Distributed Consensus Revisited*

Gil Neiger
GIT-CC-93/45

July 26, 1993
Revised October 7, 1993

Abstract

Distributed Consensus is a classical problem in distributed computing. It
requires the correct processors in a distributed system to agree on a com-
mon value despite the failure of other processors. This problem is closely
related to other problems, such as Byzantine Generals, Approximate Agree-
ment, and k-Set Agreement. This paper examines a variant of Distributed
Consensus that considers agreement on a value that is more than a single
bit and requires that the agreed upon value be one of the correct processors’
input values. It shows that, for this problem to be solved in a system with
arbitrary failures, it is necessary that more processors remain correct than
for solutions to Distributed Consensus and for cases where agreement is only
a single bit. Specifically, the number of processors that must be correct is
a function of the size of the domain of values used. Two existing consensus
algorithms are modified to solve this stronger variant.

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

*This work was supported in part by the National Science Foundation under grants CCR-9106627
and CCR-9301454.

1 Introduction

A classical problem in distributed computing is that of having processors agree on a
common value despite the presence of failures in the system. There are many versions of
this problem; one of the best known is Distributed Consensus. This problem is specified
as follows. Each processor begins with an input value. The processors then execute an
algorithm; each execution of the algorithm must satisfy the following conditions:

e Termination. All processors must choose a single output value and halt.
o Agreement. The output values of the correct processors must be identical.

e Validity. If all correct processors begin with the same input value, then they must
end with that same value.

Typically, such algorithms can tolerate only a certain number of failures. Generally,
t is used to represent the fault tolerance of an algorithm; the three conditions above
need hold only for executions in which at most ¢ processors fail. Fischer [14] gives
an overview of different forms of this and related problems. The most closely related
forms are Byzantine Generals [19], in which only one processor (the broadcaster) has
an input value, and Interactive Consistency [25], in which processors must agree on
a vector of output values (one value per processor). More recently, researchers have
considered further variants of this problem [9].

The complexity of solutions to these problems depends on properties of the system
in which the solutions are to be executed. One important system parameter is the
synchrony of message passing. Fischer, Lynch, and Paterson [15] have shown that
consensus is impossible in systems with asynchronous message passing even if only a
single stopping failure can occur. For that reason, most research (including this paper)
concentrates on systems with synchronous message passing. That is, algorithms can be
written to execute in a sequence of rounds, in each of which processors first send, then
receive messages, and finally execute local computation before passing on to the next
round.

Another important system parameter is the type and number of failures that may
occur. Most research has focused on systems with arbitrary failures (these are also
called malicious or Byzantine). A processor that fails arbitrarily may take any action
whatsoever; it may send spurious messages, change its state incorrectly, or take actions
completely contrary to the algorithm being run. An algorithm written to tolerate
arbitrary failure is desirable, because it makes no assumptions regarding the behavior of
faulty processors. (Other research has considered Distributed Consensus in the presence
of more restricted faulty behavior [13, 17, 20, 22, 23, 24].') If processors may fail
arbitrarily, then solutions to Distributed Consensus are not possible if too many failures
may occur. Specifically, Lamport, Shostak, and Pease [19] show that the total number
of processors n must be greater than three times the number of failures to be tolerated

'In such systems, the Validity condition is often rephrased to read “If all processors begin with the
same input value, then they must end with that same value.” In the systems considered here, it does
not make sense to consider input values of faulty processors, as their malicious behavior can render
their actual inputs irrelevant.

t; that is, fewer than one-third of the processors may be faulty. They also showed that,
as long as n > 3¢, solutions to the problem exist. Other solutions have been exhibited
that require even more correct processors [1, 3, 5, 6, 7, 8, 10, 11, 21, 28]; these have
significantly lower communication complexity than the original algorithm of Lamport
et al. Only recently, has an algorithm been developed that requires only n > 3¢, while
running in an optimal number of rounds with polynomial-time local computation [16].

