

Arboricity and Bipartite Subgraph

Listing Algorithms

David Eppstein∗

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 94-11

February 24, 1994

Abstract

In graphs of bounded arboricity, the total complexity of all maxi-
mal complete bipartite subgraphs is O(n). We describe a linear time
algorithm to list such subgraphs. The arboricity bound is necessary:
for any constant k and any n there exists an n-vertex graph with O(n)
edges and (n/ log n)k maximal complete bipartite subgraphs Kk,`.

∗Work supported in part by NSF grant CCR-9258355.

1 Introduction

A number of graph algorithms depend on finding all subgraphs of a cer-
tain type in a larger graph. For instance, in interval or chordal graphs, a
decomposition into maximal cliques is key; such a decomposition can be
constructed in linear time [4, 17]. Optimal triangulation construction [3]
and certain planar graph computations [8] require a listing of all triangles.
Related subgraph isomorphism problems also occur in a wide variety of
practical applications [2, 5, 12, 9, 13, 14, 19].

For planar graphs, or more generally for graphs of bounded arboric-
ity, the problem of listing clique subgraphs is well understood. Chiba and
Nishizeki [6] show that there can be at most O(n) cliques of a given size
in such graphs, and they further describe linear time algorithms for listing
these cliques. An alternative linear time algorithm and its parallelization is
presented in [7].

Enumeration of incomplete subgraphs is less well understood, but some
results are known. In planar graphs, a given graph G is limited to O(n)
occurrences as a subgraph if and only if G is 3-connected [10]; however the
only such graphs for which it is known how to list the occurrences of G in
linear time are cliques (as noted above) and wheels [10]. Chiba and Nishizeki
studied C4 subgraphs in graphs of bounded arboricity; there can be Ω(n2)
such 4-cycles but an implicit representation of them can be found in linear
time [6].

In this paper we again consider listing subgraphs of bounded arboricity
graphs. The arboricity a(G) of a graph G is the minimum number of forests
into which the edges of G can be partitioned [16]. Every planar graph has
arboricity at most three [16]; many other classes of graphs enjoy a bounded
arboricity, including geometric neighborhood graphs [15], graphs embed-
dable on some fixed surface, partial k-trees, and bounded degree graphs.
Indeed all of these are sparse graphs, and a bound on arboricity is equiva-
lent to a notion of hereditary sparsity. A decomposition of a planar graph
into three forests can be found in linear time [7, 18]. For general graphs
the exact arboricity can computed using matroid intersection techniques in
time O(mn log n) [11]. However, for our applications we will be satisfied
by an approximation to the arboricity, computed very easily in linear time
(Lemma 3).

It is natural, given the known results on complete subgraphs, to try
to extend these results to complete bipartite subgraphs. The problem of
finding complete bipartite subgraphs arises for instance in connection with

1

certain methods of data compression for graphs [1]. However, there is no
O(n) bound on the number of such subgraphs. For instance K2,x appears(n−2
x

)
times as part of the planar graph K2,n−2. Further we must worry not

only about the number of subgraphs, but their complexity, if we are to be
finding subgraphs of nonconstant size. However in this example there is only
one maximal complete bipartite subgraph, namely the graph itself, and of
course it has complexity O(n). We will see that this behavior is typical: for
any graph of bounded arboricity, there are O(n) maximal complete bipartite
subgraphs, and they have total complexity O(n). We further show that these
subgraphs can be found in linear time.

This result also provides an implicit representation for non-maximal com-
plete bipartite subgraphs, for any such subgraph is an induced subgraph of
a maximal complete bipartite subgraph, and any induced subgraph of a
maximal complete bipartite subgraph is itself complete bipartite. This gen-
eralizes the result of Chiba and Nishizeki on an implicit representation of
C4 = K2,2 subgraphs. Indeed, their representation consists of a collection of
K2,x subgraphs, however these are neither guaranteed to be maximal nor are
all maximal K2,x subgraphs included in their representation. It is not clear
how to generalize their techniques even to find all K2,3 subgraphs. Our al-
gorithm uses techniques that differ from theirs, and is more similar in spirit
to that of [7].

