only the edges with value 1, and f(v,w)(y) = 0 otherwise. If N is a
contact network with two distinguished vertices s (start) and t (terminal) then we refer to the
function f(s,t) as the function computed by N . The size of a network is the number of edges in
it.

Let n and k be positive integers such that 1 ≤ k ≤ n. The k-th threshold function Tn
k is a

Boolean function on n variables that takes the value 1 precisely when there are at least k 1’s in
the input. In this paper, we study the computation of threshold functions by monotone contact
networks.

We now briefly describe the relationship between the monotone contact networks model and
the more commonly studied models of monotone formulas and monotone circuits [BS]. Monotone
contact networks are intermediate in power between monotone formulas and monotone circuits.
Indeed, it is easy to see that every monotone formula can be converted to a monotone series-
parallel contact network of the same size. However, monotone contact networks are much more
powerful than monotone formulas, because they compute the (s, t)-connectivity function in linear
size, while every monotone formulas computing this function has size nΩ(log n) [KW]. Yet, until
recently, the best upperbounds for threshold functions in monotone contact networks models
were often obtained from the corresponding results for monotone formulas. This, together with
the fact that the computation of threshold functions in the monotone formulas model is not fully
understood, provides the motivation for studying threshold function computation on monotone
contact networks. The contact networks model is also related to the branching program model;
we refer the reader to the papers of Razborov [Rz1, Rz2] for a description of this connection.
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When the underlying graph of the contact network is undirected, such networks are called
undirected monotone contact networks. Improving the Ω(n log n/ log log n) lower bound of Lu-
panov [L], Hansel [H] and Krichevskii [Kr] showed a lower bound of Ω(n log n) on the size of
such networks computing the threshold function Tn

2 . Since monotone formulas can be converted
to contact networks by representing the ANDs in series and the ORs in parallel, upper bounds
for monotone formulas apply to undirected contact networks as well. Using the amplification
method Boppana [B] showed that there exist formulas computing Tn

k of size O(k4.3n log n). Ap-
plying the amplification method directly to monotone undirected contact networks, Dubiner and
Zwick [DZ] constructed undirected monotone contact networks of size O(n4.99), computing the
majority function Tn

dn/2e. Their method, when applied to other thresholds, yields O(k3.99n log n)
size undirected monotone contact networks computing Tn

k and Tn
n−k+1.

When the underlying graph is directed, such networks are called directed monotone contact
networks. Since undirected networks can be converted to directed networks by replacing each
undirected edge by a pair of directed edges, an O(k3.99n log n) upper bound for computing
Tn

k and Tn
n−k+1 holds even in this model. By generalizing the lower bounds of Hansel and

Krichevskii, Radhakrishnan [R] obtained a lower bound of bk/2cn log(n/(k − 1)) on the size
of any directed monotone network computing Tn

k , 2 ≤ k ≤ n
2 . If constant 1’s are allowed to

appear as labels in these networks, then they reduce to the monotone contact-rectifier networks
considered by Markov [M]. The problem of computing threshold functions using monotone
contact-rectifier networks was completely solved by Markov. He showed that the smallest such
network computing Tn

k has size k(n− k + 1). Note that in the contact-rectifier networks model
the edges with label 1 do not contribute to the size.

In this note we consider the problem of computing threshold functions using directed mono-
tone contact networks without 1’s. Since Markov’s networks for computing Tn

1 and Tn
n do not

use 1’s, we restrict our study to threshold functions Tn
k , for 2 ≤ k ≤ n− 1.

Our result. We eliminate the constant 1’s in Markov’s networks and obtain directed monotone
contact networks of size (k − 1)(n − k + 2) dlog(n− k + 2)e computing Tn

k , for 2 ≤ k ≤ n − 1.
For small thresholds, our upper bound is close to the the Ω(kn log(n/(k− 1))) lower bound; for
large thresholds, it is close to the k(n− k + 1) lower bound (Markov’s lower bound holds in this
model). For computing majority this gives a network of size O(n2 log n), whereas the best lower
bound known is Ω(n2). Our networks are described explicitly; the previously best upper bound
known, obtained from the undirected networks of Dubiner and Zwick, used non-constructive
arguments and gave directed networks of size O(k3.99n log n).

2 Directed Networks for T n
k

Markov’s construction. Markov’s network computing Tn
k can be described as an (n − k +

1)× (k + 1) grid. The top left corner of the grid is vertex s and the bottom right corner vertex
t. Edges are directed from left to right along rows and from top to bottom along columns.
The rows are numbered 1 to n − k + 1 from top to bottom. The edges in row i have labels
xi, xi+1, . . . , xi+k−1 from left to right. Every vertical edge has 1 as its label. Note that we may
collapse the first column into s and the last column into t without changing the behavior of the
network.

Eliminating the 1’s. The 1’s in Markov’s construction can be replaced by (n− k + 1) edges
in parallel with labels x1, x2, . . . , xn−k+1 respectively. The network continues to compute Tn

k

and is of size O(k(n− k + 1)2). This construction, while close to the lower bound for very large
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thresholds, is much inferior to the O(k3.99n log n) upper bound for small thresholds. We show
how the 1’s can be eliminated more efficiently.

2.1 The Construction

We shall need the following notation. Let N be a network with l start vertices, s1, s2, . . . , sl, and l
end vertices, t1, t2, . . . , tl. We say that N realizes Selector(l) on variables (a1, a2, . . . , al,b1, b2, . . . , bl)
if for i, j = 1, 2, . . . , l,

f(si,tj) =

{
0 if i > j;
ai ∧ bj if i ≤ j.

