
•
Information
Processing
Letters

ELSEVIER Information Processing Letters 58 (1996) 255-263

Scheduling complete intrees on two uniform processors
with communication delays

Jacek Blarewicz a' Pascal Bouvry b' Frederic Guinand c' Denis Trystram C,•

• Institute of Computing Science. Poznaii University of Technology, Povuui, Poland
b Interactive Systems, Center for Mathematics and Computer Science (CW/). Amsterdam. The Netherlands

c I.MC-IMAG. 46. avenue Fila Via/let, 38031 Grenoble Cedex. France

Received 3 September 1993
Communicated by L. Kott

Abstract

We present an optimal algorithm for scheduling a complete k-81)' tree on two unifonn processors of different speeds in
order to minimize schedule length. We consider the basic case of unit standard execution times and unit communication
times.

Keywords: Parallel algorithms; Parallelism; ~heduling; lntrees; Unifonn processors

1. Introduction

New computer technologies allow a more intensive
use of multiprocessor systems speeding up the compu
tations. On the other hand, in order to achieve real in
crease of the processing speed in such systems, meth
ods should be elaborated that properly schedule tasks
on a set of parallel processors.

This is especially true in systems, where different
modules (tasks) of the program are allocated to dif
ferent processors and communications (data transmis
sions) among modules are required [1,7]. Recently
the problem of scheduling tasks on parallel processors,
taking into account communication delays, has been

• Corresponding author. Mailing address: LMC-IMAG, Campus
Universitaire, lnstitut Fourier, BP 53x, 100 rue de MatbcmaDque,
38041 Grenoble Cc:dcx 9, France. Email: denis.trystam@imag.fr.

considered in [2-6]. In all these papers the schedule
length has been chosen as a criterion.

In [6] a version of the problem has been considered
in which the number of identical processors is unlim
ited. The authors provide an algorithm which approx
imates the optimal schedule length with a worst case
ratio of two. This algorithm provides an asymptotically
optimal schedule length for complete binary trees:
0((Tlogn) /logT), where T represents the message
to-instruction ratio.

A very similar problem bas been considered by
Chrttienne and Picouleau [2,3] under the assumption
that the number of processors is still unlimited and that
the communication delays as the processing times of
the tasks are not fixed. They show that in the case of
intrees, the problem of finding an optimal schedule is
NP-hard, even if the height of the tree is at most two
(the problem is called the harpoon problem).

0020-0190/96/$12.00 © 1996 Elsevier Science B.V. All rights reserved
Pll 50020-0190(96) 00062-2

J. Blatewict. et al/Information Processing Letters 58 (1996) 255-263

Height h

R

Total number of tasks: 21 - I

Number of tuks per level: 2'""'''- 1

Level

2

Fig. 1. Example of a complete binary intree with height :: 4.

In [4] the authors describe an 0(n .. +1) algorithm
based on dynamic programming which provides a
schedule of minimal length. They improve the asymp
totic lower bound presented in [6] for full binary
trees by a factor 2: 2(,,. log n) /log r.

Lastly in [5] it has been shown that the problem
of scheduling unit length tasks forming trees on par
allel processors remains NP-hard either for binary
trees and uniform communication delays or for com
plete binary trees, but varying communication delays.
A polynomial-time algorithm minimizing schedule
length has been also presented for complete k-ary
trees and uniform communication delays.

In the present paper we extend the above model by
assuming that processors are uniform, that is they dif
fer by their speeds. A polynomial-time algorithm is
given for the case of unit standard execution time tasks
forming complete intrees to be scheduled on two uni
form processors with speeds eq~al to 2 and 1 respec
tively. Unit communication times are assumed. Before
presentation of the algorithm we set up the subject
more precisely.

We consider a set of precedence constrained tasks
forming a complete intree. All tasks are assumed to
have unit standard execution times. A processor set
consists of two processors with speeds equal to 2 and
l, respectively. Thus, the execution of a task takes
one unit of time on the fastest processor (denoted by
Pc) and two units of time on the slowest processor
(denoted by Ps) .

