
ELSEVIER Information Processing Letters 49 (1994) 263-267

Information
y,c-ying

Analysis of the worst case space complexity of a PR quadtree

Sriram V. Pemmaraju, Clifford A. Shaffer *

Department of Computer Science, E-ginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA

(Communicated by F. Dehne; received 26 April 1993)

Abstract

We demonstrate that a resolution-r PR quadtree contaihing II points has, in the worst case, at most 8&r -
[log,(rt/2)]) + 8n/3 - l/3 nodes. This captures the fact that as n tends towards 4’, the number of nodes in a PR
quadtree quickly approaches O(n). This is a more precise estimation of the worst case space requirement of a PR
quadtree then has been attempted before.

Key words: Data structures; Spatial data structures; Worst case analysis; PR quadtree; Point data

1. Introduction

Hierarchical data structures, and the quadtree
in particular are coming into widespread use in
applications requiring the organization of large
amounts of spatial data. Samet [8,91 provides a
wide survey of these data structures and their
applications. Examples of applications are geo-
graphic information systems, computer graphics,
image processing, fluid dynamics, star cluster sim-
ulations, and robotics. However, despite the pop-
ularity of these data structures and the large
number of algorithms that involve them, their
time and space analysis has proved notoriously
difficult. The few theoretical results that have
been obtained for quadtrees do make them at-
tractive. Hunter and Steiglitz [3] show that the
space requirement for a region quadtree is O(P)

* Corresponding author.

where P is the total perimeter length for the
region represented, a finding confirmed in [l].
Samet 163, and Samet and Shaffer [7] show that
the amortized cost of neighbor finding in any
quadtree is O(1). In turn, Webber Ill], Shaffer
and Stout [lo], and Lattanzi and Shaffer [5] have
applied these results to show that several algo-
rithms involving these data structures run in lin-
ear time. However, for most applications, non-
trivial space and time bounds are difficult to
obtain.

In this paper we present an analysis of the
worst case space requirements for a data struc-
ture known as the PR quadtree. The PR quadtree
is of more than theoretical interest as it is gaining
widespread use for efficient fluid dynamics and
star cluster simulations [2,4]. We believe that this
analysis will also be applicable to other quadtree
data structures.

The PR quadtree [8] is a hierarchical, variable
resolution data structure based on the recursive
partitioning of a bounded planar region into

0020-0190/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved

SSDI0020-0190(93)E0223-7

264 XV. Pemmaraju, CA. Shaffer/I f n ormation Processing Letters 49 (1994) 263-267

equal-sized quadrants. More precisely, consider a
unit square with n points in it. If n 2 2, split the
square into four equal squares by drawing a verti-
cal line and a horizontal line through the center.
Each square so obtained is recursively split into
four equal-sized squares if and only if it contains
more than one point. This process terminates
when every square that has not been further split
contains at most one point. Therefore, at the
termination of this process, among the squares
that have not been split, there are some that
contain no points and some that contain one
point. Call a square that contains no points an
empty square and call a square that contains one
point a full square. The recursive decomposition
of the unit square described above can be repre-
sented by a PR quadtree. A PR quadtree is a
rooted tree in which each node represents a
square created during the course of recursively
decomposing the unit square. The root of the PR
quadtree represents the unit square. If a node c’
represents a square S that contains two or more
points, then c’ has four children, where each child
represents a distinct square that was obtained by
splitting S.

Note that each node in the PR quadtree has
exactly four children or no children. Those nodes
that have no children (leaves) represent full
squares or empty squares. A node that represents
a full square is called a full node, while a node
that represents an empty square is called an
empty node. The rest of the nodes of the PR
quadtree are called internal nodes and they rep-
resent squares that contain two or more points
and have been recursively split. The depth of the
PR quadtree is the same as the depth of the
recursion used to decompose the unit square.
The depth of a PR quadtree is called its resolu-
tion and we call a PR quadtree of depth r, a
resolution-r PR quadtree. This is typical of the
use of PR quadtrees since data points usually
have coordinates of fixed resolution. Note that a
resolution-r PR quadtree can have at most (4’+’
- 1)/3 nodes and the resolution of a PR quadtree
places a lower bound of 2-’ on the side length of
squares obtained during the course of the recur-
sive decomposition. Also note that a PR quadtree
of resolution-r contains at most 4’ points.

