
Parallel Lossless Image Compression

Using Hu�man and Arithmetic Coding

Paul G. Howard and Je�rey Scott Vitter

A shorter version of this paper appears in Proceedings of the IEEE Data Compression

Conference, Snowbird, Utah, March 23{26, 1992, 299{308.



Parallel Lossless Image Compression

Using Huffman and Arithmetic Coding
1

Paul G. Howard2

Visual Communications Research

AT&T Bell Laboratories
Holmdel, N.J. 07733{3030

Je�rey Scott Vitter3

Department of Computer Science

Duke University
Durham, N.C. 27706{0129

Abstract

We show that high-resolution images can be encoded and decoded e�ciently in parallel. We

present an algorithm based on the hierarchical MLP method, used either with Hu�man coding

or with a new variant of arithmetic coding called quasi-arithmetic coding. The coding step can

be parallelized, even though the codes for di�erent pixels are of di�erent lengths; parallelization

of the prediction and error modeling components is straightforward.

Index terms: Data compression, Hu�man coding, arithmetic coding, parallel algorithms.

1A shorter version of this paper appears in Proceedings of the IEEE Data Compression Conference, Snowbird,
Utah, March 23{26, 1992, 299{308.

2Work was performed while the author was at Brown University and at Duke University. Support was provided

in part by NASA Graduate Student Researchers Program grant NGT{50420 and by a National Science Foundation
Presidential Young Investigator Award grant with matching funds from IBM. Additional support was provided by a

Universities Space Research Association/CESDIS associate membership.
3Work was performed in part while the author was at Brown University. Support was provided in part by a

National Science Foundation Presidential Young Investigator Award grant with matching funds from IBM and by

Air Force O�ce of Scienti�c Research grants F49620{92{J{0515 and F49620{94{1{0217. Additional support was

provided by a Universities Space Research Association/CESDIS associate membership.



1 Introduction

The increasing availability of massively parallel computing architectures and the enormous volume
of scienti�c data being produced make parallel data compression a natural subject of research. We

present general-purpose algorithms for encoding and decoding using both Hu�man and arithmetic
coding, and apply them to the problem of lossless compression of high-resolution grayscale images.

Our system for lossless image compression has four components [8]: pixel sequence, prediction,
error modeling, and coding. In [8] we introduced MLP, a multi-level progressive method for lossless

image compression. The pixel sequencer of MLP divides an m�m image into 2 log
2
m levels, the

pixels in each level forming a checkerboard pattern; each level contains twice as many pixels as the

preceding one. The prediction of intensity values of pixels at one level depends only on the values
of pixels at earlier levels, so it is possible to predict all the pixels at one level in parallel. In this

paper we show that the coding step in MLP can also be parallelized.
A distinguishing characteristic of compression algorithms is the need to maintain decodability:

the encoder may use only information that will be available to the decoder. Since we are considering

the case where we wish to do both encoding and decoding in parallel, the location of bits in the
encoded �le must be computable by the decoding processors, preferably before they begin decoding.

In the MLP algorithm, the prediction error at each pixel is modeled as a random variate from a
particular distribution (Laplace, normal, or some similar distribution) with zero mean; the variance

is estimated by the error modeler. We then use a statistical coder (such as Hu�man coding or
arithmetic coding) to encode the error with respect to the distribution. Since the variance is the

only parameter of the distribution and since the code length is not sensitive to small di�erences
in the estimated variance, we can select a small number of variances (about 50) and precompute

a distribution (and perhaps a code) for each of them. Thus in the parallel coder, each pixel is
encoded using a known �xed code. In Section 2 we develop a parallel encoder and decoder for
the simpler Hu�man codes; in Section 3 we extend our coders to a practical version of arithmetic

coding called quasi-arithmetic coding.
We use the PRAM model of parallel computation; the number of processors is p. We allow

concurrent reading of the parallel memory, and limited concurrent writing, to a single one-bit
register, which we call the completion register. At the beginning of each time step it is initialized

to 0; during the time step any number of processors (or none at all) may write 1 to it. Our
algorithms are also ideally suited for implementation on the Connection Machine architecture. We

code the image by levels; each level consists of n pixels.
The main issue in parallel coding is in dealing with the di�erences in code lengths of di�erent

pixels. For simplicity we do not consider input data routing, and we defer the issues of parallel
prediction and error modeling to Section 4, where they are discussed brie
y.