Each task is non-preemptable and needs only one
processor for its execution.

Two tasks joined by an arc and processed on differ
ent processors must always communicate and such a
communication between processors takes one unit of
time.

Such a communication can be overlapped with the
processing of some other tasks on both processors,
whenever enough tasks independent of the tree for
which the transmission occurs, exist.

In the following we will consider complete k-ary
intrees. Each tree is characterized by its height h (h >
I) and by arity k. It follows that such a tree contains
n = (kh - l)/(k - 1) nodes (or tasks). Let us see
Fig. 1 for the basic notations (precedence constraints
are ignored in most of the figures for the sake of pre
sentation).

The considered criterion is schedule length. Using
the notation of Veltman [7], the problem can be writ
ten as follows:

Q2 l complete intree, Pi = 1, c == 1 l Cmax

In the next two sections, an O(n)-time algorithm
for the above problem will be presented.

2. Theoretical analysis

2.1. Some preliminaries

Firstly, a lemma is proved, which discusses an op
timal assignment of the root of an intree.

Lemma 1. No optimal schedule can be found, with
the root allocated to Ps.

Proof. Each schedule with the root allocated to Ps
belongs to one of the three following classes:
• A processing of the tasks allocated to Ps (except

for the root) finishes before a processing of all the
tasks allocatt'id to Pt (see Fig. 2, Case 1) .

• A processing of the tasks allocated to P1 (except for
the root) and a processing of all the tasks allocated
to Pr finish at the same time (see Fig. 2, Case 2).

• A processing of the tasks allocated to P8 (except
for the root) finishes after a processing of all the
tasks allocated to Pr (see Fig. 2, Case 3).
In every case, the allocation of the root to Pc leads

to a better schedule (in the third case, to obtain the

J. Blai.ewicz et al.I lnformo.tion Processing Letters 58 (1996) 255-263 257

Pr
Idle time due to communication •

Ps Tk
Idle time •

T1 and Tk are some

P1 immedlate predecessors of R

Ps Tk

P1 Ti

Case 1 Ps

P1 Ti P1 T1

Ps Tk Ps

Case 2 Case 3

Fig. 2. Allocation of the root for the optimality.

optimal schedule, it is necessary to move another task
from P5 to Pt, to overlap the communication). D

2.2. Basic property

A general rule which is to be followed here is the
so-called load-balancing. Here it means equal-in the
sense of a sum of real processing times (plus possi
bly communication delays)-assignment of tasks to
processors. Moreover, this equality is tested level by
level. Let n denote the total number of tasks. We cal
culate first the number of tasks to be executed on Ps in
an optimal schedule assuming a removal of the prece
dence constraints. As Pt is twice faster than Ps. it can
execute two tasks, while P5 can only execute one.

Thus, if we allocate ln/3J tasks to P5 , which cor
responds to load-balancing of the tasks (taking into

account the relative speeds) between both proces
sors (corresponding to the ratio of their processing
speeds), we obtain an optimal schedule.

Following Fig. 2, we see that without relaxation,
when Ps finishes an execution of all tasks assigned to
it, it has to send data from the last task computed to
Pr. It needs two units of time (one unit for the com
munication and one unit for the execution of at least
one task (the root)) . So, there remain at least two
tasks to be executed on Pr. except in the second case
of Fig. 2 where the root only remains to be executed.
In this case, however, it is possible to move task Tk
from Ps to Pt. without increasing the schedule length.
So, the allocation of L(n - 2)/3J tasks on P5 , keep
ing Pt always busy (i.e. with all the communications
overlapped), leads to the optimality of the schedule
(see Fig. 3).

258 1 Blattwia; tt al//nfonna.Jion Processing Letters 58 (1996) 255-263

Communication non overlapped Communication overlapped

P, P,

Communications can be overlapped without increasing the schedule length

Fig. 3. Compact schedule.