The original specification of Distributed Consensus requires that a specific value be
the decision value only when all correct processors begin with that value. (This is the
Validity condition.) This is a reasonable constraint if the domain of values considered
is only {0,1}. That is, the Validity condition is equivalent to stating that the value
chosen must be the initial value of some correct processor: if they all begin together,
then they must retain their initial value; if they begin with a mix of 0’s and 1’s, then
either value is a legal output. This paper considers cases in which the domain contains
more than 2 values. In these cases, different formulations of the Validity condition may
have different meanings.

This paper studies Strong Consensus, which is specified by retaining the original
Termination and Agreement properties and adding the following:

e Strong Validity. The output value of each correct processor must be the input
value of some correct processor.

The two Validity conditions are not identical. Suppose, for example, that the domain of
legal values is {0, 1,2} and consider a situation in which each correct processor begins
with either 0 or 2. According to the original Validity condition, it is permitted for
every correct processor to end with 1! This would violate Strong Validity. Strong
Validity, which requires the value chosen to be an initial value, seems more natural and
algorithms satisfying it will have greater applicability. In fact, Chaudhuri used this
formulation of Validity in her definition of k-Set Agreement [9]; she showed that versions
of this problem with weaker forms of Validity were solvable with trivial algorithms.

There has been earlier work considering Distributed Consensus for domains of m > 2
values. Dolev et al. [12] showed how [log, m| binary algorithms, running in parallel
could yield the bits that compose an overall value. However, this will not guarantee
Strong Validity as the bits chosen might be chosen from different values (e.g., if there
are initial values 2 = 10; and 1 = 013, the final decision could be 3 = 11;). Perry [26]
and Turpin and Coan [27] showed how a binary algorithm could be transformed into
a multi-valued algorithm with the addition of one round of communication. However,
their technique has processors agree on a “default” value (which might not be any
correct processor’s initial value) if initial disagreement is detected. This may violate
Strong Validity. No previous work on multi-valued agreement has explicitly provided
Strong Validity.

This paper considers algorithms that provide Strong Validity and shows that, if
values are chosen from a domain of m values, then there is no solution unless n >
max{mt,3t}. In addition, it shows that modifications of some existing algorithms
for Distributed Consensus solve Strong Consensus. One of these does so if n >
max{mt, 3t}, so the bound on the number of processors required is tight.

Distributed Consensus Revisited 3

2 Definitions, Assumptions, and Notation

A distributed system is a set P of n processors connected by bidirectional communica-
tion links. Processors share no memory; they communicate only by sending messages
along these links. Each processor has a local state; this state changes with time based
on the algorithm run by the processor.

Processors communicate with each other in synchronous rounds. In each round,
a processor first sends messages, then receives messages sent in that round, and then
changes its state. A distributed algorithm (or algorithm) specifies, for each processor,
what messages it should send in a given round (based on its current state) and how
it should change its state (based on its previous state and on the messages it receives
in that round). A processor is correct if it always sends messages and changes state
according to its algorithm. A processor that is not correct is faulty; a faulty processor
may take any action at all. It may send any message whatsoever, and faulty processors
may even conspire to confuse the correct processors. Let ¢t be an upper bound on the
number of processors that may be faulty in any execution.

This paper is concerned with algorithms that solve Strong Consensus. In such an
algorithm, processors attempt to reach agreement on a value chosen from some fixed
domain D. Let m = |D|; clearly, the problem is interesting only if m > 2. The set of
states is divided into two classes: undecided states and decided states. Every processor
begins in an undecided state. Of the undecided states, there are m initial states, one
corresponding to each value in D. If a processor begins in the initial state corresponding
to v, then it is said to have v as its initial value. Each decided state also corresponds
to some value v € D; the state is said to be decided for v. Any algorithm for Strong
Consensus must be such that, if a processor enters a state that is decided for some
value v € D then, from that point on, the processor enters only states that are decided
for v. Furthermore, every run of the algorithm is such that, if all processors begin in
initial states, the following three properties hold:

e Termination. Every correct processor enters a decided state.

o Agreement. If two correct processors enter states decided for vy and vy, respec-
tively, then vy = vs.

e Strong Validity. If some correct processor enters a state decided for v, then v is
the initial value of some correct processor.

