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Abstract 

This paper investigates combinatorial properties of generalized hypercube graphs including best containers, wide 
diameter, and fault diameter. These properties have received much attention recently in the study of interconnection 
networks. 
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1. Introduction 

Generalized hypercube graphs are the underly- 
ing graphs of generalized hypercube networks [l] 
which were proposed for building massively paral- 
lel computer systems. Let G(m,, m,_,, . . . , m,) 
denote a generalized hypercube graph of size 
m,Xm,_, X .. . X m,, where mi 2 2 for all 1 < i 
<r. There are N = m, * m,_, * . *. * m, nodes 
in G(m,, m,_ I, . . . ,m,) which are assigned r-digit 
identifiers xr, x,_, . . . x,, where xi E [O, m, - 11 
for all 1 <i < r. Two nodes in G(m,, m,_,, . . . , 
m,) are adjacent if and only if their identifiers 
differ at exactly one digit position. In Fig. 1, the 
structure of G(4, 3, 2) is depicted for illustration. 
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Each node in G(m,, m,_,, . . . , m,) has degree 
Ci= l...rcmi - ‘)’ 

In this paper, several combinatorial properties 
of G(m,, m,_,,..., m, > are investigated. Specifi- 
cally, best containers of width K, the K-wide di- 
ameter, and the fault diameter of G(m,, m,_,, 
. . . ,m,> are computed, where K is the node con- 
nectivity of G(m,, m,_ ,, . . . , ml>. These proper- 
ties have become more and more important re- 
cently in the study of reliability, fault tolerance, 
randomized routing, and transmission delay in 
interconnection networks [3,5,61. It is of both 
theoretical interest and practical importance to 
determine a container of width K between arbi- 
trary two nodes because the existence of such a 
container means that messages can be transmit- 
ted in parallel using K disjoint paths. Besides, the 
transmission will succeed even if K - 1 node faults 
have occurred. The fault diameter, on the other 
hand, estimates the maximum transmission delay 
under the situation of at most K - 1 node faults. 
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2. Containers 

Let X, Y be two arbitrary nodes in 
G(m,, m,_,,..., m,). An (X, Y)-container [5], 
denoted by C(X, Y), is a set of node-disjoint 
paths between X and Y. The width of a C(X, Y), 
denoted by w(C(X, Y >>, is its cardinality. The 
length of a C(X, Y>, denoted by I(C(X, Y>>, is 
defined as the maximum length of the paths in 
the C(X, Y). A C(X, Y> is the best, denoted by 
C * (X, Y), if its length is minimum among those 
with the same width. 

Let X=x,x,_ ,... x, and Y=y,y,_ ,... yl, be 
two arbitrary nodes in G(m,, m,_,, . . . , ml>. A 
particular C(X, Y) of width Cj= 1, _, rbzi - 1) has 
been found in [l]. In this section, a general ap- 
proach for constructing C(X, Y)s of width 

Ci= , ,,,,(m, - 1) is first proposed. The con- 
structed paths fall into three sets S,, S, and S, 
according to their lengths. 

Assume X and Y differ at d digit positions: 
s(d), s(d - 11,. . . , s(1). That is, xi =yi if and only 
if i 6 {s(d), s(d - 1) ,..., s(l)}. We let 

s, = ((X xs(l)&),s(z)~~~~ 7 XS(l).S(2)....,S(d) = y>, 

( XJ X$(2) 9Xs(2),s(3) 9 . . . 7 

X s(2),sW,. , s(dMl) = q, 

(i Xs(d)&d),s(l), . . . 3 

X s(d),s(l),...,s(d-1) = Y,), 

Fig. 1. The structure of G(4, 3, 2). 

where xs(~), s(j), , s(l) represents the identifier re- 
sulting from X after replacing x,(i),x,(j), . . . , x,([) 

with Ys(i),Ys(j)r . . . , Y,(Q, rewectiveb. 
The set S, contains d paths whose length is d. 