2 Parallel Hu�man Coding

We now develop the basic parallel coding algorithms using Hu�man coding [14]. In practice Hu�-
man coding is often the best choice for statistical coding, since the resulting codes are usually close

to optimal and they can be very fast if implemented by lookup tables. Hu�man codes are instan-
taneous; that is, the receiver knows immediately when a complete symbol has been received, and

does not have to look further to correctly identify the symbol. Instantaneous codes are just those
with the pre�x property : no code word is a pre�x of another code word [7, pages 53{55]. Parallel

coding is simpli�ed since the code bits for all pixels are disjoint and independent.

2.1 Codeword-length coding

One simple approach involves assigning one pixel to each processor and noting that each encoding

processor can easily compute the code length of its pixel. By a single pre�x operation each processor
can compute the location of its code bits in the output stream; it can then write them directly.

When all processors have �nished, a new pixel is assigned to each processor. This method works if

1



P

P

P

P

Phase 1

11 1210

987

654

321

4

3

2

1 12

10

11

6

3

P

P

P

P

Phase 2

4

3

2

1

11

12

P

P

P

P

Phase 3

4

3

2

1

Figure 1: Example of reallocation coding. In this example, there are four processors, P1; P2; P3; P4 and

12 pixels, 1; 2; 3; : : :; 12. Initially three pixels are assigned to each processor. The �rst phase ends when

processor P3 �nishes pixel 9 after 4 time steps; each processor has output 4 bits by this time. Pixels 3 and 10

have been partially encoded; they remain assigned to processors P1 and P4; the untouched pixels (6, 11,

and 12) are reassigned to balance the remaining load. The second phase ends one time unit later, when

P2 �nishes pixel 6 and P4 �nishes pixel 10. The in-progress pixel (11) temporarily remains assigned to P3;

the untouched pixel (12) is \reassigned" to P1; then since P2 is inactive, P3's processing is shifted to P2.

Pixels 11 and 12 are �nished in the last time step.

the decoding is to be sequential; in fact it produces the same coded output as a sequential encoder.
Parallel decoding is di�cult, since the decoding processors cannot easily determine the lengths or

the starting locations of the output codewords, although in fact De Agostino and Storer [2] show
that this can be done by assigning processors to encoded bits.

2.2 Bit-transpose coding

We can achieve decodability by rearranging (transposing) the output bits. Instead of outputting

all bits for the �rst pixel, then all bits for the second, and so on, we output the �rst bit for
each pixel in the �rst time step, then the second bit for each pixel in the second time step, and

so on. After each time step, we can determine whether any codes are complete by having all
completing processors concurrently write 1 to the completion register. If any codes are complete,

the corresponding processors no longer produce output; output from the remaining processors is
shifted accordingly by a pre�x operation. This code can be decoded in parallel: each decoding
processor can determine when the code for its pixel is complete, and the same concurrent write

and pre�x operation can determine where the remaining processors are to obtain their next bits
from. When all processors have completed their output, a new pixel is assigned to each processor.

If there is one processor for each pixel, this method makes good use of available processors. The
di�culty lies in the time-consuming O(log p) pre�x operation that must be performed after every

time step in which a processor �nishes.

2.3 Reallocation coding

If the number of processors is much less than the number of pixels, we can reduce the number
of pre�x operations by allowing each processor to begin working on another pixel as soon as it
has completed a pixel. At the beginning of a level we distribute the n pixels equally among the

p processors. For analysis we assume that the allocation is random, but that the encoder and
decoder can make the same allocation without any side information.

During processing, we follow the bit-transpose protocol of Section 2.2: at each time step each
processor writes a single bit to a location that will be known to both encoder and decoder. When

a processor �nishes outputting the code for one pixel, it goes on to the next pixel allocated to it,
even though other processors may still be working on earlier pixels. Code lookup is assumed to be

fast: the codes are small enough that the full code can be stored in each processor's memory, or
perhaps distributed among small groups of nearby processors. When one processor �nishes all its

allocated pixels, it indicates this fact by writing 1 to the completion register. When the completion

2



register is 1, the output process is interrupted. At this time the pixels allocated to other processors

fall into three categories: completed, in-progress, and untouched. Completed pixels are of no
further concern; in-progress pixels remain assigned to their current processors; untouched pixels

are distributed evenly among all the processors. Processing of the reallocated pixels then continues
until the next time that some processor �nishes all its allocated pixels. Toward the end of processing

for a level, the number of remaining pixels will become less than the number of available processors.
At this point we deactivate processors, making the number of active processors equal to the number
of remaining pixels. We then revert to the bit-transpose method of Section 2.2. The entire process

is illustrated in Figure 1.