The traditional formulation of Distributed Consensus uses instead the following
weaker third condition:

e Validity. If all correct processors have initial value v and some correct processor
enters a state decided for v’, then v’ = v.

Observe that Strong Validity implies Validity. Suppose that Strong Validity holds, that
all correct processors have the same initial value v, and that some correct processor
enters state decided for v’. By Strong Validity, some correct processor had initial
value v'. This implies that v = v’ and Validity holds. Thus, any algorithm that solves

Distributed Consensus also solves Strong Consensus. The next section shows that the
converse is not true.

3 The Impossibility Result

Lamport, Shostak, and Pease [19] proved that Distributed Consensus can be solved
only if n > 3¢, that is, only if fewer than one-third of the processors may fail. In
addition, they exhibited an algorithm for Distributed Consensus that is correct as long
as n > 3t. It turns out that algorithms for Distributed Consensus do not always solve
Strong Consensus. This section shows that Strong Consensus is solvable only in systems
for which n > max{mt, 3t}, where m is the size of the set D of values from which input
values are chosen. The requirement n > 3t results from the fact that any algorithm for
Strong Consensus also solve Distributed Consensus and that the latter requires n > 3t.
The remainder of this section show that n > mt if Strong Consensus is solvable.

Intuitively, the argument proceeds as follows. Suppose that n = mt¢. This means
that there may be as few as (m—1)t correct processors. If the initial values of the correct
processors include all m values, then Strong Validity is trivially satisfied. Suppose
instead that there are at most m — 1 initial values held by the correct processors. It
is possible that there are at most ¢ correct processors with each of these values. The ¢
faulty processors may all behave as if they were correct but started with the missing
mth value. Since there is no way to tell which processors are correct, it is conceivable
that the value chosen for agreement may be this mth value. The next paragraphs
formalize this argument.

Suppose that there is some algorithm that solves Strong Consensus for n < mt.
Assume that D = {vy,vy,...,v,}. Partition the set P of processors into m subsets
P, Py, ..., P, such that, for all ¢ (1 <:¢<m), 0 < |P| <t. Let r be the run of the
algorithm with the following properties: (1) all processors are correct and (2) for each 1
(1 <@ <m), all processors in P; have initial value v;. By Termination and Agreement
above, there is some j, 1 < 5 < m, such that all processor eventually enter a state
decided for v;; that is, they agree on value v;. Strong Validity is trivially satisfied, as
there is a correct processor that begins with each of the m values in D.

Consider now another run r’ of the algorithm. All processors in P — P; are correct;
processors in P; are faulty. Note that, because |P;
that are faulty in r'. For each ¢ (¢ # j), all processors in P; have initial value v;. Thus,
no correct processor has initial value v;. The processors in P; behave exactly as they

< t, there are at most ¢ processors

do in r; that is, each processor in P; sends exactly the same messages to processors in
P — P; in exactly the same rounds (in other words, each processor in P; “pretends”
that its initial value is v;). It should be clear that each processor in P — P; will behave
identically in r and r’, as it has the same initial value and will receive exactly the same
messages in each round (this can be shown by an inductive argument). Thus, each
processor correct in r’ will enter a state decided for v;. But no correct processor had
v; as an initial value. Thus, Strong Validity is not satisfied. This contradicts the fact
that the algorithm solved Strong Consensus. Thus, no such algorithm can exist.

Since any algorithm for Distributed Consensus requires n > 3t and any algorithm

Distributed Consensus Revisited 5

for Strong Consensus also solves Distributed Consensus, any algorithm for Strong Con-
sensus requires n > max{mt, 3t}.