This is an upper bound for the number of tasks to
be allocated to P5 • Thus, a lower bound on the number
of tasks executed by Pr for a complete k-ary tree of
height his:

ln-2J n- --3 '
k1' -1

where n = k _ 1 .

As Pr executes one task per unit of time, and as
suming that all the communications are overlapped
and there is no idle time for Pr, this is also the lower
bound on the schedule length.

3. Scheduling algorithm

We present now a general algorithm for k-ary trees.
It is a level by level based algorithm.

3.1. Description of the algorithm

The idea of the algorithm is to load-balance the
tasks of a given level as much a.s possible.

The algorithm can be split into three steps.

Algorithm 1.

Step 1. Allocate the tasks of the highest level (the
hth level) in the following way:
• L kh-I /3 j tasks to P, and
• 2Lkh-l /3J tasks to Pr.

The tasks which are to be allocated to Ps are chosen
from the right to the left of the tree (in the following
steps, the choice is done in the same way).

The remaining ,0-1 - 3 L ,0- 1 /3 J tasks of this level
are to be allocated in the way described in Step 2.

Step 2. Add the remaining tasks to those of the fol
lowing level (the (h - 1) th level at the first iteration),
and, as in the previous step, load-balance as much as
possible these tasks.

Repeat this step until the second level of the tree is
reached.

Step 3. With this last step, the schedule is completed
by taking care of the overlapping of the communica
tions between the tasks at the second and the first lev
els respectively. For that, if j tasks have to be allocated
at the second level (including the remaining tasks of
the previous level), we can only allocate l (j - 1) /3 J
tasks on Ps. because we need one unit of time to
send data from Ps to Pt between level 2 and 1 (see
Fig. 4).

Finally the root is allocated to Pr.

3.2. Optimality

Theorem 2. Algorithm I always constructs an opti
mal schedule.

Proof. Following the basic property of the scheduling
problem (discussed in Section 2.2) we need only to
show that every_ schedule constructed by Algorithm 1
has the two following properties:
• the number of tasks allocated to P, is L (n - 2) /3 J

and
• there is no idle time on Pt.
In order to prove the optimality of Algorithm 1 for all
complete k-ary intrees, we have to verify the above
two properties fork= 3N, k = 3N+ l, and k = 3N-1
(with NE N•).

J. Bla:t.Ma et aLl/nformation Processing Letters 58 (1996) 255-263 259

T1 ~--·······'.!L T. . .

At the first step:

Task T• is allocated to P.

and T2, T3 to P1 , respectively.

R

At the second step: If we consider all the tasks minus one (i.e l j ; 1 J),
the communication ca.n be overlapped.

Fig. 4. An example of the end 1_>f a schedule in case of binary trees.

3.2.1. Case 1: k = 3N (with NE N•)

Verification of the number of tasks allocated to Ps
Since the number of tasks at any level i + 1 is (3N);
it can be divided by 3. Thus, the total number of tasks
allocated to P5 from level h through level 3 is

I (,th - 1) 3 k- 1 - (k +I) .

Moreover, in the two last levels, the total number of
tasks allocated to P,. is N - L Summing up, the to
tal number of tasks which are allocated to P, for the
complete tree is:

N-1+- ---(k+l) . I (kh -1)
3 k-1

It remains to verify the following equation:

I ? l" -2J N-1+-(n-(k+l)):i:: --3 3 .

The left-hand side of the equation can be transformed
in the following way:

k n k I n-4
3 - I + 3 - 3 - 3 = -3-·

The right-hand side:

ln;4 +~j = n~4 + l~J·
Finally we get

n - 4 = n - 4 + l~J
3 3 3 .

So the first property is proved for this case.

Verification that Pr is always busy As for each level
the total number of tasks is divided by 3, between two
different levels i + 1 and i, there is no communica
tion between processors, because the tasks of the ith
level have all their predecessors allocated to the same
processor.