2.4 Analysis

We analyze the time required by the parallel algorithm. We assume that in one time unit each pro-
cessor can output one bit, and that a pre�x operation, as required for reallocation, takes 2dlog

2
pte

time units, where pt is the number of active processors at time t. We denote the number of bits in
the longest single code word by L, and the average number of bits per pixel in a level by H .

We can easily show that the time required for bit output in one level is between dnH=pe
and dnH=pe + L. The processors are operating at full e�ciency until there are fewer pixels than
processors, using at most dnH=pe time units. At that time no processor has more than L bits

remaining, so no more than L additional time units are needed. It is clear that even if the processors
can operate at full e�ciency throughout a level, they require at least dnH=pe time units.

The more interesting analysis concerns the number of reallocations required. We de�ne a phase

to be the period between reallocations. Early phases are those which take place while the number

of pixels is greater than the number of processors; late phases are those needed to code the �nal p
or fewer pixels. We show that the number of reallocations needed when coding a level with n pixels

using p processors is at most L log
2
(2n=p) in the worst case.

We de�ne a superphase to be the time needed to halve the number of remaining pixels. Consider

the �rst superphase. The number of pixels assigned to each processor ranges from n=p in the �rst
phase down to n=2p in the last. At least one processor completes all its pixels in each phase; such
a processor must output at least one bit per pixel, since all code words in a Hu�man code have

at least one bit. This processor (and hence all processors) thus output at least n=2p bits in each
phase, making a total of at least n=2 bits output in each phase. The total number of bits that must

be output in the �rst superphase is at most nL=2, so the number of phases in the �rst superphase
is at most L.

The same reasoning holds for all superphases. The number of superphases needed to reduce
the number of remaining pixels from n to p is log

2
(n=p), so the number of phases needed is just

L log
2
(n=p). Once p or fewer pixels remain, we fall back to bit-transpose coding, which may require

L late phases, so the total number of phases needed is at most L log
2
(2n=p).

2.5 Parallel Hu�man coding in practice

We have simulated parallel Hu�man compression for a set of 14 Landsat Thematic Mapper images;
these images, described in [8], are 512� 512 8-bit grayscale images. We simulate only the last level

of coding (n = 131;072 pixels) for each image, using p = 4;096 processors. For our test images, the
number of early phases is at most 7, the average being 5.6. It usually happens, however, that the

remaining code lengths take on many of the possible values, so the number of late phases is large.
The average value of L in the simulations is 23.7, and the average number of late phases is 13.7.

To improve compression time, we must reduce the number of phases. Using the variability
index technique described in Section 4.2, we can more evenly balance the output bits among the

processors. The result is a reduction in the number of early phases for most of the images; a few
stayed the same. The average falls to 4.6. The number of late phases is essentially una�ected.

By reducing L, the length of the longest code, we can reduce the number of late phases. One

3



straightforward approach is to build optimal code trees subject to a constraint on the length of

the longest codeword, as described in [5,13,19]. A simpler ad hoc method is to substitute a special
IGNORE code for the codes of pixels longer than a certain threshold �. These long pixels must then

be transmitted separately. There are not very many of them and their code lengths are long, so
we lose very little compression e�ciency by sending them unencoded at the end of the level; this

is easy to do in parallel after a pre�x operation to assign long pixels to processors. The IGNORE
code itself can be of length �. In simulations with � = 10 using the variability index technique, the
average number of late phases falls to 9.1. The average loss in compression is only 196 bytes.

We can further reduce the number of early phases by performing local reallocations. Instead
of using time 2dlog

2
pte to reallocate all untouched pixels when one processor completes its pixels,

we can arrange local exchanges between neighboring processors, thus lengthening the time between
full reallocations.

2.6 Extension to other pre�x codes

Although Hu�man codes are optimal among pre�x codes for a given distribution, it is sometimes

desirable to use simpler pre�x codes. Golomb codes [6] and Rice codes [17] can be used to encode
data from distributions in which the probabilities are arranged in approximately decreasing order.
This condition usually holds for the prediction errors encountered in lossless image compression.

