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Abstract 

We demonstrate that a resolution-r PR quadtree contaihing II points has, in the worst case, at most 8&r - 
[log,(rt/2)]) + 8n/3 - l/3 nodes. This captures the fact that as n tends towards 4’, the number of nodes in a PR 
quadtree quickly approaches O(n). This is a more precise estimation of the worst case space requirement of a PR 
quadtree then has been attempted before. 
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1. Introduction 

Hierarchical data structures, and the quadtree 
in particular are coming into widespread use in 
applications requiring the organization of large 
amounts of spatial data. Samet [8,91 provides a 
wide survey of these data structures and their 
applications. Examples of applications are geo- 
graphic information systems, computer graphics, 
image processing, fluid dynamics, star cluster sim- 
ulations, and robotics. However, despite the pop- 
ularity of these data structures and the large 
number of algorithms that involve them, their 
time and space analysis has proved notoriously 
difficult. The few theoretical results that have 
been obtained for quadtrees do make them at- 
tractive. Hunter and Steiglitz [3] show that the 
space requirement for a region quadtree is O(P) 
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where P is the total perimeter length for the 
region represented, a finding confirmed in [l]. 
Samet 163, and Samet and Shaffer [7] show that 
the amortized cost of neighbor finding in any 
quadtree is O(1). In turn, Webber Ill], Shaffer 
and Stout [lo], and Lattanzi and Shaffer [5] have 
applied these results to show that several algo- 
rithms involving these data structures run in lin- 
ear time. However, for most applications, non- 
trivial space and time bounds are difficult to 
obtain. 

In this paper we present an analysis of the 
worst case space requirements for a data struc- 
ture known as the PR quadtree. The PR quadtree 
is of more than theoretical interest as it is gaining 
widespread use for efficient fluid dynamics and 
star cluster simulations [2,4]. We believe that this 
analysis will also be applicable to other quadtree 
data structures. 

The PR quadtree [8] is a hierarchical, variable 
resolution data structure based on the recursive 
partitioning of a bounded planar region into 
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equal-sized quadrants. More precisely, consider a 
unit square with n points in it. If n 2 2, split the 
square into four equal squares by drawing a verti- 
cal line and a horizontal line through the center. 
Each square so obtained is recursively split into 
four equal-sized squares if and only if it contains 
more than one point. This process terminates 
when every square that has not been further split 
contains at most one point. Therefore, at the 
termination of this process, among the squares 
that have not been split, there are some that 
contain no points and some that contain one 
point. Call a square that contains no points an 
empty square and call a square that contains one 
point a full square. The recursive decomposition 
of the unit square described above can be repre- 
sented by a PR quadtree. A PR quadtree is a 
rooted tree in which each node represents a 
square created during the course of recursively 
decomposing the unit square. The root of the PR 
quadtree represents the unit square. If a node c’ 
represents a square S that contains two or more 
points, then c’ has four children, where each child 
represents a distinct square that was obtained by 
splitting S. 

Note that each node in the PR quadtree has 
exactly four children or no children. Those nodes 
that have no children (leaves) represent full 
squares or empty squares. A node that represents 
a full square is called a full node, while a node 
that represents an empty square is called an 
empty node. The rest of the nodes of the PR 
quadtree are called internal nodes and they rep- 
resent squares that contain two or more points 
and have been recursively split. The depth of the 
PR quadtree is the same as the depth of the 
recursion used to decompose the unit square. 
The depth of a PR quadtree is called its resolu- 
tion and we call a PR quadtree of depth r, a 
resolution-r PR quadtree. This is typical of the 
use of PR quadtrees since data points usually 
have coordinates of fixed resolution. Note that a 
resolution-r PR quadtree can have at most (4’+’ 
- 1)/3 nodes and the resolution of a PR quadtree 
places a lower bound of 2-’ on the side length of 
squares obtained during the course of the recur- 
sive decomposition. Also note that a PR quadtree 
of resolution-r contains at most 4’ points. 

