e Jooc 1320
((_\{)v\(,l

The parallel complexity
of integer prefix summation

Torben Hagerup

Report LSI-92-18-R

Ao T AN P Ta L TN
FA{:’L’.!AT A lu‘f_:..l'.".uiiu

BICLIOTECA

N A

The Parallel Complexity of Integer Prefix Summation *
ToRBEN HAGERUP

Departament de LSI
Universitat Politécnica de Catalunya

E-08028 Barcelona, Spain

Abstract. The time required by a p-processor CRCW PRAM to add n integers of IV bits

1 \
each or to compute all their prefix sums is shown to be @ | = + 6 + log min —i—, n}) .
p loglogp log p

This strengthens and unifies many previous results. In particular, the new bound shows that the
prefix sums of n integers of IV bits each can be computed in O(log n/loglogn) time with optimal

speedup. if and only if N = 20(logn/loglogn). previously this was known only for N = O(logn).

1 Introduction

The problems of adding n integers of N bits each and of computing all their prefix sums on a
PRAM are of fundamental importance and have been considered by many authors. A classical simple
result states that both problems can be solved for any value of N in O(log n) time on an EREW PRAM
with O(n/logn) processors, i.e., using O(n) operations. This is optimal for the EREW and CREW
PRAMs as regards both time and number of operations, as follows in the case of time from the lower
bound of [4], and in the case of number of operations from trivial considerations. In the following we
use as our model of computation the CRCW PRAM, on which faster solutions are possible.

Rajasekaran and Reif [8] showed that the prefix sums of n integers of N = O(logn) bits each
log n

loglog(plogn/n)
the result of [8] is optimal for large values of p, but the algorithm does not exhibit optimal speedup

can be computed with p > n/logn processors in time O . With this bound on N,
together with a sublogarithmic running time for any value of p. Cole and Vishkin [3] showed that for
N = O(logn), optimal speedup can be achieved with a running time of O(logn/loglog n). Ragde [7]
combined ideas from both earlier papers and gave a solution for N = 1 that uses O(logn/log log p)
time with p > n processors. Concentrating on cases where constant time is achievable, Parberry and
Schnitger [6] showed that for every A with 0 < A < 1/2, there exists p > 0 such that n integers of at

most n!~* bits each can be added in constant time with 20(n'™*) Processors.

Supported by the ESPRIT Basic Research Actions Program of the EC under contract No. 7141
(project ALCOM II).

Complementing this effort to find fast algorithms, a series of papers showed that for certain
(large) values of NV, adding n N-bit integers with any polynomial number of processors needs $2(log n)
time, whereby the necessary magnitude of N was lowered by successive authors. An account of this
development was given by Beame [1], who also used a very simple argument to show that the bound
of Q(log n) holds even for N = n. In addition, it is known from the work of Beame and Hastad [2]
that the time needed is Q(log n/loglogn) with any polynomial number of processors, even for N = 1.

In this paper we show that the time needed by a p-processor CRCW PRAM to add n integers of

N bits each or to compute all their prefix sums is

0] E+ log + log min l,n .
p loglogp logp

All of the results for the CRCW PRAM cited above can be derived from this bound, which strengthens "

or extends each of them in one or more ways. Specializing the parameters to the setting considered by
Cole and Vishkin [3], e.g., it can be seen that the prefix sums of n N-bit integers can be computed
in O(logn/loglogn) time with optimal speedup not only for N = O(logn), as described by Cole and
Vishkin, but in fact exactly if N = 20(ogn/loglogn) = A5 another example, our bound shows that in
the result of Parberry and Schnitger [6], we can actually take u = A (and this is the best possible).
Our lower bound was essentially shown by Beame [1] and Beame and Hastad [2], although it has
not been expressed in this form before. The upper bound is new, but follows from a straightforward
combination of known methods. Our main contribution therefore is simply the expedient organization
of a number of known facts. The present exposition also pursues a secondary goal. The author
considers existing accounts of optimal sublogarithmic prefix summation to be relatively difficult to
understand and, in particular, ill suited for classroom teaching. Here we give an argument that is
less obscure, or at least different, and that the author prefers by far in the context of teaching. It

shows quite transparently why no simple change of parameters can yield a running time better than

O(log n/loglog p).