Further, let Xck,aj, s(i),s(j,,. , s(l) represent the 
identifier which is obtained by replacing the k th 
digit from the right of XS(,), S(j),..,,s(l) with a. We 
let 

% = i s2,1 ~~2.2). . . 7 s2>dj 7 

where for i = 1,. . . , d, 

‘2.i = (Cxy X(s(i),j))X(s(i),j),s(l),X(s(r),j),s(l),s(2)r. . . ) 

x(~(i,l,),s(l),s(2)....,s(i- 1)’ 

x (s(I),J),.~(~),s(~) ,..... ~(i-l),s(i+l)y .*. 3 

X (s(l),/),s(l),s(2) ,..., s(i- l),s(i+l) ,..., s(d), 

X s(lM2). , s(d) =Y)Jforj=O,...,rn,-1 

and j + Xs(i), j # Y,~,,) . 

If m, = 2, then no legal j can be found, in 
which the set S,,, is set to empty. The set S, 
contains Ci = , d (msci, - 2) paths whose length is 
d+ 1. 

Assume t(r - d), t(r - d - l), . . +, t(l) are the 
r - d digit positions such that xi = yi if and only 
if i E (t(r - d), t(r - d - 11,. . . , t(l)). We let 

s,= { S3,,,S3,,,...,S3,r-dj, 

where for i= l,...,r-d, 

‘3,i = {(x, X(t(i),j)~X(r(i),j).s(l~~x(~(i),j),so,~(2~~ 1 . * 9 

X~r(i),i).s(l),s(2),....s0, 

X s(l),.Q), , s(d) =Y)Jforj=O,...,m,-1 

and j # xSci)}. 

When r = d, the set S, is empty. For nonempty 
S,, it contains Ci=l,,.r_d(mt(i) - 1) paths whose 
length is d + 2. 

For example, let us consider X = 210 and Y = 
201 in G(4, 3, 2). If (s(2), s(1)) = (2, l), then 

S, = {(ZlO, 211,201), (210,200,201)}, 

S, = ((210, 220, 221, 2Ol)j ) 

s3 = {(210, 010, 011,001, 201), 

(210, 110,111, 101,201), 

(210, 310, 311,301, ZOl)}. 
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If (s(2), s(l)) = (1, 2), then 

S, = ((210, 200,201), (210,211,201)}) 

s, = { (210, 220, 221, 201)} ) 

s, = ( (210, 010, 000, 001) 201) 

(210, 110, 100, 101,201), 

(210,310, 300, 301,201)). 

There are totally 

d+C I=l...k%i+) + Ci=*...r_d(m,(,,- 1) 

= Ci=,...r(mi - 1) 
paths in S, u S, u S,. The node-disjoint property 
is very clear. So, for each instance of s(d), s(d - 
l),..., s(l), the paths contained in S, US, US, 
constitute a C(X, Y) of width Ci= 1 ,.,.(mi - 1). 
The following lemma shows that the C(X, Y) is 
the best. 

Lemma 1. Suppose X and Y are two nodes in 
G(m,, m,_,,. .., m, > and they differ at d digit 
positions denoted by s(d), s(d - l), . . . , s(l). Then, 
for each instance of s(d), s(d - 11,. . . , s(l), the 
paths contained in S, U S, U S, constitute a 
C*(X, Y) ofwidth Ci _,,,, ,(m;- 1). 