4 Algorithms for Strong Consensus

Many algorithms for Distributed Consensus are written explicitly for the domain D =
{0,1}. As noted above, the two forms of consensus are equivalent for this domain. The
fact that, if m > 3, Strong Consensus may require many more correct processors than
Distributed Consensus suggests that algorithms for the latter may not correctly solve
the former. The remainder of this section considers two algorithms for Distributed Con-
sensus and explores their correctness for Strong Consensus. Before doing so, however,
let us consider the general functioning of consensus algorithms.

Most consensus algorithms have each processor maintain a particular “preferred”
value; at first, this is the processor’s initial value, while at the end it is the value decided
upon. These algorithms function so that, at a certain point, all correct processors have
the same preferred value. It is possible, however, that processors will have reached
agreement without knowing it; they may continue execution of the algorithm. For this
reason, most consensus algorithms find it important to be agreement-preserving; that
is, once the correct processors have reached agreement on a particular value, they do
not change their values. Many algorithms use Agreement Preservation to obtain simple
Validity. Recall that Validity is relevant only if all correct processors have the same
initial value. If this is the case, then Agreement Preservation will ensure that processors
retain and thus decide upon this value. Thus, Validity comes “for free.”

Other algorithms, especially those designed with D = {0, 1}, operate by “detecting
disagreement” [5, 26, 27]. Validity requires agreement on a particular value only if
there is initial unanimity for that value. As soon as a processor detects that there
was some initial disagreement, it can “safely” choose some default value. This may
facilitate agreement.

These techniques do not lend themselves to solving Strong Consensus. Agreement
Preservation does not automatically yield Strong Validity because that condition spec-
ifies that certain values may be chosen even if there is no initial unanimity. Similarly,
Disagreement Detection does not permit the selection of a predefined default value; if
the default value is not the initial value of some process, then deciding upon it would
violate Strong Validity.

The following subsections consider two algorithms for Distributed Consensus. The
first is the original exponential-time algorithm of Lamport, Shostak, and Pease [19]
as formulated by Bar-Noy et al. [2]. This algorithm uses neither Agreement Preser-
vation nor Disagreement Detection. As a consequence, a minor modification correctly
solves Strong Consensus if n > max{mt,3t}. The second algorithm is the phase-king
algorithm of Berman and Garay [3]. This algorithm makes use of Agreement Preser-
vation. A small but more substantial modification correctly solves Strong Consensus if
n > max{2mt, 4t}.

4.1 An Exponential-Time Algorithm for Strong Consensus

Consider now the exponential-time algorithm of Lamport, Shostak, and Pease as pre-
sented by Bar-Noy et al. Processors store values in a tree of depth ¢+1 that is structured
and labeled as follows. Each node of the tree is labeled by a nonrepeating sequence o
of processor identifiers such that the root is labeled by the empty sequence) and the
parent of a node labeled by sequence op is labeled o. Thus, if a node is labeled by
a sequence of length ¢, then it is at depth ¢ in the tree. Because all sequences are
nonrepeating, the root has n children, each child of the root has n — 1, and nodes at
depth ¢ each have n — t leaves as children. If a node is labelled by the sequence op,
then node is said to correspond to processor p (the root corresponds to no processor).

The algorithm operates as follows. For ¢ + 1 rounds, processors send messages and
store values at nodes in their trees. In the first round, processors send their initial
values. Processor p stores the value received from processor ¢ in the node labelled ¢
at depth 1 (it stores its own initial value at the node labelled p). In each subsequent
round 7, a processors sends to all processors the values stored in the nodes of its tree at
depth 2 —1. If a processor receives a message from p indicating that it has value v stored
at node labeled o, then the processor stores the value v at its node labeled op. Recall
that the tree does not contain nodes whose label includes the same processor identifier
twice; thus, some information received is not stored in the tree. Note the following facts
about the algorithms: (1) if the last identifier in o is that of a correct processor, then
all correct processors store the same value for o and (2) if correct processor p stores v
at interior node o, then all correct processors store v at node op (if it exists). Both
these facts follow from the fact that correct processors send the same messages to all
other processors.