2 Bounded Acyclic Orientations

Our algorithm is based on a technique from [7], used in that paper as a space-
efficient data structure for testing whether an edge is part of the given graph.
Given any undirected graph G, a d-bounded orientation of G is simply an
orientation in which each vertex has out-degree at most d.

Lemma 1 (Chrobak and Eppstein [7]). If a graph G has arboricity a,
it has an a-bounded orientation.

Proof: Partition G into a trees, each directed toward its root. 2

Lemma 2 (Chrobak and Eppstein [7]). If a graph G has a d-bounded
orientation, and if we store for each vertex a list of out-edges in the orienta-
tion, then we can use this representation to test whether or not a potential
edge (x, y) is part of the graph, in time O(d).

2

Proof: We simply check for each of the at most d out-edges of each of x
and y, whether that edge is the one we are testing. If no edge matches, the
query edge does not exist. 2

An acyclic orientation is one in which there is no directed cycle. Chrobak
and Eppstein [7] used acyclic orientations in their algorithm for clique enu-
meration. Acyclicity will also be needed in our bipartite subgraph enumer-
ation algorithm. An advantage of acyclic orientations is that they are easy
to construct.

Lemma 3 (Chrobak and Eppstein [7]). If a graph G has a d-bounded
orientation, it has a 2d-bounded acyclic orientation which can be constructed
in linear time without knowledge of d.

Proof: Since G has at most dn edges, some vertex v has at most 2d
neighbors. We remove the minimum degree vertex from G, leaving a smaller
graph which has an induced d-bounded orientation and hence by induction
a 2d-bounded acyclic orientation. To form an orientation of G we direct all
edges out of v.

We can implement this algorithm to run in linear time as follows. We
sort the vertices of G into buckets by their degrees, and maintain at all
times a sorted doubly linked list of nonempty buckets. At each step, we
remove a vertex from the graph, possibly emptying its bucket. We also
reduce the degrees of neighboring vertices by one, which may either create a
new bucket or move a vertex to an existing bucket. Each of these steps can
be implemented in constant time, and the number of such steps is bounded
by the number of edges and vertices in the graph. 2

We note that if a graph has arboricity a, the degree bound in Lemma 3
can be tightened from 2a to 2a− 1, as there can be at most a(n− 1) < an
edges in G. Since our subgraph listing algorithms depend on the degree of
the orientation, this improvement gives a small constant factor improvement
in our bounds. As a converse to the lemmas above, a graph with a d-bounded
acyclic orientation must have arboricity at most d, for we can partition its
edges into d trees simply by choosing one out-edge per tree from each vertex.
Thus the existence of a bounded orientation is equivalent to a bound on the
arboricity.

3

3 Listing Bipartite Subgraphs

Given a set of vertices A, the induced complete bipartite subgraph A × B is
found by letting B consist of all the common neighbors of A. This will not
necessarily be a maximal complete bipartite subgraph in G: some superset
of A may have the same set of common neighbors. Nevertheless all maximal
complete bipartite subgraphs can be found by choosing the appropriate sets
A. Also note that in a graph of arboricity a, at least one of A or B must be
small (have 2a− 1 or fewer vertices) because otherwise the subgraph K2a,2a

would have arboricity at least a + 1 (if it had arboricity a or less, it would
have a vertex of degree 2a− 1 or less as noted after Lemma 3).

We now show how to use bounded acyclic orientations as a data structure
for finding common neighbors of sets of vertices. We say that a complete
bipartite subgraph A × B is generated by a set A of vertices if B consists
of all common neighbors of vertices in A. If A × B is maximal, it must be
generated both by A and by B.

Lemma 4. Given a graph with a d-bounded orientation, and given a col-
lection of sets Ai with total size m, we can compute the graphs Ai × Bi
generated by each Ai, in total time O(d2dn+ d2m).

Proof: For each set Ai, and each v in the set of common neighbors Bi,
one of two cases can occur: either all edges from v to Ai are directed away
from v and included in the list of out-edges of v, or some edge is directed
from Ai to v and included in the lists of out-edges of Ai.