Proof. According to the structure of G(m,, 
m r- ,, . . . , ml ), a shortest path between X and Y 
must contain d edges each of which equalizes a 
different digit. Hence, not more than d node-dis- 
joint shortest paths between X and Y exist. A 
second shortest path between X and Y, whose 
length is d + 1, has a form as shown in the set 
S,,i. Each path in S,,i equalizes by two edges (the 
first and the last edges) the digit whose position is 
indicated by s(i). There are at most C,= 1 ,,.,(msoj 
- 2) node-disjoint second shortest paths between 
X and Y. Since I S, I = d, I S, I = I&=, ,,,d(ms(rj - 
2), and each path in S, has a length d + 2, the 
correctness of the lemma follows. q 

There are d! ways to specify s(d), s(d - 
0,. . . , s(l). Carefully observing the construction 
of S,, we find that two different instances of 
s(d), s(d - l), . . . , s(l) will construct the same S, 
if and only if one can be obtained from the other 

by continuous cyclic rotations. Therefore, the fol- 
lowing lemma holds. 

Lemma 2. Suppose X and Y are two nodes in 

Gem,., m,_ ,,.. ., m,) and they differ at d digit 
positions. Then, (d - l)! different sets S, with re- 
spect to X, Y can be constructed. 

Suppose ad, ad_,,. . .,a, and b,, b,_,,. . ., b, 
are two different instances of s(d), s(d - 
l), . . . , s(l). Without loss of generality, assume 
a, = b, and u < ~1. The two sets S, u and S, I. that 
are derived from the two instances. respectively, 
are identical if and only if ak = b, for 1 G k G 14 

-1 and r*+l~krd, and a,=b,_, for zl+l 
G k Q ~1. But, under the latter condition, the two 
S,,., where s(w) z a, (and b,.), that are derived 
from the two instances, respectively, are different 
if m, > 2, or empty if m,,, = 2. This implies that 
under the assumption of m, > 2 for all 1 G i < r, 
different instances of s(d), s(d - l), . . . , s(l) will 
construct different S,. Therefore, we have the 
following lemma. 

Lemma 3. Suppose X and Y are two nodes in 
G(m,, m,_,,. .., m,> and they differ at d digit 
positions. If m, > 2 for all 1 < i < r, then d! differ- 
ent S, with respect to X, Y can be constructed. 

It is easy to see that when r > d, each instance 
of s(d), s(d - I), . . . , s(l) will uniquely construct 
a set S,. Therefore, we have the following lemma. 

Lemma 4. Suppose X and Y are two nodes in 
G(m,., m,_ ,,... , m ,> and they differ at d digit 
positions. If r > d, then d! different S, with respect 
to X, Y can be constructed. If r = d, no such set 
can be constructed. 

Combining Lemmas 1, 2, 3, and 4, we have the 
following theorem. 

Theorem 5. Suppose X and Y are two nodes in 
G(m,, m,_,,..., m,), where m, > 2 for all 1 <i 
f r, and they differ at d digit positions. When 
;‘I d, (d - l)! *(d!12C *(X, Y)s of width 

, , ,,..(m, - 1) can be constructed. When r = d, 
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(d-l)!*d!C’(X,Y)s Ofwidth Ci=,,,.,(m,-l) 
can be constructed. 

The number of C *(X, Yls in Theorem 5 rep- 
resents a lower bound. More C *(X, Y 1s still 
exist. 

The node connectivity of a graph is defined as 
the minimum number of nodes whose removal 
will disconnect the graph. We note that no con- 
tainer of width larger than C, = 1, _, ,(mi - 11 exists 
in GCm,, m,_,,..., m,> because each node in 
G(m,, m,_,,..., m,) has a degree Ci,l,,,,(mi - 
1). According to Menger’s theorem [21, which 
states that the node connectivity of a graph is K if 
and only if there exist at least K node-disjoint 
paths between any two distinct nodes of the graph, 
we know that the node connectivity of 
G(m,, m,_,, . . . , m,> is Ei=l..,l(mi - 1). 

Corollary 6. The node connectivity of G(m,, 
m r-l ,..., m,) is Ci=i.,,,(mi- 11. 