Golomb codes are parameterized by a positive integer parameter m. Given the value of m,
we encode non-negative integer n by encoding bn=mc in unary, then encoding n mod m using an

adjusted binary code for the range [0; m � 1]. It can be shown that the correct choice of the
parameter m produces an optimal pre�x code for a given exponential distribution [4], but Golomb

codes are useful for other decreasing distributions as well.
Rice [17] independently discovered the special case of Golomb codes where m = 2k for some

integer k. Restricting m to be a power of 2 leads to codes that are easy to implement in hardware
or software. Given k, the value of the coding parameter, we encode n by �rst removing the k least

signi�cant bits of n and encoding the remaining bits as a unary number. Then we send the k least
signi�cant bits directly. Like Golomb codes, Rice codes are most closely matched to exponential
distributions but useful for other decreasing distributions.

Because they are pre�x codes, Golomb and Rice codes can be implemented in parallel using
the reallocation coding method of Section 2.3. The analysis in Section 2.4 applies as well, except

that the average number of bits per pixel in a level and the length of the longest codeword may be
larger.

3 Parallel Quasi-Arithmetic Coding

Hu�man coding produces an average code length close to the entropy of the source model used for
coding. In fact, Hu�man coding is optimal among pre�x codes. The suboptimality of Hu�man
coding can be appreciable, however, whenever one input event has a probability near 1. In image

compression, this happens when the variance of the Laplace distribution describing the model is
small, in which case the zero-error event has high probability. For example, when the variance of

a Laplace distribution is less than 1.04, the probability of a zero error is more than 0.5; when the
variance is less than 0.26, the probability of a zero error is more than 0.75.

When Hu�man coding is inadequate, we can turn to arithmetic coding. Arithmetic coding can
theoretically achieve exactly optimal compression for a given source model when it is implemented

using exact (slow) arithmetic. Practical implementations of arithmetic coding use �xed precision
arithmetic [9,11,20], but they still run slowly because of the multiplications (and sometimes di-

visions) required. Recent research has focused on approximations to the arithmetic that reduce
the time required without sacri�cing much coding e�ciency. Work by Rissanen and Mohiuddin
[18], Chevion et al. [1], Feygin et al. [3], and Printz and Stubley [16] has involved approximate

multiplication; Neal [15] uses approximate division. In [9,10,11] we present complete details of an

4



alternative practical approach, called quasi-arithmetic coding, in which we precompute all multipli-

cations and divisions and store the results in lookup tables. We review quasi-arithmetic coding in
Section 3.1. Quasi-arithmetic coding can be viewed as a generalization of Hu�man coding, so the

extension in Section 3.2 of the algorithm in Section 2.3 is natural.

3.1 Quasi-arithmetic coding

In ordinary arithmetic coding we encode a sequence of input events by identifying each possible

sequence with a subinterval of the real interval [0; 1), then selecting the subinterval corresponding
to the actual input. In practice we use integer subintervals of the interval [0; N) for some su�ciently

large N . Whenever we know that the current interval lies entirely in the left or right half of the full
interval, we output 0 or 1 respectively, discard the unused half of the full interval, and expand the

remaining half so that it �lls the full interval. (We also use a trick, the bits-to-follow mechanism
explained in [20], that enables us to expand the interval when we know that the current interval is

entirely within the middle half of the full interval.)
The intermediate intervals computed by the coder can be thought of as states, each determined

by the endpoints of the interval. A full precision arithmetic coder has an in�nite number of possible
states; a practical coder based on interval [0; N) uses 3N2=16 states. The idea of quasi-arithmetic
coding is that by using a small value of N we can make the number of states small enough that

the coder can be represented in lookup tables. The only arithmetic involved is in precomputing
the tables; the arithmetic is done according to the Witten-Neal-Cleary algorithm [20].

A one-state coder corresponds to Hu�man coding. As we increase the number of states, we
increase the precision of the coder and hence its compression e�ciency. Using just a few states

often provides e�ciency considerably greater than that of Hu�man coding. Quasi-arithmetic codes,
like arithmetic codes, are not instantaneous codes; nevertheless, they are uniquely decodable with

bounded coding delay.
Construction of an optimal quasi-arithmetic code for a multi-symbol alphabet is an open prob-

lem. However, we can use the following three-step process to construct a reasonable multi-symbol
quasi-arithmetic code.