The space requirement of a resolution-r PR
quadtree is simply the number of nodes in it. But,
the number of nodes in a resolution-r PR
quadtree depends on the arrangement of the n
points in the unit square. For example, if n = 2,
the number of nodes in a resolution-r PR
quadtree could be as small as 5, if the two points
were placed far apart, or could be as large as
4r + 1, if the two points are placed as close to
each other as possible. In the former case, the PR
quadtree contains one internal node, two empty
nodes, and two full nodes, while in the latter case
the PR quadtree contains r internal nodes, two
full nodes, and 3r - 1 empty nodes. Our goal
then, is to determine a tight worst case upper
bound on the space requirement of a resolution-r
PR quadtree, that stores n points. We achieve
this goal by constructing a worst case resolution-r
PR quadtree storing n points i.e., a resolution-r
PR quadtree storing n points whose size is the
largest among all such PR quadtrees.

The analysis in the next section shows that the
worst case space requirement of a resolution-r
PR quadtree storing n points is

8n(r-[log,(i)])+:-i.

While a worst case space requirement analysis of
a PR quadtree does not exist in the literature, it
has been generally stated without qualification
that the worst case space requirement of a resolu-
tion-r PR quadtree storing n points is O(m),
where r is at least log,n. This statement is impre-
cise, especially in the light of the fact that as n
tends to 4’, the space requirement of the PR
quadtree must become linear. From our result, it
is easy to determine how the worst case space
requirement of a PR quadtree varies, as n varies
with respect to r.

2. Analysis

The analysis is in two parts. In the first part, a
procedure called create -tree is presented. This
procedure constructs a worst case resolution-r
PR quadtree. In the second part, the number of
nodes in the tree constructed by create -tree is

S. V. Pemmaraju, CA. Shaffer / I f n ormation Processing Letters 49 (1994) 263-267 265

determined. Let the number of points inserted
into T by create -tree be n. First, we assume that
n = 2 . 4k. This assumption simplifies technical
details in the analysis, while keeping the concepts
intact. Subsequently, we drop this assumption
and extend our analysis to an arbitrary n.

Having established the correspondence be-
tween nodes in the PR quadtree and the squares
obtained by the recursive decomposition of the
unit square, we shall use the two interchangeably.
In particular, we shall talk about inserting a point
into a node, while actually meaning that a point is
being inserted into the square that the node
corresponds to. A node in the PR quadtree is at
level I if its distance from the root is 1. Note that
a node at level 1 represents a square of side
length 2-j.

create _ tree
T is initialized to be an empty node;
Repeat 4k times

Insert two new points as close to each other as
possible into an empty node at the smallest
level in T;
Recursively decompose the node until the new
nodes obtained contain at most one point;

The intuition behind the above procedure is
that a node at the smallest level (i.e., the largest
square), when recursively decomposed, can gen-
erate the greatest number of new nodes. Points
are placed as close to each other as possible so as
to ensure that the depth of the recursive decom-
position is as large as possible. Clearly, for any
PR quadtree that stores n points, there exists a
PR quadtree, at least as large, that stores n
points and all its full nodes appear at level r.
Thus we need to consider only those trees with
all full nodes at level r. It is also easy to check
that the PR quadtree constructed by create -tree
is a largest quadtree among all those that store n
points and have all their full nodes at level r.
These two observations lead to the fact that T is
a worst case, resolution-r PR quadtree that stores
n points. The next two lemmas establish proper-
ties of T that will be used in counting the number
of nodes in T.

Lemma 1. For each 1, 0 < 1 <k, there are 4’
internal nodes in Tat leLIe1 1.

Proof. The proof is by induction on the number
of levels. Assume that for some 1, 0 G 1 G k, 2.4’
points have been inserted into T according to
create -tree. The induction hypothesis is that, at
this stage, for all j, 0 <j < 1 there are 4’ internal
nodes in T at level j. The claim is trivially true
for 1 = 0. Assume that the claim is true for some
I,0 G 1 < k. Consider the nodes at level 1. Each of
these nodes contains two points as close to each
other as possible. Hence, each of these nodes has
four children, three of them empty, and one
internal. So there are a total of 3 .4’ empty nodes
at level 1-t 1 and the subsequent 3 .4’ pairs pf
points that are inserted by create -tree are de-
voted to forcing these empty nodes to recursively
decompose. Therefore with the insertion of 2 * 3 .
4’ additional points all the empty nodes in level
1 + 1 are converted into internal nodes. Therefore
after inserting a total of 2 .4’ + 2 .3 .4’ = 2 .4’+ ’
points according to create -tree, there are 4’+’
internal nodes in level I+ 1. q

Lemma 2. Each node at leuel k is the root of a
subtree that contains 4(r - k) + 1 nodes.