2 Preliminaries

A PRAM is a synchronous parallel machine consisting of a finite collection of processors numbered
0,1,2,... and a global memory accessible to all processors. The PRAM model is one of the most
popular models of parallel computation. It comes in three main submodels: The EREW PRAM does
not allow concurrent access to the same memory cell by several processors, the CREW PRAM allows
concurrent reading, but not concurrent writing, and the CRCW PRAM allows both concurrent reading
and concurrent writing, with the effect of concurrent writing fixed in some way (see below).

For the lower bound in this paper we will use the so-called Abstract CRCW PRAM of [1]. Loosely
speaking, each processor of an Abstract CRCW PRAM has infinite local computational power. More

precisely; in each step of the computation each processor does the following: In the beginning of the

2

step, the processor is in a certain state. Based on this state, it chooses a global memory cell and
reads the contents of this cell. Then, depending on the old state and the value read, it enters a new
state. Finally, based on the new state, it chooses a global memory cell and a value and attempts to
store the chosen value in the chosen cell. If several processors attempt to write to the same global
memory cell in the same step, only the lowest-numbered among them is successful (this is known as
the PRIORITY rule). There are no requirements of uniformity and no restrictions on the complexity
of the state transitions of processors or on the values that can be stored in global memory cells, which
means that the model is very powerful.

Our upper bound applies to all CRCW PRAM variants with the property that the oRr of n bits can
be computed in constant time using n processors and O(n) space. Variants of the CRCW PRAM with
this capability include the standard CoMMON, ARBITRARY and PRIORITY PRAMs, but also the weak .
TOLERANT PRAM of [5]. We assume a local computational power at least corresponding to what [6]
calls the minimal instruction set. Essentially, this means the availability of addition, subtraction and
shift operations, but not necessarily multiplication and division. As a minimum, we assume that the
available operations can be executed in constant time on integer operands of absolute value bounded
by max{p,n, m}, where p is the number of processors of the machine under consideration, n is the
input size, and m is the largest absolute value of an input number.

Throughout the paper and for any integer k > 1, an integer of k bits (equivalently, a k-bit integer)
is an element of the set {0,...,2% — 1}. For the lower bound we consider the problem of adding n
integers ay,...,a, of N bits each, i.e., of computing Y. ; a;. For all positive integers n, p and N,
denote by T(n,p, N) the number of time steps needed by a p-processor Abstract CRCW PRAM to
solve this problem. For the upper bound we consider the related problem of computing all prefix sums
of ay,...,an, i.e., the quantities E;'=1 aj, fori = 1,...,n. As follows from our result, computing all
prefix sums of a sequence of integers is no more difficult, up to a constant factor, than just adding
them. Although we consider the prefix summation of nonnegative integers only, it is easy to extend
our result to the prefix summation of arbitrary integers of absolute value bounded by 2V — 1: Simply
compute the prefix sums of the positive and of the negative input numbers separately, and finally add
the two resulting sequences element by element.

We always use logz to denote max{log, z,1}, for arbitrary =z > 0. E, = O(E;), where E;
and E, are expressions, means that there is a constant ¢ such that Ey < cE; for all legal values of
the parameters occurring in E; and E,. The meaning of Ey = Q(E;) and E; = O(E,) is defined

analogously.

3 The lower bound

This section argues lower bounds of Q(n/p), Q(log n/loglog p) and Q (log min {lo];/p’n}) on

T(n,p, N), from which the overall lower bound follows immediately.

3

Lemma 3.1: For all N > 1, T(n,p, N) = Q(n/p).