3. Wide diameter and fault diameter 

Let d,(X, Y> denote the length of C *(X, Y) 
of width K. That is, d,(X, Y> = min(l(C(X, Y >) 1 
for all C(X, Y)s with w(C(X, Y)) = K). The K- 

wide diameter [5] of G(m,, m,._,, . . . , m,), which 
is denoted by d,(G(m,, m,_,,.. .,m,)), is de- 
fined as the maximum of d,(X, Y)s for all pairs 
of nodes X, Y in G(m,, m,_,,. ..,m,). That is, 
d,(G(m,, m,_,, . . . , m,)) = max{d,(X, Y)( for all 
pairs of nodes X, Y in G(m,, m,_,, . . . , ml>). 

Let K=Ci=l,,,r (mi - 1) denote the connectiv- 
ity of G(m,, m,_,,. .., ml>. According to the dis- 
cussion of Section 2, we know that for any two 
nodes X, Y in G(m,, m,_,, . . . , m,), d,(X, Y) = 
d + 2 if d < r, and d + 1 if d = r. Thus, d,(X, Y> 
is maximized as d = r or d = r - 1, and 
dJG(m,, m,_ I,. . . , m,)) is computed as follows. 

Theorem 7. d,(G(m,, m,_,,m,)) = r + 1. 

The fault diameter [6] of G(m,, m,_ 1,. . . , m,) 
is defined as its maximum diameter after at most 
K - 1 nodes and their incident edges are re- 
moved. By definition, d,(G(m,, m,_,, . . . , m,>) is 

an upper bound on the fault diameter of 
G(m,, m,_ l,. . . , m,>. Let X=X,.X~_~...X, and 
Y=yry,_,... y, be two nodes in G(m,, m,_,, 
. . ..m.), where xi#yi for 1 <i,<d and xj=yj 
for d + 1 <j G r such that d,(X, Y> has maxi- 
mum value. When d = r, if we remove the r 
nodes: x,x,_, . . . xZyl, x,x,_i . . . x3y2x,, . . . , 

Y,X,-I... x1, then the distance between X and Y 
will become r + 1. Similarly, when d = r - 1, the 
distance between X and Y will become r + 1 
after removing the r - 1 nodes: x,x,_, . ..x.y,, 
XrXI_i...X3Y2Xi,..., x,y,_i~,_~. . . x1. This 
gives a lower bound of r + 1 on the fault diame- 
ter of GCm,, m,_,,. . . , m,>. Hence, the following 
theorem holds. 

Theorem 8. The fault diameter of GCm,, 
m r_l,. . . , m,> is r + 1. 

In [S], Tien and Raghavendra showed that the 
diameter of a faulty n-dimensional hypercube 
with at most 2n - 3 faults is bounded above by 
n + 2, provided the source node and the destina- 
tion node are not isolated. This bound can be 
further reduced to rz + 1 or n if extra conditions 
are satisfied. 

4. Remarks 

A method to construct ontainers with maxi- 
mum width for the hypercube graph has been 
proposed in [7]. The generalized hypercube graph 
is a generalization of the hypercube graph. In this 
paper, besides containers with maximum width, 
we constructed the best containers and computed 
the wide diameter and the fault diameter for the 
generalized hypercube graph. It is of both theo- 
retical interest and practical importance to solve 
the container problem. The existence of contain- 
ers can increase transmission rate as well as 
transmission reliability. For a network having a 
container of width K between every two nodes, a 
transmission path between the source node and 
the destination node can be guaranteed even if 
K - 1 node faults have occurred. The fault diame- 
ter, on the other hand, estimates the maximum 
length of the transmission path between the 
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source node and the destination node under the 
situation of at most K - 1 node faults. 

The k-ary n-cube graph [4] is another general- 
ization of the hypercube graph. It differs from the 
generalized hypercube in two: (1) each dimension 
has the same width: (2) the nodes belonging to 
the same dimension are connected as a ring (they 
are connected as a clique for the generalized 
hypercube graph). The interested readers are en- 
couraged to determine containers and the fault 
diameter of the k-ary n-cube graph. 
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