1. We design a multi-state code table for a binary alphabet with various possible symbol prob-
abilities.

2. We decompose the multi-symbol alphabet into a binary tree with the alphabet symbols at the

leaves, such that the product of the edge probabilities from the root to each leaf approximately
equals the corresponding symbol probability.

3. We follow all paths through the tree of Step 2, using the table from Step 1 to compute an
output codeword and next state for each alphabet symbol from each possible starting state.

Example 1 : We construct a two-state code based on full interval [0; 4) for the three-symbol alphabet

fA;B;Cg, with pA = 0:7, pB = 0:2, and pC = 0:1. First we construct a two-state binary code. In
this example we use a very simple binary code, in which we merely distinguish the input symbols
as more or less probable; a more complete two-state code would also allow the two probabilities

to be approximately equal. We indicate the more probable symbol by MPS and the less probable
symbol by LPS; the probability of MPS can be taken to be about 0.71.

MPS input LPS input
From state

Output Next state Output Next state

E0 - E1 00 E0

E1 1 E0 01 E0

5



State E0 corresponds to the full interval [0; 4), state E1 to subinterval [1; 4). Next we construct a

binary tree with each branch labeled either MPS or LPS, the probability of MPS being 0.71.

LPS

CB

A MPS

LPSMPS

he e�ective probabilities of the leaves are p�
A
� 0:710, p�

B
� 0:206, and p�c � 0:084. Next we use the

tree and the table to derive the following code.

Input A Input B Input C
From state

Output Next state Output Next state Output Next state

E0 � E1 00 E1 0000 E0

E1 1 E0 01 E1 0100 E0

Again, state E0 corresponds to the full interval [0; 4), and state E1 to subinterval [1; 4). Even

though it does not have the pre�x property, this code is uniquely decodable with bounded delay.
For example, from state E0, the code for B (00) is a pre�x of the code for C (0000); but a B input

leads to state E1, and the �rst two bits output from state E1 are never 00; hence a B will not be
decoded as a C. The coding delay is at most one symbol, and the following four-state table can

perform the decoding.

Input 0 Input 1
From state

Output Next state Output Next state

D0 � D1 AA D0

D1 � D2 A D2

D2 � D3 BA D0

D3 C D0 B D2

The asymptotic average code length for this code is 1.171 bits per symbol. The entropy of the

source is 1.157 bits per symbol, so the compression loss4 is only 1:2�� . The Hu�man code for this
source has an average code length of 1.3 bits per symbol, giving a compression loss of 10:5��, over

8 times as large. In this example we used a two-state code; using more states usually gives even
more e�ciency. 2

Note that the two-symbol code is used only for constructing the multi-symbol code. The multi-

symbol code tables and coding algorithm are similar to the Hu�man tables and algorithm, but
with added state information. In MLP we would precompute the set of Laplace distributions, then

precompute a quasi-arithmetic code for each of them.

3.2 Parallel algorithm

We can apply the reallocation coding method of Section 2.3 directly to quasi-arithmetic coding.
The only complication arises when the last pixel of a processor's allocation leaves the processor
in a state other than the starting state. To ensure decobability, we must not allow this. Na��vely

reverting to a Hu�man code for the last pixel of a processor's allocation, does not work: toward the
end of processing, a pixel with a long code may become a processor's last pixel through reallocation,

even though it was not the last when the processor began working on it. This happened to pixel 10
in the example of Figure 1.

4
Compression loss can be derived from the de�nition of compression gain in the revised version of [12] to be

100 log
e
(actual average code length=entropy); it is expressed in units of percent log ratio, denoted by the �

� symbol.

For small losses, the compression loss is almost equal to the ine�ciency expressed as an ordinary percentage.

6



A successful approach is to force each processor back to the starting coder state after its last

allocated pixel has been encoded by outputting zero, one, or two additional bits according to the
following rule:

If the current interval is [0; N), do nothing;
otherwise if [0; N=2) is entirely within the current interval, output 0;

otherwise if [N=2; N) is entirely within the current interval, output 1;
otherwise if [N=4; N=2) is entirely within the current interval, output 01;

otherwise if [N=2; 3N=4) is entirely within the current interval, output 10.