Proof: The claim is trivial, since p processors need Q(n/p) time to produce an output of size n. W

Lemma 3.2: For all N > 1, T(n,p, N) = Q(log n/loglog p).

Proof: Forall N > 1, computing the parity of n bits clearly reduces to adding n N-bit integers. More
precisely, given any Abstract PRAM that adds n N-bit integers using p processors and T time steps,
it is easy to derive an Abstract PRAM that computes the parity of n bits using p processors and T + 1
time steps — the extra step is used to store the parity of the sum of the n input bits in an output
cell. But Theorem 4.1 of [2] states that for some integer ng, any Abstract PRAM that computes the

parity of n > ng bits in T time steps has at least 2(1/96)n*/T 2 processors. Hence for n > ng,

Y(T(n,p,N)+1) _g
9

P 2 2(1/96)n

from which follows that T(n,p, N) = Q(logn/loglogp). N

Lemma 3.3: T(n,p,N)=Q (log min {lojgp’ n})

Proof: For each integer b > 2, let Encode, be the function from {0,...,6 — 1}* to {0,1,...} with
Encodey(ay,...,an) = > 1, a;b°"1; note that if b is a power of 2, then Encode, simply concatenates
the (log b)-bit binary representations of its arguments. Beame [1] showed that for all integers p > 1

and n,b > 2, any Abstract p-processor PRAM that computes Encode; on inputs of size n uses at least

logn + 1 — log(1 + log,(2p))

time steps. As observed by Beame, the computation of Encode, is a special case of addition. More
precisely, the following holds for all positive integers n, p, N, T, b and m with ¥ > 2, m < n and
(b—1)b™~! < 2N —1: If there is an Abstract p-processor PRAM that adds n N-bit integers in T time
steps, then there is an Abstract p-processor PRAM that computes Encode, on inputs of size m in T
time steps — the latter simply interprets its ith input value a; as a;b'~!, for i = 1,...,m, assumes
n — m fictitious additional input values equal to zero, and .then adds the resulting integers. We use
this to prove the lower bound. Assume n > 2 and consider two cases, depending on the size of N

relative to n.

Case 1: N < n. By the above observation, used with b = 2 and m = N, T(n,p,N) > logN + 1 —
N

log(1 + log(2p)) and hence T'(n,p,N)=Q (log 1)

Case 2: N > n. By the same observation, now ::fdpwith b= 2W/"] and m = n,
T(n,p,N)>logn+1-log (1 + 1&%%?) :
If % < 8, then T(n,p, N) = Q(logn). On the other hand, if lfi(/’fi) > 8, then
10) s (5 01 £vu (52)

4

and hence

-2.

T(n,p,N)>logn —log <l~(ﬂ) -2 =log,

N/n log p

1
Theorem 3.4: T(n,p,N)=Q n + L + log min N ,nel.
p loglogp logp

Proof: By Lemmas 3.1, 3.2 and 3.3. Nl

4 The upper bound

We begin by showing that prefix sums can be computed in constant time with a large number of

processors. This was observed previously by many authors.

Lemma 4.1: Given 2n integers aj,...,an,51,...,5,, B processors can decide in constant time using
. i

O(n) space whether s;,...,s, are the prefix sums of aq,...,an, Le., whether s; = } . , aj, for

t=1,...,n.

Proof: Let the processors check the condition s; = a; and the n — 1 conditions 8$; = 8;—1 + a;, for
i = 2,...,n, and then use the evaluation of an n-way OR to accept the input if and only if all n

conditions are satisfied. N

Lemma 4.2: If k is a power of 2, the prefix sums of k& integers of k bits each can be computed in

constant time using 9k* processors and O(2’°4) space.