For the second case, in which an edge to v is included in the out-edges of
Ai, there can be at most d|Ai| edges and hence at most d|Ai| neighbors. For
each such neighbor v we count the edges directed from Ai to v by scanning in
time O(d|Ai|) all out-edges of Ai. Then we scan the at most d out-edges of v
and count the edges to Ai (we can test each edge in time O(1) by keeping a
bit per vertex distinguishing members of Ai from the rest of G). If the total
number of edges found equals |Ai|, we have found a member of Bi. This
phase of the algorithm takes time O(d2|Ai|) for each Ai, and totals O(d2m).

In the other case, we must find those members of Bi for which all edges
are directed towards Ai. In such cases |Ai| ≤ d or no such member could
exist. We create a sequence of pairs (Ai,−i) for the sets Ai that have d or
fewer vertices, together with pairs (S, v) for each subset of the out-neighbors
of each vertex v of G. There are thus O(m+ 2dn) pairs formed. We bucket
sort them in O(dm + d2dn) time, after which the common neighbors for

4

this case can be found for each set Ai by examining the pairs (Ai, v) which
appear adjacent to (Ai,−i) in the sorted order. 2

Lemma 5. If G has a d-bounded acyclic orientation, then for any complete
bipartite subgraph A×B, one of A or B is a subset of the out-neighbors of
some vertex v in G.

Proof: Let v be the first vertex in A or B to appear in a topological
ordering of the acyclic orientation. 2

Theorem 1. If a graph G has arboricity a = O(1), we can list the maximal
complete bipartite subgraphs of G in time O(n).

Proof: By Lemmas 1 and 3, we can find a 2a-bounded acyclic orientation
of G. By Lemma 5, each maximal complete bipartite subgraph must be
generated by one of the at most 22an subsets of out-neighbors of vertices.
We can eliminate duplicate copies of the same sets using bucket sorting.
Then by Lemma 4 (with d = 2a and m ≤ (2a)22an) the bipartite subgraphs
generated by these sets can be found in time O(a322an).

Not all of these graphs will be maximal, but we can eliminate the non-
maximal ones by counting the sizes of the sets Bi generated by Lemma 4 and
by testing, for each Ai, whether some superset Aj has a Bj of the same size.
To save time, we only test Aj satisfying |Aj | = |Ai|+ 1. These tests can be
performed by bucket sorting the m sets Ai, with their sizes, together with
the O(dm) sets formed by removing one point in each possible way from
each Ai, after which Ai will appear in the list consecutively with the equal
sets coming from its supersets. This step takes time O(d2m) = O(a322an)
matching the previous bound. 2

Corollary 1. In any graph of arboricity a, there are at most 22an maximal
complete bipartite subgraphs, and these subgraphs have a total of O(a222an)
vertices and O(a322an) edges.

4 Lower Bounds

Our results use the relatively weak assumption of bounded arboricity (a
stronger assumption would be the absence of some graph minor). However
one might think that weaker assumptions, such as having few edges, could

5

perhaps be used in our results. One might also question the necessity of our
exponential dependence on a: our bounds have the form O(2can) rather than
O(acn). Here we show that both an arboricity bound and our exponential
dependence are necessary: there are sparse graphs with large arboricity
that have a number of maximal complete bipartite subgraphs superlinear in
n, and there are graphs with bounded arboricity a that have a number of
maximal complete bipartite subgraphs exponential in a.

First consider the clique Kn. It has arboricity n− 1, and 2n−1 maximal
bipartite subgraphs, one for each partition of the vertices. If we form a union
of n/a cliques Ka we get a graph with arboricity a and Ω(2an/a) maximal
bipartite subgraphs, having a total of Ω(2an) vertices and O(a2an) edges.
By including a clique K√n+1 in a larger graph we get a graph with O(n)
edges and 2

√
n maximal bipartite subgraphs, showing that sparsity alone is

not sufficient for a subexponential bound on the number of such subgraphs.
Even if we only count complete bipartite graphs Kk,` for which we have

some fixed bound on k, sparsity alone is still not sufficient to prove a bound
linear in n. The same clique example shows that there can be

(n
k

)
= Ω(nk)

maximal complete bipartite subgraphs Kk,` in a dense graph, or Ω(nk/2) in
a sparse graph. We now tighten the latter bound. Consider the bipartite
graph (A,B,E), where |A| = n, |B| = 2k+1 log2 n, and the edges connecting
A to B are chosen independently at random with probability 1/2. Then any
k-tuple of vertices in A should expect to have 2 log2 n common neighbors in
B. For any other vertex in A outside the k-tuple, the probability of being
adjacent to all those neighbors is O(1/n2), so with high probability this
is true of no vertex and the k-tuple induces a maximal complete bipartite
subgraph Kk,`. Thus with nonzero probability there are at least

(n
k

)
(1−o(1))

such maximal complete bipartite subgraphs. By reducing the size of A we
can find a graph with O(n) edges and Ω((n/ log n)k) maximal complete
bipartite subgraphs Kk,`.