The space requirement of a resolution-r PR 
quadtree is simply the number of nodes in it. But, 
the number of nodes in a resolution-r PR 
quadtree depends on the arrangement of the n 
points in the unit square. For example, if n = 2, 
the number of nodes in a resolution-r PR 
quadtree could be as small as 5, if the two points 
were placed far apart, or could be as large as 
4r + 1, if the two points are placed as close to 
each other as possible. In the former case, the PR 
quadtree contains one internal node, two empty 
nodes, and two full nodes, while in the latter case 
the PR quadtree contains r internal nodes, two 
full nodes, and 3r - 1 empty nodes. Our goal 
then, is to determine a tight worst case upper 
bound on the space requirement of a resolution-r 
PR quadtree, that stores n points. We achieve 
this goal by constructing a worst case resolution-r 
PR quadtree storing n points i.e., a resolution-r 
PR quadtree storing n points whose size is the 
largest among all such PR quadtrees. 

The analysis in the next section shows that the 
worst case space requirement of a resolution-r 
PR quadtree storing n points is 

8n(r-[log,(i)])+:-i. 

While a worst case space requirement analysis of 
a PR quadtree does not exist in the literature, it 
has been generally stated without qualification 
that the worst case space requirement of a resolu- 
tion-r PR quadtree storing n points is O(m), 
where r is at least log,n. This statement is impre- 
cise, especially in the light of the fact that as n 
tends to 4’, the space requirement of the PR 
quadtree must become linear. From our result, it 
is easy to determine how the worst case space 
requirement of a PR quadtree varies, as n varies 
with respect to r. 

2. Analysis 

The analysis is in two parts. In the first part, a 
procedure called create -tree is presented. This 
procedure constructs a worst case resolution-r 
PR quadtree. In the second part, the number of 
nodes in the tree constructed by create -tree is 
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determined. Let the number of points inserted 
into T by create -tree be n. First, we assume that 
n = 2 . 4k. This assumption simplifies technical 
details in the analysis, while keeping the concepts 
intact. Subsequently, we drop this assumption 
and extend our analysis to an arbitrary n. 

Having established the correspondence be- 
tween nodes in the PR quadtree and the squares 
obtained by the recursive decomposition of the 
unit square, we shall use the two interchangeably. 
In particular, we shall talk about inserting a point 
into a node, while actually meaning that a point is 
being inserted into the square that the node 
corresponds to. A node in the PR quadtree is at 
level I if its distance from the root is 1. Note that 
a node at level 1 represents a square of side 
length 2-j. 

create _ tree 
T is initialized to be an empty node; 
Repeat 4k times 

Insert two new points as close to each other as 
possible into an empty node at the smallest 
level in T; 
Recursively decompose the node until the new 
nodes obtained contain at most one point; 

The intuition behind the above procedure is 
that a node at the smallest level (i.e., the largest 
square), when recursively decomposed, can gen- 
erate the greatest number of new nodes. Points 
are placed as close to each other as possible so as 
to ensure that the depth of the recursive decom- 
position is as large as possible. Clearly, for any 
PR quadtree that stores n points, there exists a 
PR quadtree, at least as large, that stores n 
points and all its full nodes appear at level r. 
Thus we need to consider only those trees with 
all full nodes at level r. It is also easy to check 
that the PR quadtree constructed by create -tree 
is a largest quadtree among all those that store n 
points and have all their full nodes at level r. 
These two observations lead to the fact that T is 
a worst case, resolution-r PR quadtree that stores 
n points. The next two lemmas establish proper- 
ties of T that will be used in counting the number 
of nodes in T. 

Lemma 1. For each 1, 0 < 1 <k, there are 4’ 
internal nodes in Tat leLIe1 1. 