After ¢t + 1 rounds, each processor applies a function Resolve to the root of its tree
and decides upon the value returned by the function. The function Resolve is defined
recursively as follows: If applied to a leaf node (i.e., a node at depth ¢ 4 1), it returns
the value stored at that node. If applied to an interior node, then the function is
applied recursively to the children of that node. If there is a majority among the values
returned, then that value is returned; otherwise, a default value is returned. Bar-Noy
et al. show that this algorithm solves Distributed Consensus as long as n > 3.

This algorithm can be easily modified to solve Strong Consensus. The function
Resolve is modified slightly, yielding a function called Resolve’. On leaf nodes, Resolve’
also returns the value stored at the node. For interior nodes, the value returned is
the most common of the values returned (by recursive calls to Resolve’) for the node’s
children. If there is more than one such value, then the value returned is the one that
appears first in any fixed enumeration of the values in D: vy, v, ..., v,. (All processors
must use the same enumeration.) Note that, if m = 2 and the default value is first in
the enumeration of D, then Resolve’ = Resolve.

We can now show that, if n > max{mt,3t}, modified algorithm solves Strong Con-
sensus. (Much of this proof parallels that of Bar-Noy et al.) Observe first that the
following holds of Resolve':

Lemma 1: If a node o corresponds to a correct processor, then all correct processors

Distributed Consensus Revisited 7

return the same value for Resolve'(c), and this is the value they originally stored at
the node.

Proof: Recall that, because o corresponds to a correct processor, all correct pro-
cessors originally store the same value v for o. The proof is now by induction on the
height h of 0. If . = 0, o is a leaf and all correct processors return Resolve’ (o) = v by
definition. Now assume that the lemma holds for all nodes of height A and let o be at
height A+ 1; o thus has n —t 4 h children. Those that correspond to correct processors
also have v stored at them originally and, by induction, all correct processors will have
Resolve’ return v for these nodes. Since n > 3¢, 0 has n —t + h > n —t > 2t children
at height h. At most ¢ of these correspond to faulty processors, so a majority of these
correspond to correct processors. Thus, all correct processors have Resolve’ return v
for a majority of ¢’s children and, by the definition of Resolve’, they all return v for o,
completing the proof. a

If every path from a node to a leaf contains a node corresponding to a correct
processor, the node is said to have a correct frontier. Note that every path from the
root to a leaf contains nodes corresponding to ¢ + 1 processors; thus, the root always
has a correct frontier.

Lemma 2: If node o has a correct frontier, then all correct processors return the same
value for Resolve' (o).

Proof: Again, the proof is by induction on the height h of o. If A = 0, then o
itself corresponds to a correct processor. Lemma 1 implies that all correct processors
return the same value for Resolve’(c). Now assume that the lemma holds for nodes
of height h and let o be at height A + 1. There are two possible cases. In the first,
o corresponds to a correct processor (this cannot be the case if o is the root). Again,
Lemma 1 implies that all correct processors will return the same value for Resolve'(o).
The other possibility is that all children of o (at height k) have correct frontiers. By
induction, this means that, for each child op, all correct processors return the same
value v, for Resolve'(op). Since Resolve is defined deterministically and identically for
all processors, all correct processors must return the same value for Resolve(o). O

One can now prove that the modified algorithm satisfies Strong Consensus when n >
max{mt,3t}. Termination is obviously satisfied. Agreement is satisfied by Lemma 2
and the fact that the root always has a correct frontier.

To show that the modified algorithm also satisfies Strong Validity, let Dy C D be
the initial values of the correct processors. If Dy = D, then Strong Validity is trivially
satisfied. If Dy # D, then there are at most m — 1 values among the correct processors.
Since n > mt, there are at least n — ¢t > (m — 1)t correct processors. Thus, for at least
one value in Dy, there are more than ¢ correct processors with that initial value.