260

Moreover, at the end of the schedule (Le. for lev
els 2 and I) , if P, executes some tasks of level 2, it
oommunkates some data to the root {allocated to

P, has N - I tasks to execute while Pr h<ltS 2N + I
tasks to execute. Then, as P1 needs N - I) units
of time for the execution of these tasks, and Pr needs
2N + l, there remain 3 units of time for the overlap of
the communication, and no idle time on Pr appears.

In conclusion, for this case (k = 3N), both proper
ties have been verified and hence the schedule is op
timfil.

3.2.2. Case 2: k = 3N - l (with N E N"")

Verification of the number of tasks allocated to Ps
When k = 3 N - l , the number of tasks at a given level
i + l is .ti = {3N - l Y.

This number cannot be divided by 3, but the sum
of the tasks of two consecutive levels can be divided
by 3, indeed:

(3N - 1)1 + (3N - oi-I = 3N(3N- oi-1.

So, in this case we consider the load-balanced a:Uo
cation for pairs of levels.

As in the previous case, we can calculate the number
of tasks which are allocated to Ps. Two cases occur:

• h is evm. Using Algorithm I, we allocate the
tasks belonging to levels h through 3, and we assign
to P, exactly (n - (k + l))/3 tasks.

Moreover, in the two last levels, the total number of
tasks allocated to Ps is N - 1; then, the total. number of
casks which are allocated to Ps for the complete tree is:

l (k" - l) N-1+ 3 T-=J-(k+l) ,

hence, (n - 3) /3. But, h is even, so

• his odd. Using Algorithm l, we allocate the tasks
belonging to levels h through 4, and we assign to P,
exactly (n - (kl+ k + l)) /3 tasks.

Moreover, in the three last levels (level I, 2 and 3),
the total nu:mbcroftask.sallocated toP, is lk2/3J+N
l ; thus, the total number of tasks which are aU-OCated
to Ps for the complete tree is:

l+N-t+~(k""-1-(k2+k+l)).
3j 3 k-1

Sincek2= 3N-j) 2,wehave =3q+l(qEN"').
Then, l k2 /3 J - lf.2 /3 = - I /3. Hence, the total number
of tasks allocated to P, is (n - 4) /3. But, h is odd, so

l~J = 11 - 4 + l~J = II - 4 3 3 3 3 .

Thus. the property is true for aH k-ary complete
trees with k = 3N - l.

Verification that Pt is always busy The following
proposition wm be useful for proving this property.

Proposition 3.
• !Ji is even then (3N - O' = 3L(3N - l)i/3J + 2.
• Ifi is odd then (3N- 1)1 =3l(3N- l)i/3J + 1.

We consider now the allocation of pairs of levels and
there are two kinds of communications (see Fig. 5) :
• communications from Pr to Ps (for white tasks in

Fig. 5) which are called intra-paircommunications,
• communications from Ps to Pt (for dotted tasks in

Fig. 5) which are called inter-pair communications.
We will prove that these communications can be

overlapped in both cases.
• h is even. In each pair of levels, the higher level l

is always even. So, following Proposition 3, we have

(3N -1)1-1=3l (3N ~ 01-1 J + 2.

Then, the number of tasks allocated to P, is (,tl-1 -

2) /3 at level I and (k1-2 + 2) /3 at level l - 1. A
task belonging to level l - l needs data from k tasks
belonging to the lth level. To avoid communications
from Pt to P5, Ps would execute Jc(k1- 2 + 2) /3 tasks
belonging to level l. But, only (k'- 1 - 2) /3 tasks
of level l are allocated to P5 • So, there is a lack of
2 * (k + I) /3 = 2N tasks. It means that there are 2N
communications of that type which cannot be avoided.
For the overlapping of these communications, P, has.
to be busy during at least 2N + l units of time. Since
(.k1-I - 2)/3 tasks are allocated to P,., we only have
to verify

kl-I - 2
3 -N ~ 2N+ 1. (1)

J. Blatewicz et al/Information Processing Letters 58 (1996) 255-263 261

0 Tasks allocated to P1 which communicate data to P,

e Tasks allocated to P, which communicate data to P1

Fig. 5. Intra- and inter-pair communications.