Proof. The proof is by induction on the number 
of levels. Assume that for some 1, 0 G 1 G k, 2.4’ 
points have been inserted into T according to 
create -tree. The induction hypothesis is that, at 
this stage, for all j, 0 <j < 1 there are 4’ internal 
nodes in T at level j. The claim is trivially true 
for 1 = 0. Assume that the claim is true for some 
I,0 G 1 < k. Consider the nodes at level 1. Each of 
these nodes contains two points as close to each 
other as possible. Hence, each of these nodes has 
four children, three of them empty, and one 
internal. So there are a total of 3 .4’ empty nodes 
at level 1-t 1 and the subsequent 3 .4’ pairs pf 
points that are inserted by create -tree are de- 
voted to forcing these empty nodes to recursively 
decompose. Therefore with the insertion of 2 * 3 . 
4’ additional points all the empty nodes in level 
1 + 1 are converted into internal nodes. Therefore 
after inserting a total of 2 .4’ + 2 .3 .4’ = 2 .4’+ ’ 
points according to create -tree, there are 4’+’ 
internal nodes in level I+ 1. q 

Lemma 2. Each node at leuel k is the root of a 
subtree that contains 4(r - k) + 1 nodes. 

Proof. Consider a node u at level k. The subtree 
rooted at u has height r - k and at each level 1, 
k < 1 < r, there are three empty nodes and one 
internal node. At level r there are two empty 
nodes and two full nodes. Therefore u has 4. (r 
- k) descendents yielding a total of 4(r - k) + 1 
nodes in the subtree rooted at c. 0 

Theorem 3. Suppose n = 2. 4k, for some k, 0 G k 
Cr. Let T be a resolution-r PR quadtree that 

stores n points and has the maximum number of 
nodes. Then the number of nodes in T is 

5n 1 
2n( r - log,n) + 3 - 3. 

Proof. According to Lemma 1 the number of 
nodes in T at level k or less is Cf=‘=,4’. According 
to Lemma 2 the number of nodes in T at level 
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k + 1 or more is 4k .4(r - k). Therefore the total 
number of nodes is 

= ;4’+4k.4(r-k) 
l=O 

qk+‘--1 
= 

3 
+4k+1(r-k). 

Simplification yields 

4k+l 1 
4k+1(r-k)+3-3. 

Substituting n = 2. 4k and k = log,(n/2) we get 

=2n(r-log,(;))+~-; 

5n 1 
=2n(r-log,n)+3-5. 0 

We now drop the assumption that n = 2 * 4k 
and extend Theorem 3. 

Theorem 4. A resolution-r PR quadtree that stores 
n points, contains at most 

nodes. 

Proof. There exists a k, 1 =G k <r, such that 2 * 
qkpl G n G 2 * 4k. From the proof of Theorem 3, 
it follows that the number of nodes in the PR 
quadtree T created by procedure create -tree is 

at most 

4k+l 

I’+‘(r-k)+F-f. 

Using k = [log,(n/2)1 and 2. qk-’ < n we obtain 

that T contains at most 

nodes. 0 

For practical applications, we are interested in 
the worst case space complexity of the PR 
quadtree as n varies with respect to r. The fol- 

lowing two corollaries are immediate from the 
above theorem. 

Corollary 5. if n = c .4’, where 0 Q c < 1, then T 
has at most 

nodes in it. 

Corollary 6. Zf II = (4’)“, where 0 Q c < 1, then T 
has at most 

Sn(r(1 -c) + 4) - + 

nodes in it. 

The first corollary confirms the fact that if n is 
a constant fraction of 4’, then the worst case 
space requirement of a PR quadtree is O(n). The 
second corollary shows that if n is a fractional 
power of 4’ then the worst case space require- 
ment of a PR quadtree can be as bad as O(n. 
log n>. 

Finally, note that the above analysis can be 
easily extended to PR trees of higher dimensions. 

Corollary 7. A PR tree of dimension d, resolution 
r, and storing n points has at most 

nodes. 
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