We leave as open problems the gap between our Ω(2an/a) lower bound
and our 22an upper bound on the number of maximal complete bipartite
subgraphs, and the similar gaps on the numbers of vertices and edges in
such subgraphs.

6

References

[1] P. Agarwal, N. Alon, B. Aronov, and S. Suri. Can visibility graphs
be represented compactly? In Proc. 9th ACM Symp. Computational
Geometry, pages 338–347, 1993.

[2] P. J. Artymiuk, P. A. Bath, H. M. Grindley, C. A. Pepperrell, A. R.
Poirrette, D. W. Rice, D. A. Thorner, D. J. Wild, P. Willett, F. H. Allen,
and R. Taylor. Similarity searching in databases of three-dimensional
molecules and macromolecules. J. Chemical Information and Computer
Sciences, 32:617–630, 1992.

[3] M. Bern and D. Eppstein. Mesh generation and optimal triangula-
tion. In F. K. Hwang and D. Z. Du, editors, Computing in Euclidean
Geometry, pages 23–90. World Scientific, 1992.

[4] K. S. Booth and G. S. Lueker. Testing for the consecutive ones prop-
erty, interval graphs, and graph planarity using PQ-tree algorithms. J.
Comput. Sys. Sci., 13:335–379, 1976.

[5] A. D. Brown and P. R. Thomas. Goal-oriented subgraph isomorphism
technique for IC device recognition. IEE Proceedings I (Solid-State and
Electron Devices), 135:141–150, 1988.

[6] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Computing, 14:210–223, 1985.

[7] M. Chrobak and D. Eppstein. Planar orientations with low out-degree
and compaction of adjacency matrices. Theoretical Computer Science,
86:243–266, 1991.

[8] M. B. Dillencourt and W. D. Smith. A linear-time algorithm for test-
ing the inscribability of trivalent polyhedra. In Proc. 8th ACM Symp.
Computational Geometry, pages 177–185, 1992.

[9] Dong Hong, Wu Youshou, and Ding Xiaoqiag. An ARG representation
for Chinese characters and a radical extraction based on the represen-
tation. In 9th IEEE Intl. Conf. Pattern Recognition, volume 2, pages
920–922, 1988.

[10] D. Eppstein. Connectivity, graph minors, and subgraph multiplicity. J.
Graph Theory, 17:409–416, 1993.

7

[11] H. N. Gabow and H. H. Westermann. Forests, frames, and games:
algorithms for matroid sums and applications. In 20th ACM Symp.
Theory of Computing, pages 407–421, 1988.

[12] A. Guha. Optimizing codes for concurrent fault detection in micro-
programmed controllers. In Proc. IEEE Intl. Conf. Computer Design:
VLSI in Computers and Processors (ICCD ’87), pages 486–489, 1987.

[13] S. Y. T. Lang and A. K. C. Wong. A sensor model registration technique
for mobile robot localization. In Proc. 1991 IEEE Intl. Symp. Intelligent
Control, pages 298–305, 1991.

[14] R. Levinson. Pattern associativity and the retrieval of semantic net-
works. Computers & Mathematics with Applications, 23:573–600, 1992.

[15] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric ap-
proach to graph separators. In 32nd IEEE Symp. on Foundations of
Computer Science, pages 538–547, 1991.

[16] C. St. J. Nash-Williams. Edge-disjoint spanning trees of finite graphs.
J. London Math. Soc., 36:445–450, 1961.

[17] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM J. Comput., 5:266–283, 1976.

[18] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st
ACM-SIAM Symp. Discrete Algorithms, pages 138–148, 1990.

[19] T. Stahs and F. Wahl. Recognition of polyhedral objects under per-
spective views. Computers and Artificial Intelligence, 11:155–172, 1992.

8