Proof: The sum of k integers of k bits each is at most k(2¥—1) < 2¥(2F—1) < 22, It therefore suffices
to compute the integer § = Encodeyax (s1,...,5;), where sq,...,s; are the prefix sums of the input
numbers. But 0 < § < (2%¥)* = 22¥°, Hence associate a team of k processors with each integer in the
set {0,..., 22k _ 1} and let each team use the algorithm of Lemma 4.1 to check whether § equals its
associated integer, in which case the team can easily produce the desired output. The total number
of processors needed is k -22"2, which for & > 2 is bounded by 2% .9k? < 25" The processor allocation
is easy: Each processor simply interprets the least significant 2k2 bits of its processor number as the

integer associated with its team, and the next log k bits as its number within that team. HN

Recall that the proof of Lemma 3.3 depended on Beame’s lower bound for the Encode function.

Using the method of the proof of Lemma 4.2, we now give an upper bound for this function.

Lemma 4.3: If b and m are powers of 2, then Encode, can be computed on inputs of size m using

constant time, m - b™ processors and O(m - b™) space.

Proof: The output to be computed is an integer S in the set {0,...,b™ — 1}. Associate a team of m
processors with each integer in this set and let each team check in constant time whether its associated

integer is equal to S. W

We are now ready to prove an upper bound for prefix summation that matches the lower bound
of the previous section. We distinguish between two cases, depending on the size of p relative to n, the

case of optimal speedup and the fast case. We begin with the fast case, which is somewhat simpler.

Lemma 4.4: For p > 2(4log ")B, the prefix sums of n integers of NV bits each can be computed using p

0 -—log—n-i-logmin l,n
loglog p log p

processors,

time and O(p) space.

Proof: We will assume that » and hence p is larger than some unspecified constant. We can also
assume that N/logp < n, since otherwise the bound is O(log n) and the problem is trivial; in particular, .
this means that ¥ < /p. Let r = [logn] and note that the sum of n integers of r bits each
is an integer of 2r biés. Choose k as the smallest power of 2 no smaller than (logp)!/®. Since
r < 2logn and p > 2(4los ")B, we have k > 2r. Now consider an ordered tree T" with n leaves,
numbered 1,...,n from left to right, at most n internal nodes, maximum degree at most k and height
h = O(log n/log k) = O(log n/loglog p). For each vertex v of T, let d(v) be the number of children of
v, and for 7 = 1,...,d(v), define the ith subtree of v as the maximal subtree of T rooted at the ith
child of v. Assume that for some § > 0, each internal node v of T is a d(v)-way prefix sum device
(PSD) with delay §, defined as follows. A PSD is like a gate in the circuit model of computation,
except that it has internal memory and therefore needs to be explicitly activated (or “clocked”) when
it is to operate. An l-way PSD with delay § has ! input lines, numbered 1,...,I, one output line
and ! + 1 internal registers Sp,...,S;. When an integer a; of k bits is applied to the 7th input line,

i
j=1

for ¢ = 1,...,1, the PSD can be activated, in which case it computes s; = Y-y a; and stores s; in
Si, for ¢ = 0,...,1 (thus Sy = 0 always), and applies s; to its output line at most § time units after
its activation. For each internal node v of T and for ¢ = 1,...,d(v), identify the ith input line of v,
considered as a PSD, with the edge in T between v and its ith child. Finally assume that each leaf
node of T is a 1-way PSD with delay 4.

It is easy to see that if we apply an r-bit integer a; to the input line of the ith leaf of T before
some time %o, for 1 = 1,...,n, and then activate the nodes at level j at time ¢y + j6, for j = 0,..., A,
then at time #o + (h 4 1)6 the root of T will apply > 7, a; to its output line; in particular, we have
taken care to ensure that intermediate values do not become too large. Furthermore, fori =1,...,n,
the prefix sum Zj‘=1 a; can be derived from T in O(h) time by a single processor as follows: Initialize
a variable z to the value a; and let v be the ith leaf of T'. Then for each proper ancestor u of v in T,
let j be the number of the subtree of u that contains v and add to z the value of the register §;_; of
u. As is easy to see, the final value of z is Ej-:l a;.