Consider now what happens when some correct processor applies Resolve’ to the
root of its tree. It first applies Resolve’ to the n children of the root. By Lemma 1,
each depth 1 node that corresponds to a correct processor returns the value originally

v := initial value
for k:=1tot+1do

send v to all processors
receive messages from all processors
foreach z € D do
¢[z] := number of z’s received
v:=any x € D such that Yy € D(c[y] < ¢[z])

if : = k then

send v to all processors
receive vy from py
if ¢[v] < 3n/4 then

v I= Vg

decide(v)

Figure 1: Phase-King Protocol for Processor p;

stored at that node, which is the initial value of the corresponding processor. By the
above observation, some value in Dy is returned by Resolve’ for more than ¢ nodes at
depth 1. Again by Lemma 1, any depth 1 node for which Resolve’ returns a value in
D — Dg must correspond to a faulty processor. Thus, any such value is returned by
Resolve’ for at most ¢ nodes at depth 1. Thus, the value returned by Resolve’ for the
root must be value in Dy. Since each correct processor decides on this value, Strong
Validity is satisfied and the algorithm indeed satisfies Strong Consensus. Thus, the
exponential-time algorithm solves Strong Consensus if n > max{mt, 3t}.

Many algorithms for Distributed Consensus are derived from the algorithm given
above [2, 4, 5, 16, 21, 28]. While it is likely that many of them can be similarly
modified to solve Strong Consensus, some derive their improved performance by taking
advantage of the fact that D = {0,1}. A further exploration is necessary to determine
which can and which cannot be modified to give algorithms for Strong Consensus.

4.2 A Phase-King Algorithm for Strong Consensus

This section discusses the phase-king algorithm of Berman and Garay for Distributed
Consensus [3]. An adaptation for domains of size greater than 2 is given in Figure 1.
The algorithm is correct as long as n > 4¢. The algorithm functions in a series of
t 4+ 1 phases, each composed of two rounds of communication; thus, there are a total
of 2t + 2 rounds of communication. In the first round of each phase, all processors

Distributed Consensus Revisited 9

exchange their values. A processor then sets its preferred value to be one for which it
received a plurality of messages. In the second round, the processor whose identifier is
the same as the round number—the “phase king”—sends its value to all. Any processor
that is not sufficiently “sure” of its value (i.e., that did not receive an overwhelming
number of messages for its value) adopts the king’s value instead.

The proof of the algorithm’s correctness hinges on two properties. The first is the
“good-king property,” meaning that, at the end of any phase in which the king is
correct, all processors are in agreement. This is because any processor that ignores a
good king’s message already has the same value as that king. The second property
is Agreement Preservation: if all processors begin a phase with the same value, then
all will ignore the king and retain this same value. As noted above, the Agreement
Preservation ensures that the algorithm satisfies normal Validity.

For domains with size greater than 2, this algorithm does not solve Strong Consensus
because it might not achieve Strong Validity. Consider the domain D = {0,1,2} and
suppose that half the processors begin with 0 and half with 1. After the first round of
the first phase, all correct processors have v = 0 or v = 1, but all have ¢[v] < 3n/4.
Suppose now that p; (the king of the first phase) is faulty and sends 2 as its value
in the second round. All correct processors then set their value to 2. By Agreement
Preservation, all eventually decide on this value. A single faulty processor thwarts
Strong Validity!

The algorithm can be modified to correctly solve Strong Consensus as long as n >
2mt (notice that, since any interesting instance of the problem has m > 2, this implies
n > 4t, which was already required by the original algorithm). The modification is
obtained by replacing “c[v] < 3n/4” as the condition for taking the king’s value with
“c[v] < 3n/4 and c[vg] > t”7 in Figure 1. Recall that vy is the value received from
the king in the second round of a phase k. Now, the king’s value is “believed” only if
there were enough “votes” for it in the first round to ensure that at least one correct
processor had that value at the beginning of the phase.

The problem with this modification is that we may lose the Good-King Property
and, without it, the algorithm might not satisfy Agreement. The requirement n > 2mt
remedies this concern. Consider the messages received by correct p; in the first round
of phase k. A simple counting argument shows that the value v chosen by p, must be
such that c[vg] > 2¢.? Since there are at most ¢ faulty processors, any other processor
must have c[vg] > t, and will thus accept the king’s value (assuming that it also has
c[v] < 3n/4). Note that, if a processor receives vy from p; and finds c[vg] < ¢, then py
must be faulty.