Proof. Consider a node u at level k. The subtree
rooted at u has height r - k and at each level 1,
k < 1 < r, there are three empty nodes and one
internal node. At level r there are two empty
nodes and two full nodes. Therefore u has 4. (r
- k) descendents yielding a total of 4(r - k) + 1
nodes in the subtree rooted at c. 0

Theorem 3. Suppose n = 2. 4k, for some k, 0 G k
Cr. Let T be a resolution-r PR quadtree that

stores n points and has the maximum number of
nodes. Then the number of nodes in T is

5n 1
2n(r - log,n) + 3 - 3.

Proof. According to Lemma 1 the number of
nodes in T at level k or less is Cf=‘=,4’. According
to Lemma 2 the number of nodes in T at level

266 S. V. Pemmaraju, CA. Shaffer / I f n ormation Processing Letters 49 (1994) 263-267

k + 1 or more is 4k .4(r - k). Therefore the total
number of nodes is

= ;4’+4k.4(r-k)
l=O

qk+‘--1
=

3
+4k+1(r-k).

Simplification yields

4k+l 1
4k+1(r-k)+3-3.

Substituting n = 2. 4k and k = log,(n/2) we get

=2n(r-log,(;))+~-;

5n 1
=2n(r-log,n)+3-5. 0

We now drop the assumption that n = 2 * 4k
and extend Theorem 3.

Theorem 4. A resolution-r PR quadtree that stores
n points, contains at most

nodes.

Proof. There exists a k, 1 =G k <r, such that 2 *
qkpl G n G 2 * 4k. From the proof of Theorem 3,
it follows that the number of nodes in the PR
quadtree T created by procedure create -tree is

at most

4k+l

I’+‘(r-k)+F-f.

Using k = [log,(n/2)1 and 2. qk-’ < n we obtain

that T contains at most

nodes. 0

For practical applications, we are interested in
the worst case space complexity of the PR
quadtree as n varies with respect to r. The fol-

lowing two corollaries are immediate from the
above theorem.

Corollary 5. if n = c .4’, where 0 Q c < 1, then T
has at most

nodes in it.

Corollary 6. Zf II = (4’)“, where 0 Q c < 1, then T
has at most

Sn(r(1 -c) + 4) - +

nodes in it.

The first corollary confirms the fact that if n is
a constant fraction of 4’, then the worst case
space requirement of a PR quadtree is O(n). The
second corollary shows that if n is a fractional
power of 4’ then the worst case space require-
ment of a PR quadtree can be as bad as O(n.
log n>.

Finally, note that the above analysis can be
easily extended to PR trees of higher dimensions.

Corollary 7. A PR tree of dimension d, resolution
r, and storing n points has at most

nodes.

3. Acknowledgement

We thank Lenwood S. Heath for his helpful
comments.

4. References

[l] F.W. Burton, V.J. Kollias and J.G. Kollias, Expected and
worst-case storage requirements for quadtrees, Pattern
Recognition Left. 3 (1985) 131-135.

[2] L.F. Greengard, The rapid evaluation of potential fields

in particle systems, Ph.D. Dissertation, Dept. of Com-

puter Science, Yale University, 1987.

S. V Pemmarajy CA. Shaffer / Information Processing Letters 49 (I 994) 263-267 267

[3] G. Hunter and K. Steiglitz, Operations on images using

quadtrees, IEEE Trans. Pattern Analysis and Machine
Intelligence 1 (1979) 145-153.

[4] P. Hut and S. McMillin, eds., The use of supercomputers

in stellar dynamics, in: Proc. Workshop held at the Insti-
tute for Aduanced Study, Princeton, NJ, June 1984.

[5] M. Lattanzi and C.A. Shaffer, An optimal boundary to

quadtree conversion algorithm, Computer Vision, Graph-
ics, and Image Processing 53 (1991) 303-311.

[6] H. Samet, Neighbor finding techniques for images repre-

sented by quadtrees, Computer Graphics Image Process-
ing 18 (1982) 37-57.

[7] H. Samet and CA. Shaffer, A model for the analysis of

neighbor finding in pointer-based quadtrees, IEEE Trans.

Pattern Analysis and Machine Intelligence 7 (1985) 717-
720.

[81 H. Samet, Applications of Spatial Data Structures; Com-
puter Graphics, Image Processing, and GIS (Addison-

Wesley, Reading, MA, 1989).

[91 H. Samet, The Design and Analysis of Spatial Data Struc-
tures (Addison-Wesley, Reading, MA, 1990).

[lo] CA. Shaffer and Q.F. Stout, Linear time distance trans-

forms for quadtrees, Computer Vision, Graphics, and
Image Processing: Image Understanding 54 (1991) 215-
223.

[ll] R.E. Webber, Analysis of quadtree algorithms, Ph.D.

Dissertation, TR-1376, Computer Science Dept., Univer-

sity of Maryland, College Park, MD, 1984.