In the context of the original prefix summation problem, we can break each input number into

blocks of r bits each and use the above observation to compute the prefix sums of each group of n blocks

. . - . . 4
in corresponding positions, one from each input number. According to Lemma, 4.2, 2% processors can

6

implement a k-way PSD with constant delay, so that the computation can be carried out in time O(h),
as desired. Since there are at most 2n nodes in 7 and at most N groups of n blocks each, the total

number of processors needed is at most
2K Lon . N < 9¥Vieer gpl/d . 5 <

At this point each of the n output values to be computed is represented by a collection of [N /7]
“pieces”, one for each block position, and the remaining problem is to add these [N/r] pieces, each
of which is an integer of 2r bits. Observe that if we break each piece into an 7-bit “low-order half”
and an r-bit “high-order half”, then separately adding the low-order halves and separately adding the
high-order halves are very simple tasks; indeed, they are instances of the computation of Encode,- on
inputs of size at most [N/r]. We actually use this observation only to add groups of m consecutive -

halves, where m is chosen as a power of 2 with
-ll—elogp <mr < élogp.
By Lemma 4.3, this can be done in constant time using a total of at most
m.2mr.jv.nSlogp.pl/s.pllz .p1/4 Sp

processors.

Now each output value is represented by a collection of O(N/logp) larger pieces. We finally add

these in the obvious binary-tree fashion in O { log time using at most V -n < p processors. [

This concludes the description of the fast case. We now turn to the case of optimal speedup.

Lemma 4.5: The prefix sums of n integers of N bits each can be computed using p processors,

n logn]
O (; + m + Iog mm{N,n})

time and O(n + p) space.

Proof: We use the same basic algorithm as in the fast case. There are two differences: Firstly, since
we can no longer rely on the relation p > 24108 n°® to provide us with an abundance of processors, we
have to introduce a preprocessing stage that achieves the necessary processor advantage, i.e., ratio of
number of available processors to problem size. Secondly, even after the preprocessing stage we will
not have enough processors to implement prefix sum devices capable of handling blocks of [log n] bits
directly; note that prefix sums of about this many bits will arise during the computation in the tree T
even if the values fed into the leaves of T are single bits. The solution to this problem is to subdivide
each block into smaller units called bytes, each of which can be handled directly, and then to let T
operate in a pipelined fashion: Each PSD receives each of its inputs byte by byte and produces its
output byte by byte in the same way.

As before, we ignore values of n smaller than some unspecified constant. Since the standard
parallel prefix summation algorithm works in O(n/p) time if p < n/logn, we can assume that p >
n/logn. We also assume that N < /7, since otherwise the bound to be shown is O(logn). For
the preprocessing, divide the n input numbers into at most n/(logn - 2108"/198108 ™ . N} groups of
O(log n - 2'°g™/1e81og ™ . N} consecutive numbers each. Use the standard parallel algorithm to compute
all prefix sums within each group (the local prefix sums), which takes O(n/p+logn/loglogn+log N)
time. In particular, this computes for each group its group sum, i.e., th;a sum of all numbers in the
group. Use the algorithm to be described below to compute the prefix sums of the group sums (the
global prefix sums). Now each prefix sum of the original problem corresponding to some input element
can be obtained as the sum of the local prefix sum computed for that element and the global prefix
sum of the preceding group. Computing all prefix sums in this way takes O([n/p]) time.

All that remains is to describe the computation of the global prefix sums. Let us redefine n to
be the number of groups, i.e., the size of the (global) problem at hand, in which case the number of
available processors is at least n-21°6™/198log . v Also note that the group sums are integers of N 47
bits.

Let k be the smallest power of 2 no smaller than (logn)'/5 and consider a tree T as before, i.e.,
with maximum degree at most k and height h = O(logn/logk) = O(log n/loglogn). We again break
each input number into blocks of r = [log n] bits each and compute the prefix sums of each group of
n blocks in corresponding positions using one copy of T'. The total number of processors needed to

implement every node of every tree as a PSD with constant delay is at most
gk -n-(N+7)<p.