Since h is even, I ;;;i: 4 (because of Step 3 of Algo
rithm 1), we see that (1) is always true, and then the
communications between both processors inside a pair
of levels, are always overlapped.

Between two levels (l' - 1 and l, where l' = l + 2)
of two consecutive pairs, the communications occur
only from Ps to Pr. Indeed, the number of tasks al
located to Pr at level l + 1 is k! - (k1 + 2) /3 and,
at level I is k1- 1 - (lc1-1 - 2)/3. To avoid commu
nications from P5 to Pr, we need k! - (k' - 2k)/3
tasks at level I+ 1, but we have only k! - (k1+2) /3.
So, there are 2N communications which cannot be
avoided.

As in the previous case, these communications can
be overlapped, because Jd--l - ck'-1 - 2) /3 tasks are
allocated to Pr at the Ith level. So, we have only to
prove that

kl-I - k}-1 - 2 - N ;;;i: 2N + 1.
3

(2)

Since h ;;;i: 2, I ;;;i: 4 and k = 3N - 1, this inequality is
proved.

Then, if h is even, both kinds of communications
are overlapped.

• h is odd. This case is exactly the same as the
previous one, except that we use the second relation
of Proposition 3: If i is odd then

We prove in the same way that all the communications
which cannot be avoided are overlapped.

Then, both properties are verified. So the schedule
given by the algorithm is optimal for the case k =
3N- l.

3.2.3. Case 3: k = 3N + 1 (with NE N*)
In this case, considering one level (3N + 1 cannot

be divided by 3), or two levels ((3N+2)(3N+ 1)1- 1

cannot be divided by 3) is not enough. But, if we
consider three consecutive levels, the sum of tasks can
be divided by 3. Indeed,

(3N + 1)1 + (3N + 1)1- 1 + (3N + 1)1- 2

= 3(3N2 + 3N + 1)(3N + 1)1- 2•

Thus, we can load-balance a schedule for each triple
of tree levels. As in both previous cases, we prove the
two properties.

Verification of the number of tasks allocated to P5

For each set of three consecutive levels (levels!, 1-1,
l - 2), we allocate (3N2 + 3N + l)k'-2 tasks to P5 •

Then, three cases occur:
• h = 3L - 1 (with L E N"'). We consider all the

levels minus level 1 and 2.
• h = 3L. We consider all the levels minus level 1, 2

and3.
• h = 3L+ 1. We consider all the levels minus level l,

2, 3 and 4.

262 J. Blai.ewicz et al.I lnfonrration Processing Letters 58 (1996) 255-263

Thus, the number of tasks allocated to Ps for each case
is:

l(l1-2)/3j

(3N2 + 3N + I) L kh-31 + z.
i=I

where

lk;lJ. for h = 3L-1,

Z= lk2+:-1J. for h = 3L,

lk3+k23+k-IJ· for h = 3L + 1.

Thus, we have to prove that

l<h-2}/3J

= (3N2 + 3N +I) L J<!t-3i + z.
i=I

As an example the case h = 3L - I is shown below.

l ~ (~-=- 11 - 2) J
= l~((~_=-11 -(k+l))+k+l-2)J

= ~ (~-=-: -(k + I)) + l k; I J. (3)

Moreover, for h = 3L- l, h - 3(L(h-2)/3j) = 2.
Then

lCh-2)/3J lk l J
(3N2 +3N+ I) ~ ~-3i+ T

i=I

= ~ (~-=- 11 - (k + 1)) + lk; 1 J. (4)

We see that (3) and (4) are equal. The remaining two
cases are proved in a similar way.