For example, the network of Figure 1 realizes Selector(l) using 1’s. Indeed, we may obtain

Figure 1: A directed network with 1’s realizing Selector(l)

a network N computing Tn
k , similar to Markov’s, by composing k − 1 networks, each realiz-

ing Selector(n − k + 1). In the composition, the ith network Ni, i = 1, 2, . . . , k − 1, realizes
Selector(n − k + 1) on variables (xi, xi+1, . . . , xn−k+i, xi+1, xi+2, . . . , xn−k+i+1). To obtain the
threshold network, collapse the vertices s1(N1), s2(N1), . . . , sn−k+1(N1) into one and call the
resulting vertex s(N), identify corresponding vertices of adjacent networks, that is, identify
ti(Nj) with si(Nj+1) for i = 1, 2, . . . , n− k + 1 and j = 1, 2, . . . , k − 2, and collapse the vertices
t1(Nk−1), t2(Nk−1), . . . , tn−k+1(Nk−1) into one vertex and call the resulting vertex t(N). Thus,
to obtain small networks computing Tn

k , it is sufficient to obtain small networks that realize
Selector(n).

Let M be a network with l distinguished vertices u1, u2, . . . , ul. We say that M realizes
HalfSelector(l) on variables (a1, a2, . . . , al, b1, b2, . . . , bl) if it satisfies the following two conditions.

(i) For i > j, f(ui,uj) = 0, that is, for i > j, there is no path from ui to uj .

(ii) For i ≤ j, ai ∧ bj ⇒ f(ui,uj). That is, for i ≤ j, there is a path from ui to uj all of whose
labels come from {ai, bj}.

A network realizing Selector(l) can be obtained from a network realizing HalfSelector(l) by
adding 2l edges as shown in Figure 2. We can obtain Selector networks directly without re-
course to HalfSelector networks. However, the structure of the Selector networks obtained from
HalfSelector networks will enable us to compose them more efficiently when we construct net-
works for threshold functions. In the following, we adopt the convention that the empty graph
realizes HalfSelector(0).
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Figure 2: A Selector(l) network

Lemma 1 For all n ≥ 0, there exists a directed contact network that realizes HalfSelector(n)
with size at most

(n + 1) dlog(n + 1)e − 2n.

Proof. We use induction on n. For n = 0, the empty graph gives the required contact network.
Now let r ≥ 1 and assume that for all n less than r, HalfSelector(n) can be realized by a network
of size (n+1) dlog(n + 1)e−2n. We shall show that HalfSelector(r) can be realized by a network
of size (r + 1) dlog(r + 1)e − 2r.

Let n1 = dr/2e − 1 and n2 = br/2c. By our assumption there exists a network N1, of size
(n1 +1) dlog(n1 + 1)e−2n1, realizing HalfSelector(n1) on variables (a1, a2, . . . .an1 , b1, b2, . . . , bn1)
and a network N2, of size (n2 + 1) dlog(n2 + 1)e − 2n2, realizing HalfSelector(n2) on variables
(an1+2, an1+3, . . . , ar, bn1+2, bn1+3, . . . , br) . Then, the following network N (Figure 3), realizes
HalfSelector(r) on variables (a1, a2, . . . , ar, b1, b2, . . . , br).

Figure 3: The induction step

Further, size(N) ≤ (n1 + 1) dlog(n1 + 1)e − 2n1 + (n2 + 1) dlog(n2 + 1)e − 2n2 + (r − 1). It can
be verified that this is at most (r + 1) dlog(r + 1)e − 2r. This completes the induction step.
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Corollary 2 For all n ≥ 1, there exists a directed contact network that realizes Selector(n) with
size at most (n + 1) dlog(n + 1)e.

Theorem 3 For all n and k, 2 ≤ k ≤ n− 1, there exist directed monotone contact networks of
size (k − 1)(n− k + 2) dlog(n− k + 2)e computing Tn

k .

Proof. As observed earlier, a network computing Tn
k may be obtained by composing (k − 1)

networks that realize Selector(n − k + 1). By Corollary 2, there exist networks of size (n −
k + 2) dlog(n− k + 2)e that realize Selector(n − k + 1). Hence, there exist directed monotone
networks computing Tn

k with size at most (k − 1)(n− k + 2) dlog(n− k + 2)e.
The networks constructed above can be made a little more efficient. Observe that the edge

(ui, ti) of stage j is in series with the edge (si, ui) of the stage j + 1, for i = 1, 2, . . . , n − k + 1
and j = 1, 2, . . . , k− 2. Further, these edges have the same label, xi+j . By collapsing such edges
into one, we obtain networks of size (k− 1)(n− k + 2) dlog(n− k + 2)e− (k− 2)(n− k + 1). For
example, when k = n− 2, this gives networks of size 8(n− 3)− 3(n− 4) = 5n− 12, computing
Tn

n−2. Such a network is shown in Figure 4. With k = 2, this construction gives networks

Figure 4: A directed contact network computing Tn
n−2

of size n dlog ne computing Tn
2 . The Hansel-Krichevskii method gives a lower bound of n log n

(see [R]) for monotone directed networks computing Tn
2 . This, together with the upper bound

in Corollary 2, gives the following bounds on the size of Selector networks.

(n + 1) log(n + 1) ≤ size(Selector(n)) ≤ (n + 1) dlog(n + 1)e .

It follows that the Selector networks we obtain are close to optimal.
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