Example 2 : If we were using the three-symbol code in Example 1, and if the last symbol to be
output by a processor (from state E0) were B, we would output 00; then we would have to force

the processor from state E1 back to state E0. This can be done by outputting 1 or 01; according
to the third line of the rule above, we output the shorter string 1 since state E1 (interval [1; 4))

includes the entire right half of the full interval [0; 4). Without the extra bit, the decoder would
not know whether the last symbol was B or C, since the codes for both of them begin with 00.

After reading 001 and decoding B, the decoder would know (by counting decoded symbols) that
there was no more data, so it would not attempt any further decoding; in particular it would not

output an extra A. 2

In e�ect, we have a number of arithmetically coded output streams; we have to solve the end-
of-�le problem for each of them. It is not di�cult, merely a nuisance.

The algorithm for parallel quasi-arithmetic coding is as follows:

1. We distribute all the pixels of a level evenly among all the processors. The pixels may be
assigned randomly or, even better, we may attempt to give each processor approximately the

same number of bits to output, as discussed in Section 4.2.

2. Each processor proceeds sequentially through its assigned pixels, writing one bit to a pre-

computed location at each time step. If a pixel completes all its assigned pixels, and it is in
the starting state, it writes 1 to the completion register. If a completing processor is not in

the starting state, it begins the �nishing-up procedure described above. After �nishing up, it
writes 1 to the completion register (unless a reallocation has taken place, giving the processor

more pixels to work on).

3. When the completion register becomes 1, processing is interrupted for pixel reallocation.

Pixels currently being processed remain with their current processor. The untouched pixels
are divided among all the processors. Processors that have begun but not completed the

�nishing-up procedure must complete the procedure.

4. If a reallocation leaves any processors with no pixels and no �nishing up to do, those processors
are deactivated. We perform a pre�x operation on the remaining pixels to determine the

location of each processor's next output bit.

After reallocation, we return to Step 2, and repeat until no pixels of the current level remain.

4 Parallel Prediction and Error Modeling

In order to code images using the MLP algorithm, we must predict the value of each pixel and
model the error of our prediction. Both of these steps can be parallelized.

4.1 Prediction

The prediction step for a pixel involves computing a linear combination of the values of a �xed
constellation of nearby pixels whose values are already known. Clearly the encoder, having access

to all pixel intensities at the beginning of the computation, can predict all values simultaneously;

7



the decoder can make the same predictions, but only level-by-level, since the predictions depend

on values from preceding levels.

4.2 Error modeling

Error modeling is most e�ective when done implicitly. In [12] we give an implicit method for
estimating local image variances that leads to better compression than any other published lossless
image compression method. Our method involves computing a quantity called the variability index

for each pixel, sorting the pixels by variability index, then using the same error model (i.e., the
Laplace distribution with the same variance) to encode all pixels with similar variability index.

Like the intensity prediction, the variability index computation depends only on the values of a
few nearby pixels, known from a previous level, so it can be done in parallel by both encoder and

decoder with no loss of e�ciency. The assignment of variances to values of the variability index can
be done implicitly in a sequential environment, adaptively estimating the variance while working

through the pixels in order of variability index. For parallel coding the use of side information is
more appropriate: we can group the pixels after sorting (sorting can be done e�ciently in parallel),

then compute the variance of each group and transmit it in coded form. Each variance requires
only a few bits to transmit, typically four or fewer; if we divide each level of n pixels into

p
n

groups, only about (
p
2+1)m variances must be transmitted for an m�m image. For a 512� 512

image this amounts to 1236 variances, or only 618 bytes of side information. This introduces less
than 0:5�� compression loss.

The variability index technique has the e�ect of classifying pixels by local variance. This
translates roughly into a classi�cation by code length, since distributions with larger variances

usually have larger average code length. Using this classi�cation we can assign pixels to processors
in a way that divides the code length (not just the number of pixels) approximately evenly among

the processors, thus reducing the number of pixel reallocations needed. The simulation results
described in Section 2.5 con�rm the usefulness of this technique.

5 Conclusions

We have shown that e�cient parallel lossless encoding and decoding of images is feasible, using

either Hu�man coding, other pre�x codes, or, more surprisingly, a version of arithmetic coding; we
have presented algorithms and analysis. Our algorithm uses randomization to limit the number

of reallocations, but the variability index technique provides su�cient balancing of output bits to
obviate randomization. We note that these algorithms could be implemented on the Connection

Machine architecture without di�culty.
Although we have presented our algorithms in terms of image compression, the ideas extend to

any compression problem in which the model needed to encode each event is known ahead of time.
It is not necessary that each event use the same model.