Since the modified algorithm retains the Good-King Property and satisfies Strong
Validity, we conclude that it solves Strong Consensus.

ZA processor treats a missing message as if it actually received a message with some value. The
actual value chosen is unimportant.

10

5 Conclusions

This paper has described a stronger version of Distributed Consensus called Strong
Consensus. It differs from the normal form by strengthening the Validity condition:
the consensus value chosen must be the initial value of some correctprocessor. While
this rephrasing does not change the semantics of the problem when choosing from a
domain of only 2 values, it does entail a change for larger domains. In many settings, the
stronger version of the problem may be the more natural one. For example, if processors’
initial values are the readings of different external sensors measuring, for example, the
temperature, it would not make sense to agree on a value that was no processor’s
initial measurement. In other cases, however, this restriction may not be important.
If processors’ initial values reflect their output of some previous computation, it may
be sufficient to agree on a special value indicating “a problem has occurred” if there is
initial disagreement, even if no processor began with this special value.

It makes sense to consider how this strengthening affects the solvability of the
problem and the correctness of existing algorithms. Section 3 showed that the size of
the domain of possible values determines how many processors are needed to solve the
problem. If the size of the domain is m, then solutions must require n > max{mt, 3¢},
where n is the total number of processors and ¢ is the number that may fail. Section 4
then considered two algorithms for Distributed Consensus and determined that each
could be modified, in different ways, to yield algorithms for Strong Consensus. In one
case, an algorithm that required n > 3t for Distributed Consensus is modified to require
n > max{mt, 3t} for Strong Consensus; thus, the bound on the number of processors
required is tight. In the second case, an algorithm that required n > 4t is modified to
require n > 2mt.

Neither of the algorithms considered is optimal in all measures. The first requires
exponentially large messages; the second requires twice as many rounds of communi-
cation as the first. More efficient consensus algorithms often take advantage of the
weakness of the Validity condition of Distributed Consensus, satisfying it with stan-
dard agreement-preservation or disagreement-detection techniques. These techniques
do not help when Strong Validity is required. It remains to be seen whether or not
these algorithms can be adapted to yield efficient solutions to Strong Consensus.

Acknowledgements

The idea of reexamining the definition of Distributed Consensus resulted from a series
of discussions with Howard Karloff. T am grateful to Brian A. Coan for directing me
to earlier research on multivalued consensus and to Rida A. Bazzi for reading earlier
versions of this paper.

References

[1] Amotz Bar-Noy and Danny Dolev. Consensus algorithms with one-bit messages.
Distributed Computing, 4:105-110, 1991.

Distributed Consensus Revisited 11

2]

[11]

[12]

Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting
gears: Changing algorithms on the fly to expedite Byzantine agreement. Informa-
tion and Computation, 97(2):205-233, April 1992.

Piotr Berman and Juan A. Garay. Asymptotically optimal consensus. In Pro-
ceedings of the Sizteenth International Conference on Automata, Languages, and
Programming, volume 372 of Lecture Notes on Computer Science, pages 80-94.

Springer-Verlag, 1989.

Piotr Berman and Juan A. Garay. Efficient distributed consensus with n = (3+¢)t
processors. In S. Toueg, P. G. Spirakis, and L. Kirousis, editors, Proceedings of the
Fifth International Workshop on Distributed Algorithms, volume 579 of Lecture
Notes on Computer Science, pages 129-142. Springer-Verlag, October 1991.

Piotr Berman and Juan A. Garay. Cloture votes: n/4-resilient, polynomial time
distributed consensus in ¢t + 1 rounds. Mathematical Systems Theory, 26(1):3-20,
1993.

Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed
consensus. In Proceedings of the Thirtieth Symposium on Foundations of Computer
Science, pages 410-415. IEEE Computer Society Press, October 1989.

Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed
consensus. In R. Yaeza-Bates and U. Manber, editors, Computer Science Research,

pages 313-322. Plenum Publishing, New York, 1992.

James E. Burns and Gil Neiger. Fast and simple Byzantine agreement. Technical
Report 92/12, College of Computing, Georgia Institute of Technology, March 1992.
Submitted for publication.

Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems
in totally asynchronous systems. Information and Computation, 103(1):132-158,
July 1993.

Brian A. Coan. Efficient agreement using fault diagnosis. In Proceedings of the
Twenty-Sizth Annual Allerton Conference on Communication, Control, and Com-
puting, September 1988. To appear in Distributed Computing.

Brian A. Coan and Jennifer L. Welch. Modular construction of an efficient 1-
bit Byzantine agreement protocol. Mathematical Systems Theory, 26(1):131-154,
1993.

Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and H. Raymond
Strong. An efficient algorithm for Byzantine agreement without authentication.
Information and Computation, 52:257-274, 1982.

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a Byzan-
tine environment: Crash failures. Information and Computation, 88(2):156—186,

October 1990.

Michael J. Fischer. The consensus problem in unreliable distributed systems (a
brief survey). In M. Karpinsky, editor, Foundations of Computation Theory, vol-
ume 158 of Lecture Notes on Computer Science, pages 127-140. Springer-Verlag,
1983.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382,
April 1985.

Juan A. Garay and Yoram Moses. Fully polynomial Byzantine agreement in ¢ +
1 rounds. In Proceedings of the Twenty-Fifth ACM Symposium on Theory of
Computing, pages 31-41. ACM Press, May 1993.

Vassos Hadzilacos. Byzantine agreement under restricted types of failures (not
telling the truth is different from telling lies). Technical Report 18-83, Aiken
Computation Laboratory, Harvard University, 1983. A revised version appears in

Hadzilacos’s Ph.D. dissertation [18].

Vassos Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. Ph.D.
dissertation, Harvard University, June 1984. Technical Report 11-84, Aiken Com-
putation Laboratory.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382—
401, July 1982.

Yoram Moses and Mark R. Tuttle. Programming simultaneous actions using com-

mon knowledge. Algorithmica, 3(1):121-169, 1988.

Yoram Moses and Orli Waarts. Coordinated traversal: (¢ 4+ 1)-round Byzantine
agreement in polynomial time. In Proceedings of the Twenty-Ninth Symposium on
Foundations of Computer Science, pages 246-255. IEEE Computer Society Press,
October 1988.

Gil Neiger and Rida Bazzi. Using knowledge to optimally achieve coordination in
distributed systems. In Yoram Moses, editor, Proceedings of the Fourth Confer-
ence on Theoretical Aspects of Reasoning about Knowledge, pages 43—59. Morgan-
Kaufmann, March 1992.

Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of dis-
tributed algorithms. Journal of Algorithms, 11(3):374-419, September 1990.

Distributed Consensus Revisited 13

[24]

[25]

[26]

[27]

28]

Gil Neiger and Mark R. Tuttle. Common knowledge and consistent simultaneous
coordination. Distributed Computing, 6(3):181-192, April 1993.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228-234, April 1980.

Kenneth J. Perry. Farly Stopping Protocols for Fault-Tolerant Distributed Agree-
ment. Ph.D. dissertation, Cornell University, February 1985. Technical Report
85-662, Department of Computer Science.

Russell Turpin and Brian A. Coan. Extending binary Byzantine agreement to mul-
tivalued Byzantine agreement. Information Processing Letters, 18:73-76, February

1984.

Arkady Zamsky, Amos Israeli, and Shlomit S. Pinter. Optimal time Byzantine
agreement for ¢ < n/8 with linear messages. In A. Segall and S. Zaks, editors,
Proceedings of the Sixth International Workshop on Distributed Algorithms, num-
ber 647 in Lecture Notes on Computer Science, pages 136-152. Springer-Verlag,
November 1992.