As mentioned above, since r > k, the computation in T cannot be quite as straightforward as in the
fast case, and we have to resort to pipelining. Define a byte as k consecutive bits. We modify the
prefix sum devices as follows: An [-way PSD, in addition to the [4 1 registers Sy,...,S;, now has [
carry registers Cy,...,C; and a multiplier register M. All registers are initialized to 0, except that
M holds the value 1 initially. Assume that a PSD is activated when Cy,...,C; and M contain the
va.lue‘s ¢1,...,¢; and m, respectively, and when a k-bit integer a; is applied to the ith input line, for
t=1,...,l. Fort:=1,...,1, the PSD then computes s; = ¢; + Zj’=1 a;, splits s; into the low-order &
bits s} and the high-order % bits s, adds s} scaled by m (i.e., m - s}) to S; and stores s} as the new
value of C;. Finally m -2 is stored in M, and sy is applied to the output line. It is easy to see that the
PSD works according to intention, i.e., if nonnegative integers a, ..., a; are input synchronously and
byte by byte, then their sum is output byte by byte, each output byte being produced a constant time
after the consumption of the corresponding input bytes, and the prefix sums of a;,...,a; accumulate
in the registers Sy,...,S5;. Then the entire tree T computes as intended. Even with the modifications
described above, gk* processors are clearly sufficient to implement a k-way PSD with constant delay.

The time needed by the pipelined computation to process blocks of » bits, one byte at a time, is
O([r/k] +h) = O((log n)*/® + log n/loglog n) = O(log n/loglog n).

8

In contrast with the fast case, the final computation of each output value from [(N + r)/7] pieces can

be done in the straightforward way. This needs O(log N) time and at most n- (N +r) < p processors.
i

Theorem 4.6: The prefix sums of n integers of N bits each can be computed using p processors,

0 2-}- log n + log min —N—,n ;
p loglogp logp

time and O(n + p) space.

Proof: For p > 2(4108 ™)°® the assertion was proved in Lemma 4.4. For p < 2(41°8 ™°® we have loglogp =
O(loglog n), so that the time bound is at least @(log n/loglogn). Furthermore, log N < logn/loglogn
unless N > 2losn/leglogn in which case log N = O(log(N/log p)) for the range of p under consideration.

The claim therefore follows from Lemma 4.5. B

References

(11 P. BEAME, Limits on the Power of Concurrent-Write Parallel Machines, Inform. and Comput.
76 (1988), pp. 13-28.

[2] P. BEAME AND J. HAasTaD, Optimal Bounds for Decision Problems on the CRCW PRAM, J.
ACM 36 (1989), pp. 643-670.

[3] R. CoiLE aND U. VIsHKIN, Faster Optimal Parallel Prefix Sums and List Ranking, Inform. and
Comput. 81 (1989), pp. 334-352.

[4] S. Coox, C. DwoRrK AND R. REISCHUK, Upper and Lower Time Bounds for Parallel Random
Access Machines Without Simultaneous Writes, SIAM J. Comput. 15 (1986), pp. 87-97.

[5] V. GroLMUSz AND P. RAGDE, Incomparability In Parallel Computation, in Proc. 28th Annual
S,ymposium on Foundations of Computer Science (1987), pp. 89-98.

[6] 1. PARBERRY AND G. SCHNITGER, Parallel Computation with Threshold Functions, J. Comput.
System Sci. 36 (1988), pp. 278-302.

[7] P. RacpEg, The Parallel Simplicity of Compaction and Chaining, in Proc. 17th International
Colloquium on Automata, Languages and Programming (1990), Springer Lecture Notes in Com-
puter Science, Vol. 443, pp. 744-751.

[8] S. RAJASEKARAN AND J. H. REIF, Optimal and Sublogarithmic Time Randomized Parallel
Sorting Algorithms, SIAM J. Comput. 18 (1989), pp. 594-607.