References

[1] D. Chevion, E. D. Karnin & E. Walach, \High E�ciency, Multiplication Free Approximation

of Arithmetic Coding," in Proc. Data Compression Conference, J. A. Storer & J. H. Reif, eds.,
Snowbird, Utah, Apr. 8{11, 1991, 43{52.

[2] S. De Agostino & J. A. Storer, \Parallel Algorithms for Optimal Compression using Dictionaries

with the Pre�x Property," in Proc. Data Compression Conference, J. A. Storer & M. Cohn, eds.,
Snowbird, Utah, Mar. 24-26, 1992, 52{61.

[3] G. Feygin, P. G. Gulak & P. Chow, \Minimizing Error and VLSI Complexity in the Multiplica-
tion Free Approximation of Arithmetic Coding," in Proc. Data Compression Conference, J. A.

Storer & M. Cohn, eds., Snowbird, Utah, Mar. 30-Apr. 1, 1993, 118{127.

8



[4] R. G. Gallager & D. C. Van Voorhis, \Optimal Source Codes for Geometrically Distributed

Integer Alphabets," IEEE Trans. Inform. Theory IT{21 (Mar. 1975), 228{230.

[5] M. R. Garey, \Optimal Binary Search Trees with Restricted Maximum Depth," SIAM J. Com-

put. 3 (June 1974), 101{110.

[6] S. W. Golomb, \Run-Length Encodings," IEEE Trans. Inform. Theory IT{12 (July 1966), 399{
401.

[7] R. W. Hamming, Coding and Information Theory , Prentice-Hall, Englewood Cli�s, N.J., 1980.

[8] P. G. Howard & J. S. Vitter, \New Methods for Lossless Image Compression Using Arithmetic

Coding," Information Processing and Management 28 (1992), 765{779.

[9] P. G. Howard & J. S. Vitter, \Practical Implementations of Arithmetic Coding," in Image and

Text Compression, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, Massachusetts, 1992,

85{112.

[10] P. G. Howard & J. S. Vitter, \Design and Analysis of Fast Text Compression Based on Quasi-

Arithmetic Coding," Information Processing and Management 30 (1994), 777{794, also appears
in shorter form in the proceedings of the Data Compression Conference, J. A. Storer and M.

Cohn, eds., Snowbird, Utah, March 30-April 1, 1993, 98-107..

[11] P. G. Howard & J. S. Vitter, \Arithmetic Coding for Data Compression," Proc. IEEE 82 (June
1994), 857{865.

[12] P. G. Howard & J. S. Vitter, \Error Modeling for Hierarchical Lossless Image Compression,"

in Proc. Data Compression Conference, J. A. Storer & M. Cohn, eds., Snowbird, Utah, Mar.
24-26, 1992, 269{278.

[13] A. K. Huber, \A Hybrid Algorithm for Compression of Infrared Images of Space," Utah State
University, M.S. Thesis, 1993.

[14] D. A. Hu�man, \A Method for the Construction of Minimum Redundancy Codes," Proceedings

of the Institute of Radio Engineers 40 (1952), 1098{1101.

[15] R. M. Neal, \Fast Arithmetic Coding Using Low-Precision Division," Unpublished manuscript,
1987.

[16] H. Printz & P. Stubley, \Multialphabet Arithmetic Coding at 16 MBytes/sec," in Proc. Data

Compression Conference, J. A. Storer & M. Cohn, eds., Snowbird, Utah, Mar. 30-Apr. 1, 1993,

128{137.

[17] R. F. Rice, \Some Practical Universal Noiseless Coding Techniques," Jet Propulsion Laboratory,
JPL Publication 79{22, Pasadena, California, Mar. 1979.

[18] J. J. Rissanen & K. M. Mohiuddin, \A Multiplication-Free Multialphabet Arithmetic Code,"

IEEE Trans. Comm. 37 (Feb. 1989), 93{98.

[19] D. C. Van Voorhis, \Constructing Codes with Bounded Codeword Lengths," IEEE Trans. In-

form. Theory IT{20 (Mar. 1974), 288{290.

[20] I. H. Witten, R. M. Neal & J. G. Cleary, \Arithmetic Coding for Data Compression," Comm.

ACM 30 (June 1987), 520{540.

9