Verification that Pt is always busy We remark that

kh = 3A + 1 (with A E N).

Indeed,

h-1 kh h-1 L . -11:. k!"=-- k'
k-1

i=J i=I

(5)

Thus, for a level h-3i > 2 (with i E N) there remains
only one task which is not allocated at Step 1 ~ for a
level h - 1 - 3i > 2 (with i E N) there remains only
two tasks which are not allocated with the other tasks
of the same level; for a level h - 2 - 3i > 2 (with
i E N) all the tasks are allocated. This leads to the
following remarks:
• between a level h - 3i and a level h - I - 3i there

are N communications from P5 to Pr which cannot
be avoided because

kh-3i _I kh-l-3i _ 1 k- I
3 - k 3 = -3- = N;

• between a level h-1 -3i and a level h-2-3i there
are 2N + I communications from Pr to P1 which
cannot be avoided because

Jch-l-3i - 1 kh-2-31+2 2k + 1
-----k =--=2N+l;

3 3 3

• between a level h - I - 3i and a level h - 2 - 3i
there are N + 1 communications from P1 to Pr which
cannot be avoided because

Jch-2-3i + 2 Jch-3Ci+I) _ 1 k + 2
-----k =--=N+l.

3 3 3

We can easily show that all these cooimunications can
be overlapped in the same way as in the case 3N - 1.

For the three different cases of arity of a complete
k-ary intree, both properties on the number of tasks
allocated to P, and on the unbroken activity of Pr
have been proved which leads to the optimality of
Algorithm 1.

3.3. Complexity of the algorithm

The time complexity of the algorithm is linear. In
deed, for each level the number T, of tasks to be al
located to Ps is calculated which is constant in time.
The T.th first tasks on the right of the tree are allo
cated to Ps. the other tasks of this level are allocated
to Pt. So for a given level, the amount of time needed
by the algorithm to provide a schedule is constant in

J. Blat.ewicz et al.I Information. Processing Letters 58 (1996) 255-263 263

time; therefore, since the height of the tree is h, Al
gorithm I is an O(h) algorithm.

4. Conclusion

This result is close to those of Jakoby and Reishuk
[5] because we consider complete k-ary intrees with
UET tasks. The differences are in the choice of the
communication cost, constant in our case and uniform
in their paper, and in the choice of processors, identical
in their work and unifonn in our case. The case of
speeds I and s (with s E N), with the same hypothesis
of execution times and of communication costs, could
be the next contribution. The case of speeds I and 2,
with UET tasks and uniform communication delays,
could be another one, since Jakoby and Reishuk [5J
provide a polynomial algorithm to solve this problem
with identical processors.

(l) J. Btazewicz, K. Ecker, G. Shmidt and J. Weglarz. Scheduling
in Computer anll Manufacturing Systems (Springer, Berlin.
1993).

(2) P. Cluetienne, A polynomial algorithm to optimally schedule
taSks on a virtual distributed system under tree-lib: precedence
constraints, European l Oper. Res. 43 (1989) 225-230.

(3) P. Chretienne and C. Picouleau, The basic scheduling with
intecprocessor communication delays, Tech. Rept. MASI 91.6,
Paris, 1991.

(4] H. Jung, L. K.irousis and P. Spirakis, Lower bounds and
efficient algorithms for multiprocessor scheduling of dags with
communication delays. in: Proc. 1 st SPAA (1989) 254-264.

(5) A. Jakoby and R. Reishuk, The complexity of scheduling
problems with communication delays for trees. in: Algorithm
Theory SWAT'92, 1992.

(6] C.H. Papadi.mitriou and M. Yannakalds, Towards an
architecture-independent analysis of parallel algorithms, in:
Proc. 20th Ami.. ACM Symp. on Theory of CompUliPJg, 1988.

(7] B. Beltman, B.J. Lageweg and J.K. Lenstra, MultiptOCeSSor
scheduling with communication delays, Paral~l Comput. 16
(1990) 173-182.

